

January 23, 2023

Mr. Jeff Gouveia Bear Valley Water District PO Box 5027 Bear Valley, California 95223

RE: Bear Valley Water District – Third Tri-Annual 2022 Groundwater Monitoring Report, WDRs Order No. 5-01-208 and R5-2005-0139.

Dear Mr. Gouveia:

Please find an electronic copy of the <u>Third Tri-Annual 2022 Groundwater Monitoring Report</u> as required by the revised Monitoring and Reporting Requirements of Order No. 5-01-208. Board staff have requested that all monitoring reports be submitted electronically and have a transmittal letter signed and dated by the discharger. Accordingly, please sign (and date) the attached form and re-attach to this report before emailing to the Regional Board by the **February 1st** deadline. The report should be emailed to <u>centralvalleysacramento@waterboards.ca.gov</u>.

Note that historical and third tri-annual 2022 groundwater monitoring data have been reviewed and analyzed in the preparation of this groundwater monitoring report.

Please contact me at your earliest convenience should you have any questions regarding the content of this report.

Sincerely, STANTEC

Thomas W. Butler PG, CEG, CHG Senior Hydrogeologist/Geochemist

Attachment – Third Tri-Annual 2022 Groundwater Monitoring Report (e-copy)

Monitoring Report Submittal Transmittal Form

Attn: Ms. Mary Boyd Central Valley Regional Water Quality Control Board 11020 Sun Center Drive #200 Rancho Cordova, CA 95670-6114

Discharger:	Bear Valley Water District
Name of Facility:	Bear Valley Wastewater Treatment and Disposal Facility
WDRs Order Number:	5-01-208
County:	Alpine County
Regulator Program:	Waste Discharge to Land (Non15)
Unit:	Compliance
CIWQS Place ID:	<u>209035</u>

The <u>Bear Valley Water District</u> is hereby submitting to the Regional Water Quality Control Board ("RWQCB") the following information:

Check all that apply:

Annual Monitoring Report for the year _____

1st/2nd (circle one) Semi-annual Monitoring Report for the year

1st/2nd (3rd) circle one) Tri-Annual Monitoring Report for the year of 2022

Monthly Monitoring Report for the month of _____

During the monitoring period, there were / were not (circle one) violations of the WDR'S

- 1. The violations were: See Attached Report
- 2. The actions to correct the violations were: See Attached Report

Certification Statement

"I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment."

Signature:

Printed Name: Jeff Gouveia BVWD General Manager Phone: (209) 753-2112

Date: January 23, 2023

Bear Valley Water District – Third Tri-Annual 2022 Groundwater Monitoring Report

Prepared for: Bear Valley Water District PO Box 5027 Bear Valley, California 95223

Prepared by: Stantec Consulting Services Inc. 1340 Treat Boulevard, Suite 300 Walnut Creek, California 94597

January 23, 2023

Table of Contents

1.0	EXECUT	IVE SUMMARY	1.1
2.0	INTROD	UCTION AND BACKGROUND	2.1
2.1	INTROD	UCTION	2.1
2.2	Backg	ROUND	2.3
2.3	GEOLO	GY	2.3
2.4	SOILS		2.3
	2.4.1	Ridge Top	2.4
	2.4.2	Ridge Side	2.4
	2.4.3	Valley Floor	
	2.4.4	Field Observations	2.4
3.0	GROUN	DWATER REGULATORY REQUIREMENTS	3.1
3.1	WATER	QUALITY OBJECTIVES AND BASIN PLAN REQUIREMENTS	3.1
3.2		GRADATION POLICY	
3.3		ALLEY WATER DISTRICT WASTE DISCHARGE REQUIREMENTS	
4.0	GROUN	IDWATER MONITORING RESULTS	4.1
4.1	MONITO	DRING SUMMARY	4.1
4.2	GROUN	IDWATER ELEVATIONS, GRADIENTS, AND FLOW DIRECTION	4.2
4.3	GROUN	IDWATER QUALITY	4.4
	4.3.1	Compliance Monitoring Well MW-1	
	4.3.2	Background Monitoring Well MW-2	
	4.3.3	Compliance Monitoring Well MW-3	4.6
	4.3.4	Compliance Monitoring Well MW-4	4.6
	4.3.5	Compliance Monitoring Well MW-5	4.6
	4.3.6	Compliance Monitoring Well MW-6	4.7
5.0		ROUND GROUNDWATER QUALITY SUMMARY	
5.1		CAL ANALYSIS INTRODUCTION	
5.2	OUTLIEF	R ANALYSIS	5.1
5.3	NORMA	ALITY TEST	5.2
5.4	SITE SPE	CIFIC GROUNDWATER LIMITATIONS	5.3
5.5	ANTI-DE	EGRADATION ASSESSMENT	5.4
6.0	SUMMA		6.1
7.0	PROFES	SIONAL SEALS AND CERTIFICATIONS	

LIST OF TABLES

Table 1 Regional Board Interim Groundwater Limitations	3.3
Table 2 Groundwater Monitoring Requirements	
Table 3 Third Tri-Annual 2022 Groundwater Quality Summary	
Table 4 Groundwater Elevation Summary	4.3

Table 5 2022 Statistical Assessment of Background Groundwater Quality	5.3
Table 6 2022 Recommended Site-Specific Groundwater Limitations	5.4
Table 7 2022 Groundwater Monitoring Compliance Summary	5.5

LIST OF FIGURES

Figure 1 Third Tri-Annual 2022 Groundwater Elevation Contour Map	2.2
Figure 2 Groundwater Elevation Time Series Chart	4.3
Figure 3 TDS Time Series Chart	4.4
Figure 4 Chloride Time Series Chart	4.5

LIST OF APPENDICES

APPENDIX A	GROUNDWATER MONITORING PROTOCOL
APPENDIX B	THIRD TRI-ANNUAL 2022 ANALYTICAL RESULTS AND FIELD LOGS
APPENDIX C	HISTORICAL GROUNDWATER ELEVATIONS AND QUALITY

Executive Summary January 23, 2023

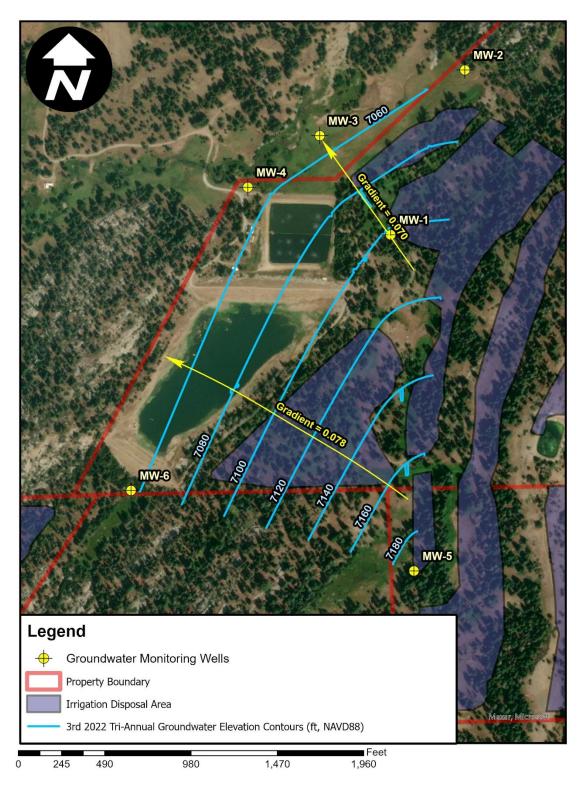
1.0 Executive Summary

- Groundwater elevation monitoring during the third tri-annual monitoring event of 2022 indicates flow that was roughly perpendicular to site topography and generally towards the northwest at a horizontal gradient ranging from 0.070 to 0.078;
- Groundwater quality monitoring indicates pH (MW-2 and MW-3), EC (MW-5), iron (MW-1 and MW-4), manganese (MW-1, MW-4, and MW-6), and total coliform (all wells) exceeded water quality goals for agricultural and/or potable use during the third triannual monitoring event. MW-5 did not contain sufficient water to allow sampling for laboratory constituents.
- Revised background statistics were computed, and the site-specific groundwater limitations updated as part of this <u>Third Tri-Annual 2022 Groundwater Monitoring</u> <u>Report</u>. Of all the constituents assessed tri-annually in 2022, only iron and manganese (MW-1 and MW-6) were present at concentrations that may be considered above water quality objectives, at statistically significant levels. Conditions that naturally favor iron and manganese mobilization are present in shallow groundwater in the area, including acidic soils and naturally low pH. Thus, these exceedances should not be considered as irrefutable proof that an impact do to wastewater disposal has occurred. The background statistics will again be updated as part of the <u>Third Tri-Annual 2022</u> <u>Groundwater Monitoring Report</u>.
- Statistical analysis indicates that all of the remaining parameters assessed in 2022, including: nitrate, ammonia, pH, boron, chloride, sodium, and total coliform were in compliance with site specific groundwater limitations, indicating further compliance with State's Anti-Degradation Policy;
- Only one background well exists and thus computed 2022 background statistics could not reasonably account for natural special variations in water chemistry common in shallow groundwater systems. Furthermore, surface water from a nearby stream may influence (likely through dilution) groundwater quality due to its close proximity to the shallow background monitoring well; and,
- Lack of a groundwater monitoring network that adequately accounts for spatial variations in background groundwater quality remains the most significant monitoring deficiency at the wastewater treatment and disposal facility. Should additional information be required regarding spatial changes in background water chemistry additional background well should be installed.

Introduction and Background January 23, 2023

2.0 Introduction and Background

2.1 INTRODUCTION


The Bear Valley Water District (District) provides sanitary sewer collection, treatment and disposal for approximately 600 residential and commercial connections in the Alpine County community of Bear Valley, including the Lake Alpine basin area and the Mt. Reba Ski Area. The District's service area is primarily north of State Highway 4 serving the developed private lands in the Bear Valley village area and US Forest Service campgrounds and special use permitted areas. The District wastewater treatment and disposal facility (WWTF) is regulated by the Central Valley Regional Water Quality Control Board (Regional Board) and the Regional Board's Waste Discharge Requirements Order No. R5-2005-0139 and Order No. 5-01-208 (WDRs). The WWTF is located south of Highway 4 and is shown in Figure 1.

The District's WDRs contain monitoring and reporting requirements, which include tri-annual monitoring of groundwater. This report presents groundwater monitoring data obtained during the third tri-annual monitoring event, which was conducted on October 5th and 12th, 2022 and satisfies the Tri-Annual Groundwater Monitoring Report reporting requirements as specified in the District's Revised Monitoring and Reporting Program for WDR Order No. R5-2005-0139 (MRP). The revised MRP states that groundwater monitoring reports shall be submitted "by the 1st day of February, July, and September of each year", corresponding to combined *annual/third tri-annual, first tri-annual, and second tri-annual reporting* periods, respectively. It should be noted that these reporting periods do not correspond to climate and related environmental conditions that prohibit site access and well sampling during certain times of the year and therefore the actual report submittal may vary from that which is stipulated in the MRP.

Regional Board staff's recognition of these climate controls was memorialized in the *July 31*, *2012* email correspondence. In summary, that correspondence stated that Regional Board staff will not recommend enforcement to the Executive Officer so long as the 1st and 2nd tri-annual monitoring reports are submitted by September 1st and November 1st of each year, respectively, instead of the dates currently required in the MRP. The 3rd tri-annual report will remain due by February 1st. Although Regional Board staff have informally agreed to extend tri-annual monitoring report due dates by not seeking enforcement (provided the 1st and 2nd tri-annual reports are submitted by September 1st and November 1st, respectively), we further recommend that Regional Board staff formally memorialize these changes in the MRP at their earliest convenience, in order to assure further violations and potential related enforcement actions against the District do not occur.

Introduction and Background January 23, 2023

Figure 1 Third Tri-Annual 2022 Groundwater Elevation Contour Map

Introduction and Background January 23, 2023

2.2 BACKGROUND

A daily average influent flow of 0.056 million gallons per day (MGD) entered the District WWTF during water year 2021-2022, which was then treated in a series of aerated treatment ponds where the biodegradable constituents are consumed and/or sequestered. Effluent from the aerated ponds was then stored in a 76.4 MG reservoir (effluent storage pond) or applied directly to land (summer months only). During the summer months, the stored effluent may be disposed of through spray irrigation to approximately 120 acres of permitted land, which includes approximately 80 acres of leased land and approximately 40 acres of land authorized by a Special Use Permit from the US Forest Service. Of the 120 gross acres of land (leased and Special Use Permit), approximately 80 acres (40 of lease land and 40 acres from the Special Use Permit) are currently suitable and/or used for effluent disposal purposes. The leased disposal area and permitted US Forest Service land have been in service before the installation of the groundwater monitoring wells (approximately 25 years for the leased land) at the site.

Effluent disposal via spray irrigation involves the disbursement of the effluent through low impact sprinklers upon soils and vegetation within the disposal area. The water is allowed to percolate into the soil and evapotranspirate into the atmosphere. The WDRs currently limit influent flow to 0.1 MGD (annual average basis) and limit application of wastewater to reasonable rates considering soil, climate and the irrigation management system.

2.3 GEOLOGY

The District's WWTF is located west of the Sierra crest along Bloods Creek, a tributary of the North Fork of the Stanislaus River. The elevations range from 7080 ft (msl) at the treatment pond to 7480 ft (msl) at the ballast pond on top of the ridge, east of the treatment and storage ponds. The geologic map for the Sacramento quadrangle (Wagner, Jennings, Bedrossian and Bortugno, 1981) indicates that Mesozoic granites underlie the area. This was confirmed by the presence of numerous granite outcrops in the meadows and at the base of the ridge. The map also shows traces of the Tertiary Mehrten Formation, described as an andesitic conglomerate, sandstone, and breccia. Although a competent outcrop of andesitic rock was not observed, the ridge does contain numerous andesitic fragments, produced by parent rock weathering. Just below the eastern side of the ridge crest are numerous large granite boulders, potentially representing glacial transport and deposition.

2.4 SOILS

The following soil descriptions are taken from the 1981 U.S. Forest Service soil survey of the Stanislaus National Forest. The descriptions are in agreement with field observations at the site and include the following:

Introduction and Background January 23, 2023

2.4.1 Ridge Top

The soil along the southern end of the ridge top is classified as a lithic cryumbrept. This soil is described as a tan, moderately acid, loam about 5 inches thick, and containing no substantive subsoil. Rock content can range up to 60 percent from the substratum of fractured hard andesitic tuff or tuff-breccia. The soil has excessive drainage with moderately rapid permeability and a very high maximum erosion hazard. The soil supports basin sagebrush, mule's ear, perennial grasses, and scattered lodgepole pine.

2.4.2 Ridge Side

The soil along the disposal area, on the west side of the ridge, is classified as a gerle family generally found on 5 to 35 percent slopes. The surface soil is described as a dark gray, slightly acid, sandy loam, about 10 inches thick. The subsoil is described as a moderately acid, light brownish gray, sandy loam. The substratum is extremely stony (rock content can exceed 35%) consisting of glacial debris derived from granitic parent rocks. Additionally, the soil has excessive drainage, rapid permeability, and a moderate to high maximum erosion hazard, typically supporting mixed conifer forests.

2.4.3 Valley Floor

The valley floor soil, north of and below the treatment pond, is classified as an entic cryumbrept and described as a brown, moderately acid loam, sandy loam, and loamy sand, about 40 inches in thickness. The substratum is recent alluvium from granitic rocks and is well drained with moderately rapid to rapid permeability. It supports annual grasses, perennial grasses or sedge, and brush.

2.4.4 Field Observations

There is a good correlation between the topography of the disposal area and soil development and thickness. Mass wasting and in place weathering/deposition created a soil continuum that one can easily recognize and follow from the ridge top to the valley floor. Starting at the top of the ridge the soil is thin and scarcely present. What soil exists is very shallow, poorly developed, poorly sorted, contains no appreciable organic matter, and has a large percentage of andesitic rock fragments. The thickness of the soil increases as one moves down slope with more organic content being observed, correlating well with increased vegetation. Although the soil is still poorly sorted, it increasingly becomes more uniform towards a sandy loam with granitics composing more of the parent material. On the valley floor the soil contains organic material and is at its maximum development and thickness within the disposal area. The alluvial substratum is well-sorted sand with the parent material consisting of mostly granitic rock, with only a minor andesitic contribution. The granitic origin is marked by numerous small mica flakes, found within the soil profile.

Groundwater Regulatory Requirements January 23, 2023

3.0 Groundwater Regulatory Requirements

Discharge at the Bear Valley Water District WWTF is subject to requirements contained in the wastewater permit (Waste Discharge Requirements, or WDRs), Standard Provisions and Reporting Requirements for Waste Discharge Requirements 1 March 1991, the Water Quality Control Plan for the California Regional Water Quality Control Board, Central Valley Region and associated documents (Basin Plan). These requirements and policies are discussed below as they relate to discharges to land and the groundwater limitations at the WWTF.

3.1 WATER QUALITY OBJECTIVES AND BASIN PLAN REQUIREMENTS

The Central Valley Basin Plan contains water quality objectives for groundwater. These water quality objectives apply to all groundwater in the San Joaquin River Basin, though they do not require improvement over naturally occurring background concentrations. The groundwater objectives are:

- Bacteria total coliform organisms shall be less than 2.2 MPN/100ml over any sevenday period.
- Groundwater shall not contain chemical constituents that adversely affect beneficial uses.
- At a minimum, groundwater designated for municipal use shall not contain chemical constituents in concentrations greater than the maximum contaminant levels (MCLs) contained in Title 22 of the California Code of Regulations. To protect all beneficial uses, the Regional Board may apply limits more stringent than the MCLs.
- At a minimum, groundwater designated for municipal use shall not contain concentrations of radionuclides in excess of the MCLs contained in Title 22 of the California Code of Regulations.
- Groundwater shall not contain taste or odor constituents that cause nuisance or adversely affect beneficial uses.
- Groundwater shall be maintained free of toxic substances in concentrations that produce detrimental physiological response...

In conjunction with the Basin Plan groundwater objectives, the Regional Board has compiled water quality goals in the Regional Board staff report *A Compilation of Water Quality Goals,* updated in *July of 2008*. This report is intended to assist interpretation of the above narrative water quality objectives.

3.2 ANTIDEGRADATION POLICY

In 1968, the State Water Resources Control Board adopted Resolution No. 68-16, Statement of Policy with Respect to Maintaining High Quality of Waters in California, or the State

Groundwater Regulatory Requirements January 23, 2023

Antidegradation Policy. The Antidegradation policy requires that whenever the quality of waters is better than the water quality standards or water quality objectives, and a discharge does or reasonably has the potential to degrade the high quality water, then such degradation must:

- Not unreasonably affect beneficial uses, i.e., cause the water to exceed water quality standards or water quality objectives; and
- Be consistent with the best practicable treatment and control technology such that the highest water quality is maintained consistent with the maximum benefit to the people of the State.

The Antidegradation Policy applies to surface water and groundwater.

3.3 BEAR VALLEY WATER DISTRICT WASTE DISCHARGE REQUIREMENTS

The current District WDRs (Order No. 5-01-208 section D) have groundwater limitations that state:

- 1. Release of waste constituents from any storage or treatment component associated with the WWTF shall not cause groundwater under and beyond the storage or treatment component, as determined by an approved monitoring network, to:
 - a. Contain any of the constituents (identified in Table 1) in concentrations greater than as listed or greater than background quality, whichever is greater.
 - b. Contain any constituent identified in Groundwater Limitation D.1.a in concentrations greater than background quality (whether chemical, physical, biological, bacteriological, radiological, or some other property of characteristic).
 - c. Exhibit a pH of less than 6.5 or greater than 8.5 pH Units.
 - d. Impart taste, odor, or color that creates nuisance or impairs any beneficial use.
- 2. a. Release of waste constituents from any land disposal area associated with the WWTF shall not cause groundwater under and beyond the land disposal area to contain waste constituents in concentrations statistically greater than background water quality, except for coliform bacteria. For coliform bacteria, increases shall not cause the most probable number of total coliform organisms to exceed 2.2 MPN/100ml of any 7-day period.

b. If groundwater monitoring shows that waste constituents are present in concentrations greater than background, then upon the request of the Executive Officer, the Discharger shall complete the report described in Provision F.3.

Groundwater Regulatory Requirements January 23, 2023

Table 1 Regional Board Interim Groundwater Limitations

Parameter	Units	Interim Limitation*
pH	Std. units	6.5 - 8.4**
Boron	mg/l	0.6
Chloride	mg/l	142
Iron	mg/l	0.3
Manganese	mg/l	0.05
Sodium	mg/l	69
Total Coliform Organisms	MPN/100ml	Non-Detect
Total Dissolved Solids	mg/l	450
Total Nitrogen	mg/l	10
Nitrite as N	mg/l	1
Nitrate as N	mg/l	10
Ammonia as N	mg/l	0.5

* From Waste Discharge Requirements Order No. 5-01-208 **From a Compilation of Water Quality Goals, July 2008

Groundwater Monitoring Results January 23, 2023

4.0 Groundwater Monitoring Results

4.1 MONITORING SUMMARY

The third tri-annual groundwater monitoring event occurred on October 5th and 12th, 2022 with sampling being performed by District staff and analytical activities being performed by Alpha Analytical Laboratories Inc. The sampling procedure utilized in monitoring the District's wells is included as Appendix A of this report for reference. Field measurements of depth to groundwater, electrical conductivity (EC), pH, and temperature were conducted in addition to the laboratory analysis of the parameters identified in Table 2 and according to the revised Monitoring and Reporting Program (MRP) No. 5-01-208, dated *June 20, 2002*. A summary of the third tri-annual water quality monitoring data is provided in Table 3. The field logs and laboratory results for the third tri-annual sampling event are included as Appendix B of this report.

Parameter	Units	Frequency ¹
Total Dissolved Solids	mg/l	3 times per year
Nitrate as Nitrogen	mg/l	3 times per year
рН	pH units	3 times per year
Total Coliform Organisms ²	MPN/100ml	3 times per year
Ammonia	mg/l	3 times per year
Total Kjeldahl Nitrogen	mg/l	3 times per year
General Minerals ³	mg/l	1 time per year

Table 2 Groundwater Monitoring Requirements

1. Immediately after snowmelt, in the middle of the summer, and in the fall (shortly before wells become inaccessible due to snow cover.)

2. Method No. 9221E, using a minimum of three dilutions of 15 tubes.

3. General minerals include boron, chloride, iron, manganese, and sodium, collected during the fall.

Groundwater Monitoring Results January 23, 2023

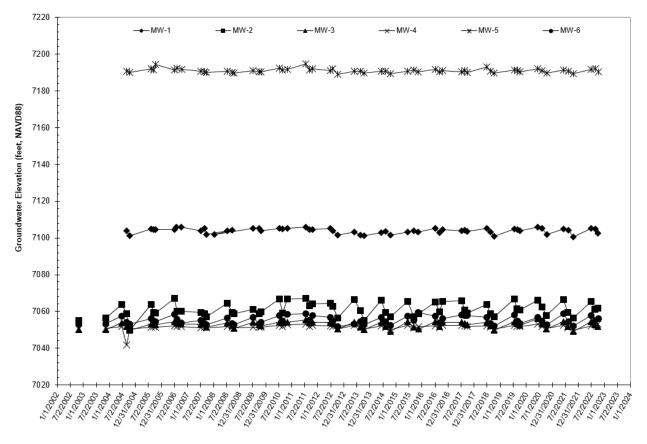
D						
Parameter	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6
Field pH	7.3	6.4	6.2	6.9	6.9	6.6
Field EC (µS/cm)	188	113	103	191	928	232
Temp. (C)	6.6	9.0	10.3	8.1	7.8	8.6
NO3-N (mg/L)	<0.2	<0.2	<1	<0.2	IVS	<0.2
TKN (mg/L)	<1	<1	<1	<1		<1
Ammonia as N	<0.2	<0.2	<0.2	<0.2		0.3
TDS (mg/L)	150	99	96	140		140
Total Coliform (MPN/100ml)	4.5	13	17	4.5		2.0
B (mg/L)	<0.2	<0.2	<0.2	<0.2		<0.2
Fe (mg/L)	5.2	<0.1	<0.1	0.5		0.3
Mn (mg/L)	0.77	<0.02	<0.02	0.07		1.2
Na (mg/L)	7.2	3.6	6.2	8.7		8.4
CI (mg/L)	2.1	11	14	6.5		5.2

Table 3 Third Tri-Annual 2022 Groundwater Quality Summary

Bold data indicates and simple exceedance of a water quality goal, not to be confused with a statistically significant exceedances. IVS – Insufficient volume of water available to sample.

4.2 GROUNDWATER ELEVATIONS, GRADIENTS, AND FLOW DIRECTION

Depth to groundwater was measured on October 5th and 12th, 2022 relative to the surveyed top north quadrant of the PVC well casing. Groundwater elevations were subsequently calculated for the third tri-annual monitoring event and summarized in Table 4 below. Table 4 also contains groundwater elevations from the three previous monitoring events and provides the computed change in elevation at each well (in parentheses) relative to the previous monitoring event, illustrating recent temporal variability in groundwater elevation at the WWTF. Calculated groundwater elevations for the third tri-annual 2022 monitoring event were utilized to construct a contour map (Figure 1), which was subsequently used to estimate both groundwater flow direction and horizontal gradient. Interpreted groundwater flow direction during the third tri-annual monitoring was found to be roughly perpendicular to site topography and generally towards the northwest at a horizontal gradient ranging from 0.070 to 0.078 (Figure 1). Historical groundwater elevations are provided as Appendix C, while a time series plot for computed groundwater elevations is provided as Figure 2, for further reference.

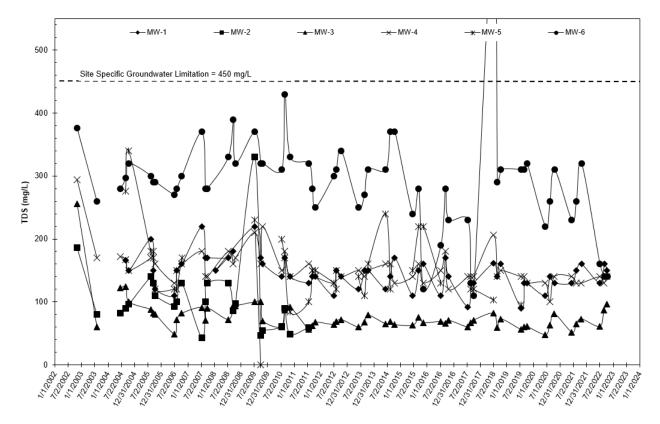


Groundwater Monitoring Results January 23, 2023

Manitarina	Reference	Groundwater Elevation (feet , NAVD88)				
Monitoring Well	Point Elevation (ft, NAVD88)	Third 2021	First 2022	Second 2022	Third 2022	
MW-1	7114.08	7100.56 (-3.66)	7105.08 (+4.52)	7104.73 (-0.35)	7102.63 (-2.10)	
MW-2	7067.53	7056.32 (-3.13)	7065.40 (+9.08)	7060.98 (-4.42)	7061.63 (+0.65)	
MW-3	7056.37	7049.20 (-2.45)	7054.52 (+5.32)	7052.77 (-1.75)	7051.77 (-1.00)	
MW-4	7054.79	7049.87 (-1.24)	7052.24 (+2.37)	7053.17 (+0.93)	7052.97 (-0.20)	
MW-5	7203.78	7189.41 (-1.22)	7191.68 (+2.27)	7191.98 (+0.30)	7190.33 (-1.65)	
MW-6	7059.49	7052.15 (-2.25)	7057.89 (+5.74)	7055.19 (-2.70)	7055.99 (+0.80)	

Table 4 Groundwater Elevation Summary

Figure 2 Groundwater Elevation Time Series Chart



Groundwater Monitoring Results January 23, 2023

4.3 GROUNDWATER QUALITY

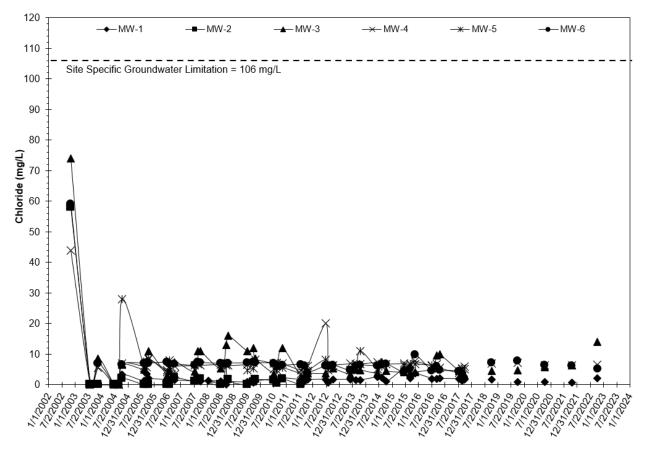

Groundwater samples for the third tri-annual monitoring event were collected on October 5th and 12th, 2022. A summary of the lab and field results for this monitoring event are provided above in Table 3, while historical groundwater quality data are provided in Appendix C for further reference. Historical and third tri-annual data were compiled in time series plots for TDS (Figure 3) and chloride (Figure 4) to illustrate temporal variations in groundwater salinity at the site.

Figure 3 TDS Time Series Chart

Groundwater Monitoring Results January 23, 2023

Figure 4 Chloride Time Series Chart

4.3.1 Compliance Monitoring Well MW-1

Monitoring well MW-1 is generally located hydrogeologically down gradient of wastewater disposal operations and hydrogeologically up gradient of the eastern portion of the treatment pond (Figure 1). Field pH, field EC, and laboratory determined TDS measured during the third tri-annual monitoring event were reported at values of 7.3, 188 μ S/cm, and 150 mg/l, respectively. Nitrate, TKN, and ammonia were not detected above their respective laboratory reporting limits, while iron and manganese were detected at concentrations of 5.2 and 0.77 mg/l, respectively. Furthermore, total coliform organisms were detected at a density of 4.5 MPN/100ml.

Additional parameters monitored during the third tri-annual monitoring event of 2022 are summarized in Table 3 for reference.

4.3.2 Background Monitoring Well MW-2

Monitoring well MW-2 is located hydrogeologically up gradient of the disposal areas and serves as the background monitoring well for the WWTF (Figure 1). Field pH, field EC, and laboratory

Groundwater Monitoring Results January 23, 2023

determined TDS measured during the third tri-annual monitoring event were reported at values of 6.4, 113 μ S/cm, and 99 mg/l, respectively. Nitrate, TKN, ammonia, iron, and manganese were not detected above their respective laboratory reporting limits. Furthermore, total coliform organisms were detected at a density of 13 MPN/100ml.

Additional parameters monitored during the third tri-annual monitoring event of 2022 are summarized in Table 3 for reference.

4.3.3 Compliance Monitoring Well MW-3

Monitoring well MW-3 is located hydrogeologically down gradient of wastewater disposal operations, near the northwestern portion of the WWTF property (Figure 1). Field pH, field EC, and laboratory determined TDS measured during the third tri-annual monitoring event were reported at values of 6.2, 103 μ S/cm, and 96 mg/l, respectively. Nitrate, TKN, ammonia, iron, and manganese were not detected above their respective laboratory reporting limits. Furthermore, total coliform organisms were detected at a density of 17 MPN/100ml.

Additional parameters monitored during the third tri-annual monitoring event of 2022 are summarized in Table 3 for reference.

4.3.4 Compliance Monitoring Well MW-4

Monitoring well MW-4 is located hydrogeologically down gradient of wastewater disposal operations and the wastewater treatment pond, near the northwestern portion of the WWTF property (Figure 1). Field pH, field EC, and laboratory determined TDS measured during the third tri-annual monitoring event were reported at values of 6.9, 191 μ S/cm, and 140 mg/l, respectively. Nitrate, TKN, and ammonia were not detected above their respective laboratory reporting limits, while iron and manganese were reported at values of 0.5 and 0.07 mg/l, respectively. Furthermore, total coliform organisms were detected at a density of 4.5 MPN/100ml.

Additional parameters monitored during the third tri-annual monitoring event of 2022 are summarized in Table 3 for reference.

4.3.5 Compliance Monitoring Well MW-5

Monitoring well MW-5 is located hydrogeologically down gradient of wastewater disposal operations, near the south-central portion of the WWTF property (Figure 1). Field pH and field EC measured during the third tri-annual monitoring event were reported at values of 6.9 and 928 μ S/cm, respectively. Note that the well purged dry prior to sampling for laboratory constituents and thus those parameters were not reported.

Additional parameters monitored during the third tri-annual monitoring event of 2022 are summarized in Table 3 for reference.

Groundwater Monitoring Results January 23, 2023

4.3.6 Compliance Monitoring Well MW-6

Monitoring well MW-6 is located hydrogeologically down to cross gradient of wastewater disposal operations and down gradient/adjacent to the effluent storage pond, near the southwestern portion of the WWTF property (Figure 1). Field pH, field EC, and laboratory determined TDS measured during the third tri-annual monitoring event were reported at values of 6.6, 232 μ S/cm, and 140 mg/l, respectively. Nitrate and TKN were not detected above their respective laboratory reporting limits, however, ammonia, iron, and manganese were detected at concentrations of 0.3, 0.3, and 1.2 mg/l, respectively. Furthermore, total coliform organisms were detected at a density of 2 MPN/100ml.

Additional parameters monitored during the third tri-annual monitoring event of 2022 are summarized in Table 3 for reference.

Background Groundwater Quality Summary January 23, 2023

5.0 Background Groundwater Quality Summary

5.1 STATISTICAL ANALYSIS INTRODUCTION

On behalf of the District, ECO:LOGIC Engineering (now Stantec) submitted a <u>Groundwater</u> <u>Characterization Report</u> (GCR), in *January 2005*. This report was submitted in accordance with the District's WDRs and the Regional Board's *July 8, 2004* <u>Technical Report Review and</u> <u>Comments</u> letter requesting a statistical determination of background groundwater quality, pursuant to Title 27, Section 20415(e)(10) of the California Code of Regulations. The report compared actual COPC concentration at each of the compliance wells to both the Regional Board's Interim Groundwater Limitations and calculated background COPC using the 95% Confidence Limit (CL). As part of the <u>2006 Annual Report</u>, the statistical assessment was revised via an alternative methodology utilizing the 99% upper prediction limit (UPL) for parametrically distributed data, combined with alternative tests for non-parametric data. The background groundwater quality assessment has been updated annually since 2006. The analysis provided below represents the most current update to the statistical assessment of background groundwater quality, utilizing data collected through the third tri-annual monitoring event of 2022.

The following provides a summary of the assumptions used to compute the 99% UPL of background groundwater quality:

- Statistical analysis performed annually;
- Statistical test performed for the parameters TDS, nitrate, ammonia, pH, total coliform, boron, chloride, iron, sodium, and manganese;
- Data collected during the year of 2003 and earlier were not assessed due in part to several factors including the influence of well drilling activities and lack of filtration for metals. All data following 2003 were included in the statistical analysis;
- A pass 1 of 3 re-sampling strategy was employed; and,
- Maximum reported value, not reflective of an unreasonable anomaly, was used to represent background groundwater quality for non-parametric data.

5.2 OUTLIER ANALYSIS

Prior to the evaluation of background groundwater quality, all background data (MW-2) were reviewed using Dixon's test (where n is between 3 and 25) or Rosner's test (for n > 25) for statistically significant outliers at the 99% confidence limit. The following provides a summary of the identified outliers and any actions taken.

Background Groundwater Quality Summary January 23, 2023

Field pH: No outliers identified.

TDS: One statistical outlier was identified during the 7/7/09 monitoring event. The results are anomalously high and do not correspond with the reported EC values, suggesting a laboratory error. The reported outlier was subsequently removed.

Nitrate as N: Four outliers were identified and were reviewed and found to be close or at the reporting limit. The outliers were thus determined to be reasonable and subsequently retained for further analysis.

Ammonias as N: No outliers identified.

Total Coliform: Four outliers were identified and during the 7/8/08, 10/26/09, 11/4/10, and 8/24/17 monitoring events. The outliers were reviewed, determined to be representative of the range of detected values, and thus retained for further analysis.

Boron: Two outliers were identified and found to be at an alternative reporting limit. The outliers were subsequently retained for further analysis.

Chloride: Two statistical outlier were identified and during the 9/18/08, 10/9/2012, and 10/5/2022 monitoring events. These data were reviewed and no anthropogenic cause could be attributed to the anomalies. Accordingly, they were retained for further analysis.

Iron: Two outliers were identified (9/8/2011 and 10/2/2019); however no anthropogenic cause could be attributed to its detection. Accordingly, the outliers were retained for further analysis

Sodium: Two statistical outliers were identified and during 9/18/08 and 10/9/12 monitoring events. These outliers were reviewed and no anthropogenic cause could be attributed to the anomalies. Accordingly, they were retained for further analysis.

Manganese: Eight statistical outliers were identified during the 10/13/04, 8/29/07, 7/21/11, 10/9/12, 8/21/13, 10/14/14, 7/13/17, and 10/2/19 monitoring events. These outliers were reviewed and no anthropogenic cause could be attributed to the anomalies. Accordingly, they were retained for further analysis.

5.3 NORMALITY TEST

Following the outlier analysis a normality test was performed using either the Shapiro-Wilks Test (50 or fewer measurements) or the Shapiro-Francia Test (greater than 50 measurements) at the 99% level of confidence. If the background monitoring data were normally distributed, or could be made normal through an appropriate transformation, parametric tests were applied. Alternatively, if the data were found to be non-parametrically distributed, non-parametric statistical tests were used. Following the initial data review, as summarized above, 99%

Background Groundwater Quality Summary January 23, 2023

background UPLs were computed, based on inclusion of the 2022 monitoring data the results of which are summarized in Table 5.

COPC	Background 99% UPL	Data Distribution/Method	Data Points
TDS (mg/l)	86	Parametric UPL (Square Root Transformed)	53
Nitrate as N (mg/l)	0.5	Non-Parametric UPL	54
Ammonia as N (mg/l)	1	Non-Parametric UPL	54
рН	5.2 – 6.6	Parametric UPL (Natural Log Transformed)	56
Total Coliform (MPN/100ml)	2200	Non-Parametric UPL	54
Boron (mg/l)	0.2	Non-Parametric UPL	42
Chloride (mg/l)	1.3	Parametric UPL (Natural Log Transformed)	42
Iron (mg/l)	16	Non-Parametric UPL	44
Sodium (mg/l)	8.6	Non-Parametric UPL	42
Manganese (mg/l)	0.22	Non-Parametric UPL	44

Table 5 2022 Statistical Assessment of Background Groundwater Quality

Bold data indicate an exceedance of the Regional Board's Interim Groundwater Limitations

5.4 SITE SPECIFIC GROUNDWATER LIMITATIONS

For COPC's where the background 99% UPL or non-parametric statistics are greater than the Regional Board's Interim Groundwater Limitation, the background statistic should be used for facility compliance. Of the COPCs analyzed, computed background (MW-2) statistics for iron, manganese, and total coliform exceeded the Regional Board's Interim Groundwater Limitations of 0.3 mg/l, 0.05 mg/l, and non-detect, respectively. Furthermore, background pH values were statistically lower than the lower limit of the groundwater goal of 6.5. Conversely, where an Interim Groundwater Limitation is greater than the background statistic, the Interim Groundwater Limitation should be used to assess facility compliance, as was the case for all the remaining parameters, provided the facility is implementing best practicable treatment and control measures for the constituent of potential concern. It should be noted however, that the WDR Interim Groundwater Limitations for boron and chloride are inconsistent with agricultural water quality goals and were revised accordingly. Table 6 presents the recommended site specific groundwater limitations for the facility.

Background Groundwater Quality Summary January 23, 2023

COPC	Site Specific Groundwater Limitation	Basis for Limitation	Compliance Assessment Methodology
TDS (mg/l)	450	Agricultural Water Quality Goal	99% LCL
Nitrate as N (mg/l)	10	Primary Maximum Contaminant Level	Not to exceed
Ammonia as N (mg/l)	1.5	Taste and Odor Threshold	99% LCL
рН	5.7 – 8.4	STAT Parametric UPL/Agricultural Water Quality Goal	Pass 1 of 3/ 99% LCL
Total Coliform (MPN/100ml)	2200	STAT Non-Parametric UPL	Not to exceed
Boron (mg/l)	0.7	Agricultural Water Quality Goal	99% LCL
Chloride (mg/l)	106	Agricultural Water Quality Goal	99% LCL
Iron (mg/l)	16	STAT Non-Parametric UPL	Not to exceed
Sodium (mg/l)	69	Agricultural Water Quality Goal	99% LCL
Manganese (mg/l)	0.22	STAT Non-Parametric UPL	Not to exceed

Table 6 2022 Recommended Site-Specific Groundwater Limitations

Bold data indicate an exceedance of the Regional Board's Interim Groundwater Limitations

5.5 ANTI-DEGRADATION ASSESSMENT

In evaluating facility compliance, the UPL methodology is not appropriate for statistically assessing compliance with water quality goals based on MCLs or agricultural limitations (such as those used in determining Interim Groundwater Limitations) because many of these goals are based on long term averages of water quality. Accordingly, the 99% lower confidence interval (LCL) about the mean is recommended (99% LCL for two-tailed test for pH) and is appropriate for assessing compliance with the parameters TDS, ammonia, upper pH, boron, chloride, and sodium, which were based on unrestricted agricultural use or taste and odor thresholds. The most recent 6 observations (two years) were used in assessing the LCL. However, where a parametric 99% UPL serves as the site specific groundwater limitation, the pass 1 of 3 resampling should be used to assess compliance (that is if one sample of the past three is less than the limitation, no statistically significant impact is noted). Alternatively, for non-parametric tests, a simple exceedance of the site specific groundwater limitation may indicate a statistically significant impact is noted. Table 7 summarizes the results of the compliance assessment.

Background Groundwater Quality Summary January 23, 2023

COPC	Site Specific Groundwater Limitation	Compliance Assessment Methodology	2022 Statistically Significant Exceedance
TDS (mg/l)	450	99% LCL	None
Nitrate as N (mg/l)	10	Not to Exceed	None
Ammonia as N (mg/l)	1.5	99% LCL	None
рН	5.7 – 8.4	Pass 1 of 3/ 99% LCL	None
Total Coliform (MPN/100ml)	2200	Not to Exceed	None
Boron (mg/l)	0.7	99% LCL	None
Chloride (mg/l)	106	99% LCL	None
Iron (mg/l)	16	Not to Exceed	MW-1 and MW-6
Sodium (mg/l)	69	99% LCL	None
Manganese (mg/l)	0.22	Not to Exceed	MW-1 and MW-6

Table 7 2022 Groundwater Monitoring Compliance Summary

Of the parameters assessed, only iron and manganese were detected in groundwater at levels that statistically exceed site specific groundwater limitations during 2022. The exceedances occurred at monitoring wells MW-1 and MW-6. Both iron and manganese are elements that forms pH and redox sensitive minerals in the subsurface, which can become mobile under reducing conditions and in groundwater with low pH, both of which are not uncommon in alpine groundwater environments. For instance, the dilute nature and lack of buffering capacity of alpine groundwater (primarily snowmelt) and presences of acidic surface soils bode well for low pH groundwater, a condition that naturally favors manganese mobilization. Coliform another parameter that is sometimes detected is ubiquitous on the surface of the earth and can be present in groundwater where a conduit, such as a fracture connected to the surface, exists. Furthermore, coliform, a parameter that is ambiguous in the surface environment, can be introduced during sampling from contaminated equipment, introduced water, or windblown sediment/bacteria colonies. Therefore, the presence of iron, manganese, or coliform in groundwater should not in of themselves be considered irrefutable proof of wastewater impacts.

Caution should also be exercised when evaluating computed "background" groundwater values to that of down gradient monitoring locations as the computed background statistics only consider one datum (MW-2) and thus, does not account for natural spatial variations in groundwater quality in the area. Spatial variability of the quality of shallow groundwater is more the norm than the exception and can be attributed to a host of issues including, but not limited to, soil column thickness, soil composition, bedrock composition, grain size distribution, organic matter content, groundwater elevation, acidity/alkalinity, land use, and redox potential. As such quantitative interpretation or comparison of groundwater data collected at "down gradient" monitoring locations to only one background location for the purpose of assessing facility compliance is not recommended. The computed background statistics and site specific

Background Groundwater Quality Summary January 23, 2023

groundwater goals should thus be used only to identify areas which *may have* been impacted with current or historic wastewater disposal practices. If improved background statistics are required, additional monitoring wells should be installed at locations up and cross gradient of the waste discharge.

All of the parameters assessed, with the potential exception of iron and manganese, were in compliance with the site-specific groundwater limitations, indicating further compliance with regards to the State's Anti-Degradation Policy.

Summary and Conclusions January 23, 2023

6.0 Summary and Conclusions

Groundwater was assessed during the third tri-annual monitoring event, pursuant to the District's WDRs and MRP, issued by the Regional Board. During the third tri-annual monitoring event, reported water quality values for the following constituents exceeded water quality goals for agricultural and/or potable use at the locations indicated, including:

- pH (below the lower limit): MW-2 and MW-3;
- EC: MW-5
- Iron: MW-1 and MW-4;
- Manganese: MW-1, MW-4, and MW-6; and,
- Total Coliform: All wells.

Note that MW-5 did not contain a sufficient volume of water to allow sampling during the third quarter 2022 monitoring event.

A revised 2022 annual statistical analysis indicates statistically significant exceedances of sitespecific groundwater limitations occurred for only iron and manganese and at MW-1 and MW-6. Dissolved iron and manganese are both commonly spatially transient and can be influenced by variables other than the disposal of effluent. It should be noted that the current groundwater monitoring network contains only one background monitoring well (MW-2) making it impossible to incorporate potential spatial variations into the background statistics. Accordingly, a statistically significant impact should not be considered irrefutable proof that the impact originated as a result of the discharge. Regardless, a revised statistical assessment will be conducted as part of the <u>Third Tri-Annual 2022 Groundwater Monitoring Report</u>, which will also include a revised assessment of background groundwater quality.

Professional Seals and Certifications January 23, 2023

7.0 Professional Seals and Certifications

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment.

Thomas W. Butler, PG, CHG, CEG Senior Hydrogeologist/Geochemist

Appendix A Groundwater Monitoring Protocol January 23, 2023

Appendix A Groundwater Monitoring Protocol

Bear Valley Water District Groundwater Monitoring Well Sampling Procedures

1) The covers of the monitoring wells were opened and loose material cleared from the edged. A propane torch was used to briefly burn the frame of the cover and any debris inside the box and around the well casing (i.e., eliminating potential contamination of samples from ants). The wells are 2-in PVC approximately 13.5 to 23.5 feet deep with the lower 10 to 15 feet screened. The compression cap was removed and placed top down on the well cover.

2) Water surface depth was measured to within 0.01 feet by lowering an electronic tape into the well while passing it through a cloth soaked in hypochlorite solution (the tape was cleaned and disinfected in the lab prior to bringing it to the field). The water depth was measured relative the top of the north quadrant of the PVC well casing. More than three well volumes were purged from the wells until pH, EC and temperature stabilized. The volume to purge was calculated based on the well casing diameter (area) times the water column height (well depth from well logs minus depth to water surface times three. no annular space estimate was included).

3) Dedicated 12V submersible plastic pumps (ES 60) with a vinyl discharge hose were used for purging and sampling the wells. The pump, hose and cord were decontaminated prior to transport to the field in deionized (D.I.) water plus detergent, and then rinsed three times in D.I. water (running the pump during each to flush water through the impeller and hose) and finally the pump and appurtenances were placed in a dilute hypochlorite solution (running the pump to flush the solution through the impeller and hose). The pump and hose were removed from sealed bins and lowered into the well, avoiding pump or hose touching the cover frame, ground etc. The technician used rubber gloves during sampling and changed them each time anything "dirty" was touched. New gloves were rinsed in chlorine solution prior to handling equipment.

4) After priming and pumping a small amount of water through the hose (to remove and remaining liquid in the hose), the discharge rate was measured, by measuring the time to fill a one-gallon container. This time was them multiplied by the well purge volume as calculated in step 2) above. The time to purge three volumes was rounded up by approximately 5 minutes.

5) The pump was started and time recorded while it discharged. Approximately every three minutes a roughly 200 ml sample was collected in a glass container from the discharge pump hose and pH, EC and Temperature were measured with a multimeter. All wells stabilized with regards to pH EC, and Temperature.

6) Prelabled sample bottles, were introduced into the discharge stream of the pump after pumping 3-well volumes and stabilized pH, EC and Temperature. These were sealed and placed in an ice chest on ice for shipment to the lab.

7) The pump was shut off and all equipment was removed, the well cap was rinsed with dilute chlorine solution and replaced and the well cover replaced on the well.

8) After measurement, the measuring tape was rolled onto the reel while it was wiped.

Appendix B Third Tri-Annual 2022 Analytical Results and Field Logs January 23, 2023

Appendix B Third Tri-Annual 2022 Analytical Results and Field Logs

Date: 10/2.22		
Well No: 1		
Total Well Depth (TWD):	27.29	ft.
Depth to Water (WD):	11.45	ft.
Casing Diameter:	2	in.
Water Column Height (TWD – WD):	15.84	ft.
Purge/Sampling Method: Pump / Gi	rab	

Tech. Name:	West
Reference Point:	75 yds below Grassy Road

15.84	x 0.17	= 2.7		x 3	= <u>?</u> gals
Water column	Gal per linear Ft.	1 purge volume	Purge vol, rounded up to nearest .5	# of casing volumes	Total Purge Volume

Time	Volume	pH	EC	Temp	Turbidity	Color	Odor	Pumped
	Purged	(SU)	(µS/cm)	(°C)				Dry
	(gal)					а ^н		
0815	0	7.12	352	7.0	Clear	Clev	No	MA
0822	9	7,28	190.1	6.3	Trace	Clear	V	N
8829	9	7.27	187.4	6.2	Trace	Cleu	No	N
0838	9	7.25	187.8	6.6	Trace	Cler	No	N
	1. 							
			-					
PURGING DAT	A: (For 0 gal	lons purge just	enough water	to record	Clear,	Clear,	None,	Yes/No
pH, EC, and temperature)					trace,	cloudy,	faint,	
					light,	yellow,	moderate,	
					moderate,	brown	strong	
					heavy	2		

Notes:

Date: 10-5.22		
Well No: 2		
Total Well Depth (TWD):	17.90	ft.
Depth to Water (WD):	5.9	ft.
Casing Diameter:	2	in.
Water Column Height (TWD – WD):	12	ft.
<i>V</i> .	-	

Tech. Name:

West-

Reference Point: Northmost Orvis Meadow

Well	Conversion	Rounded
Diameter	Factor	Up
(In.)	(CV) gal/ft	
2"	0.163	0.17

Purge/Sampling Method: Pump / Grab

12	x 0.17	= 2.07	2	x 3	= <u>6</u> gals
Water column	Gal per linear Ft.	1 purge volume	Purge vol, rounded up to nearest .5	# of casing volumes	Total Purge Volume

Time	Volume	pH	EC	Temp	Turbidity	Color	Odor	Pumped
	Purged (gal)	(SU)	(µS/cm)	(°C)				Dry
0823	0	6-61	223	7.2	Clew	Clev	N	N
8827	6	6.520	114.8	8.8	Clear	Clas	N	N
0830	6	6.50	118.2	9.0	Clear	Cleat	N	N
83Y	6	6.40	113.2	9.0	Cleu	Clear	V	N
,							2	
			2					
PURGING I	DATA: (For 0 g	allons purge jus	t enough water to	o record	Clear,	Clear,	None,	Yes/No
pH, EC, and temperature)				trace,	cloudy,	faint,		
				light,	yellow,	moderate,		
				moderate,	brown	strong		
					heavy			

Notes:

Date: <u>10-5-22</u> Well No: <u>3</u>		
Total Well Depth (TWD):	13.56	ft.
Depth to Water (WD):	4.6	ft.
Casing Diameter:	2	in
Water Column Height (TWD – WD):	8.96	ft.

Purge/Sampling Method: Pump / Grab

Tech. Name:

Wist

Reference Point: Middle Orvis Meadow

Well	Conversion	Rounded
Diameter	Factor	Up
(In.)	(CV) gal/ft	
2"	0.163	0.17

8.96	x 0.17	= /15	1.5	x 3	= <u>4,5</u> gals
Water column	Gal per linear Ft.	1 purge volume	Purge vol, rounded up to nearest .5	# of casing volumes	Total Purge Volume

Time	Volume	pH	EC	Temp	Turbidity	Color	Odor	Pumped
	Purged	(SU)	(µS/cm)	(°C)			<u>×</u>	Dry
	(gal)							
0756	0	6.42	238	9.6	light	cloudy	N	N
0803	715	6.36	102.30	10.5	trace	(lovely	N.	N
0806	7.5	6-25	10/ 2	10.8	clear	cleat	Nor	N
0809	7.5	6-22	102.9	10.3	clar	cleat	/0	N
		N		10				
					0 1			5.
PURGING DATA: (For 0 gallons purge just enough water to record					Clear,	Clear,	None,	Yes/No
pH, EC, and temperature)				trace,	cloudy,	faint,		
					light,	yellow,	moderate,	
					moderate,	brown	strong	
					heavy			

Notes:

Date:

10-5.22

Tech. Name:

West

Well No: 4

Total Well Depth (TWD):	17.10	ft.
Depth to Water (WD):	3.4	ft.
Casing Diameter:	2	in.
Water Column Height (TWD – WD):	13.7	ft.
Purge/Sampling Method: Pump / Gr	ab	

Well	Conversion	Rounded
Diameter	Factor	Up
(In.)	(CV) gal/ft	
2"	0.163	0.17

Reference Point: Orvis Meadow Below EH

13.7	x 0.17	= 2,3	2.5	x 3	= 7.5 gals
Water column	Gal per linear Ft.	1 purge volume	Purge vol, rounded up to nearest .5	# of casing volumes	Total Purge Volume

Time	Volume	pН	EC	Temp	Turbidity	Color	Odor	Pumped
	Purged	(SU)	(µS/cm)	(°C)				Dry
м. 	(gal)							
0732	0	6.88	339	7.8	Clear	Clear	N	N
0734	7.5	6.93	191.8	8-1	Clear	Clear	N	N
0740	7.5	6.89	191.0	8.2	Clear	Clear	\sim	N
0745	7.5	6.90	191.2	8.1	Clear	Clear	Ň	N
PURGING DATA: (For 0 gallons purge just enough water to record					Clear,	Clear,	None,	Yes/No
pH, EC, and temperature)					trace,	cloudy,	faint,	
					light,	yellow,	moderate,	
					moderate,	brown	strong	
					heavy			

Notes:_____

BVWD District Groundwater Monitoring Field Data Sheet

Date:

10.12-22

5

Tech	Name:	
------	-------	--

West

Well No: 5		
Total Well Depth (TWD):	20.19	ft.
Depth to Water (WD):	13045	ft.
Casing Diameter:	2	in.
Water Column Height $(TWQ - WD)$:	6.74	ft.
Purge/Sampling Method: Pump/ Gra	ab	

Reference Point: FS land below Green Machine

Well	Conversion	Rounded
Diameter	Factor	Up
(In.)	(CV) gal/ft	
2"	0.163	0.17

6.74	x 0.17	= /,1	1.5	x 3	= <u>4.5</u> gals
Water column	Gal per linear Ft.	1 purge volume	Purge vol, rounded up to nearest .5	# of casing volumes	Total Purge Volume

Time	Volume	pН	EC	Temp	Turbidity	Color	Odor	Pumped
	Purged	(SU)	(µS/cm)	(°C)				Dry
	(gal)		(
2757	0	6.85	928	7.8	Moderat	clouly	N	NA
0757	21.0							Yes
Α							×.	
PURGING I	DATA: (Fo	r 0 gallons purge ju	st enough water to	o record	Clear,	Clear,	None,	Yes/No
pH, EC, and	temperature	2)			trace,	cloudy,	faint,	× *
					light,	yellow,	moderate,	
					moderate,	brown	strong	
					heavy			

Notes: Pumped dry less than I gallar into 1st purge

BVWD District Groundwater Monitoring Field Data Sheet

Date: Well N		12-22 6	-			Tech. N Referen			um of PR
	ater (WD): neter: nn Height (T): (WD – WD): : Pump / Grab	22.59 <u>3,5</u> <u>2</u> 19.09		t. in. ft.	Well Diameter (In.) 2 "	Converse Factor (CV) gal 0.163	Up	led
Vater column			3.2 rge volume	Purg	3.5 e vol, rounded up to	X p nearest .5 # or	3 f casing volumes	$= \underbrace{\mathcal{D}}_{\text{Total Purge}}$	
Time	Volume Purged (gal)	pH (SU)	EC (μS/cm)		Temp (°C)	Turbidity	Color	Odor	Pumped Dry
0857	0	6.61	309		8.6	Clev	C 12 41	N	NA
0902	10.5	6.72	215		8.3	Clear	Clear Clear	N	NA
0915	10.5	6.64	232		8.6	Clert	(1001	N	N
	G DATA: (F d temperatur	or 0 gallons purg re)	e just enough	ı wate	er to record	Clear, trace, light, moderate, heavy	Clear, cloudy, yellow, brown	None, faint, moderate, strong	Yes/No

Notes:

19 October 2022

Bear Valley Water District Attn: Guy West P O Box 5027 Bear Valley, CA 95223 RE: Water Quality Work Order: 22J0817

Enclosed are the results of analyses for samples received by the laboratory on 10/05/22 23:40. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Karen L. Lantz Project Manager

Bear Valley Water District	Project Manager: Guy West	
P O Box 5027	Project: Water Quality	Reported:
Bear Valley, CA 95223	Project Number: [none]	10/19/22 06:35

Bay Area: 262 Rickenbacker Circle | Livermore, CA 94551 | 925-828-6226 | ELAP# 2728 Central Valley: 9090 Union Park Way Suite 113 | Elk Grove, CA 95624 | 916-686-5190 | ELAP# 2922 North Bay: 737 Southpoint Blvd Unit D | Petaluma, CA 94954 | 707-769-3128 | ELAP# 2303 San Diego: 2722 Loker Avenue West Suite A | Carlsbad, CA 92010 | 760-930-2555 | ELAP# 3055 Los Angeles: 1230 E. 223rd Street Suite 205 | Carson, CA 90745 | 424-267-5032 | Service Center

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Well #2	22J0817-01	Water	10/05/22 08:34	10/05/22 23:40
Well #3	22J0817-02	Water	10/05/22 08:09	10/05/22 23:40
Well #4	22J0817-03	Water	10/05/22 07:45	10/05/22 23:40

AlphaAnalytical Laboratories, Inc.email: clientservices@alpha-labs.comCorporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Bear Valley Water District	Project	Manager: Guy Wes					
P O Box 5027		Project: Water Qu	ality				eported:
Bear Valley, CA 95223	Project	Number: [none]				10/19/2	2 06:35
	Result Units	Reporting Limit Dilution	on Batch	Prepared	Analyzed	ELAP# Method	Note
Well #2 (22J0817-01)		Sample Type: Water		Sampled	1: 10/05/22 08:34	l	
Conventional Chemistry Parameters by AP	HA/EPA Methods						
Ammonia as N	ND mg/L	0.20 1	AJ23567	10/11/22 11:40	10/11/22 17:00	1551 SM4500-NH3 G	
Total Dissolved Solids	99 mg/L	10 1	AJ23973	10/12/22 10:30	10/14/22 12:42	2922 SM2540C	
Total Kjeldahl Nitrogen	ND mg/L	1.0 1	AJ23485	10/07/22 13:50	10/10/22 17:04	1551 EPA 351.2	
Anions by EPA Method 300.0							
Nitrate as N	ND mg/L	0.20 1	AJ23451	10/06/22 22:46	10/06/22 22:46	1551 EPA 300.0	
Microbiological Parameters by APHA Stand	dard Methods						
Total Coliforms	13 MPN/100mL	1.8 1	AJ23657	10/05/22 15:17	10/09/22 11:58	2922 SM9221B,C	
Well #3 (22J0817-02)		Sample Type: Water		Sampled	1: 10/05/22 08:09)	
Conventional Chemistry Parameters by AP	HA/EPA Methods						
Ammonia as N	ND mg/L	0.20 1	AJ23567	10/11/22 11:40	10/11/22 16:49	1551 SM4500-NH3 G	
Total Dissolved Solids	96 mg/L	10 1	AJ23973	10/12/22 10:30	10/14/22 12:42	2922 SM2540C	
Total Kjeldahl Nitrogen	ND mg/L	1.0 1	AJ23485	10/07/22 13:50	10/10/22 17:28	1551 EPA 351.2	
Anions by EPA Method 300.0							
Nitrate as N	ND mg/L	1.0 5	AJ23451	10/06/22 23:02	10/06/22 23:02	1551 EPA 300.0	R-01
Microbiological Parameters by APHA Stand	dard Methods						
Total Coliforms	17 MPN/100mL	1.8 1	AJ23657	10/05/22 15:17	10/09/22 11:58	2922 SM9221B,C	
Well #4 (22J0817-03)		Sample Type: Water		Sampled	1: 10/05/22 07:45	5	
Conventional Chemistry Parameters by AP	HA/EPA Methods						
Ammonia as N	ND mg/L	0.20 1	AJ23567	10/11/22 11:40	10/11/22 17:03	1551 SM4500-NH3 G	
Total Dissolved Solids	140 mg/L	10 1	AJ23973	10/12/22 10:30	10/14/22 12:42	2922 SM2540C	
Total Kjeldahl Nitrogen	ND mg/L	1.0 1	AJ23485	10/07/22 13:50	10/10/22 17:30	1551 EPA 351.2	

Bear Valley Water District P O Box 5027 Bear Valley, CA 95223	-	Manager: Guy Project: Wat Number: [non	er Qual	ity					Reported: 22 06:35
	Result Units	Reporting Limit	Dilution	Batch	Prepared	Analyzed	ELAP#	Method	Note
Well #4 (22J0817-03)		Sample Type:	Water		Sampleo	1: 10/05/22 07:	45		
Anions by EPA Method 300.0									
Nitrate as N	ND mg/L	0.20	1	AJ23451	10/06/22 23:52	10/06/22 23:	52 1551	EPA 300.0	
Microbiological Parameters by APHA Stan	dard Methods								
Total Coliforms	4.5 MPN/100mL	1.8	1	AJ23657	10/05/22 15:23	10/09/22 12:0	00 2922	SM9221B,C	

Alpha Analytical Laboratories, Inc. email: clientservices@alpha-labs.com Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Bear Valley Water District	Project Manager: Guy West	
P O Box 5027	Project: Water Quality	Reported:
Bear Valley, CA 95223	Project Number: [none]	10/19/22 06:35

Notes and Definitions

QM-01 The spike recovery for this QC sample is outside of established control limits possibly due to a sample matrix interference.

R-01 The Reporting Limit for this analyte has been raised to account for matrix interference.

- ND Analyte NOT DETECTED at or above the reporting limit
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference

Non-accredited analytes are reported only when ELAP accreditation for a requested analyte method pair is not available. For a list of accredited analytes, view our certificates at the Company link on our website at www.alpha-labs.com or contact your Project Manager directly.

	Corporate Laboratory 208 Mason Street, Ukiah CA 95482	ooratory eet, Ukiah CA	95482			Bay 1 262 F	Area La Rickenb	borato acker (iry Sircle, Li Se and S	Bay Area Laboratory 262 Rickenbacker Circle, Livermore, CA	e, CA 94551	51			Chi	ain o	f Cu	Chain of Custody - Work Order	Vork	Order	
alpha	/0/-468-0401 F) /0/-468-526/ email: clientservices@alpha-labs.com	F) /U/-408-52 vices@alpha-	۲٥/ labs.cc	E		1-076	779-979	й С	6050-020-028 (J 0220-028-026	2020					Den	brte and	Invoices	Benorts and Invoices delivered by email in PDF format	mail in F	PDF format	
Alpha ¹ Analytical Laboratories inc. www.alpha-labs.com WATERS, SEDIMENTS, SOLIDS	ELAP Certifications Ukiah 1551 / Dublin 2728 / Elk Grove 2922	ations ublin 2728 / El	lk Grov	/e 292:	~	Cent 9090 916-(ral Vall Union I 386-519	ey Lab Park W 0 F) 9 [.]	oratory ay #113 16-686-:	r, Elk Gr 5192	Central Valley Laboratory 9090 Union Park Way #113, Elk Grove CA 95624 916-686-5190 F) 916-686-5192	624	_	Lab No	K K	5220 \$13	\$17 1	bd bd		o jo	
Report to	h	Invoice to (if different)	ifferen	Ŧ			Proje	x Info	Project Information	Ę			Signatt	ire belc	Signature below authorizes work under terms	izes wor	k under	terms stated on reverse side	n reversi	e side.	Π
Company:	Contact:					Proj	Project ID:			Π			Ā	alvsis	Analvsis Request	ŝt		TAT		Temp upon	E
Bear Valley Water District								MW				Ī				F	┝			Receipt °C	0
Attn:	Email address:					Proj	Project No.											5tandard 10 days		Ukiah temp:	
Address:	Address:					T					di 9	-							<u> </u>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
PO Box 5027						C	indami M Od				Idme							Standard	ŀ	1	
Bear Valley, CA 95223 Phone/Fax:	Phone/Fax:					2	YOUINN				er S:		74					5 days	nirec	Dublin temp:	Τ
209-753-2112											d sı	-		- F				×	req		_
Email Address:						Inte	Internal Lab Use: 569	b Use: 569			_		æ					48 hours	levoi		
Field Sampler - Printed Name & Signature:			Ö	Container	ner	d L	Preservative	ative	L	Matrix			-					Other:		Elk Grove temp:	:d
(au Nut Q	Z								M		C J 2 N Imper of	N-E0	DS - SO	<u> </u>				days	Lab pre	2	
	Samoling	olina	lsiV I					e 2503	er W	3L								Sar	nple N	Sample Notes or	
Sample Identification	Date	Time	_	Clas Poly	ədio əəis	ICH	NSSH NNC	Na29 Nan	teW	9410 Ilos		AS						CDPH (Source	CDPH Source Numbers:	
			Ĥ				×	*	*		*	*	1								
Well #2	77.5-01	1280	Ê				×	××	×		4 ×	×	× •×	•		_					
Well #3	10.5.22	ORM	Â	×			×	××	×		4 ×	* •	× ×								
Well #4	10-5:22	THLO	Â	×			×	×	×		4 ×	×	ו×					SAMPLE	3 TIMES	S YEARLY	7
Well #5			Ê					* *	*			*	*	•				JUNE, AUG, SEPT	IG, SE	ΡΤ	
Well #6			H		┢	H	*				*	×									_
			<u>`</u>				:	_	_	+											
							-											5. A N			
																\dashv					
Relinquished by				ſ	teceiv	Received by				μ	Date		Time	CDF	H Write	On EC	T Tran	CDPH Write On EDT Transmission?	ž	Yes No	~
G West		X								ko/	22/5	e.	p:56	State	State System Number.	Numbei	 د.				
Jer 1							-	ž	-	9	10 15 hor	- WA	2	_	f "Y" plea	se entei	⁺ the Sou	If " γ " please enter the Source Number(s) in the column above	in the c	olumn above	
	VW		\square	2	5		Ī			9	1015127	-1/4	R	Mail	Mail Hardcopy to DDW- ?	py to [2-WOC		×	Yes No	
	Ł		T	14						/~	5	3	Juee	Har	Hardcopy to UUVV attn:	งกกจ	/ attn:				
	JE I		7	5						19	10.5	2	/h{2	ŝ	Travel and Star Time.			Misc	Misc. Supplies:		

*.

14 October 2022

Bear Valley Water District Attn: Guy West P O Box 5027 Bear Valley, CA 95223 RE: Water Quality Work Order: 22J0870

Enclosed are the results of analyses for samples received by the laboratory on 10/05/22 23:40. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Karen L. Lantz Project Manager

Bear Valley Water District	Project Manager: Guy West	
P O Box 5027	Project: Water Quality	Reported:
Bear Valley, CA 95223	Project Number: MW II	10/14/22 11:38

Bay Area: 262 Rickenbacker Circle | Livermore, CA 94551 | 925-828-6226 | ELAP# 2728 Central Valley: 9090 Union Park Way Suite 113 | Elk Grove, CA 95624 | 916-686-5190 | ELAP# 2922 North Bay: 737 Southpoint Blvd Unit D | Petaluma, CA 94954 | 707-769-3128 | ELAP# 2303 San Diego: 2722 Loker Avenue West Suite A | Carlsbad, CA 92010 | 760-930-2555 | ELAP# 3055 Los Angeles: 1230 E. 223rd Street Suite 205 | Carson, CA 90745 | 424-267-5032 | Service Center

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Well # 2	22J0870-01	Water	10/05/22 08:34	10/05/22 23:40
Well # 3	22J0870-02	Water	10/05/22 08:09	10/05/22 23:40
Well # 4	22J0870-03	Water	10/05/22 07:45	10/05/22 23:40

AlphaAnalytical Laboratories, Inc.email: clientservices@alpha-labs.comCorporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Bear Valley Water District P O Box 5027	Projec	t Manager: Guy We Project: Water C					Reported:
Bear Valley, CA 95223	Proje	ct Number: MW II				10/1	4/22 11:38
	Result Units	Reporting Limit Dilu	ution Batch	Prepared	Analyzed H	ELAP# Method	Note
Well # 2 (22J0870-01)		Sample Type: Wat	ter	Sampleo	d: 10/05/22 08:34		
Metals by EPA 200 Series Methods							
Boron	ND mg/L	0.20	1 AJ2355	8 10/10/22 16:15	10/12/22 16:37	1551 EPA 200.7	
Iron	ND mg/L	0.10	1 AJ2355	8 10/10/22 16:15	10/12/22 16:37	1551 EPA 200.7	
Manganese	ND mg/L	0.020	1 AJ2355	8 10/10/22 16:15	10/12/22 16:37	1551 EPA 200.7	
Sodium	3.6 mg/L	1.0	1 AJ2355	8 10/10/22 16:15	10/12/22 16:37	1551 EPA 200.7	
Anions by EPA Method 300.0							
Chloride	11 mg/L	0.50	1 AJ23522	2 10/08/22 16:37	10/08/22 16:37	1551 EPA 300.0	
Well # 3 (22J0870-02)		Sample Type: Wat	ter	Sampleo	d: 10/05/22 08:09		
Metals by EPA 200 Series Methods							
Boron	ND mg/L	0.20	1 AJ2355	8 10/10/22 16:15	10/12/22 16:42	1551 EPA 200.7	
Iron	ND mg/L	0.10	1 AJ2355	8 10/10/22 16:15	10/12/22 16:42	1551 EPA 200.7	
Manganese	ND mg/L	0.020	1 AJ2355	8 10/10/22 16:15	10/12/22 16:42	1551 EPA 200.7	
Sodium	6.2 mg/L	1.0	1 AJ2355	8 10/10/22 16:15	10/12/22 16:42	1551 EPA 200.7	
Anions by EPA Method 300.0							
Chloride	14 mg/L	0.50	1 AJ23522	2 10/08/22 17:44	10/08/22 17:44	1551 EPA 300.0	
Well # 4 (22J0870-03)		Sample Type: Wat	ter	Sampleo	d: 10/05/22 07:45		
Metals by EPA 200 Series Methods							
Boron	ND mg/L	0.20	1 AJ2355	8 10/10/22 16:15	10/12/22 16:47	1551 EPA 200.7	
Iron	0.54 mg/L	0.10	1 AJ2355	8 10/10/22 16:15	10/12/22 16:47	1551 EPA 200.7	
Manganese	0.069 mg/L	0.020	1 AJ2355	8 10/10/22 16:15	10/12/22 16:47	1551 EPA 200.7	
Sodium	8.7 mg/L	1.0	1 AJ2355	8 10/10/22 16:15	10/12/22 16:47	1551 EPA 200.7	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Bear Valley Water District	Projec	Project Manager: Guy West										
P O Box 5027		Project: Water (F	Reported:						
Bear Valley, CA 95223	Proje	ct Number: MW II					10/14/	/22 11:38				
	Result Units	Reporting Limit Dil	ution	Batch	Prepared	Analyzed	ELAP#	Method	Note			
Well # 4 (22J0870-03) Anions by EPA Method 300.0		Sample Type: Wat	ter		Sampled	l: 10/05/22 07:	45					
Chloride	6.5 mg/L	0.50	1	AJ23522	10/08/22 18:00	10/08/22 18:0	00 1551 E	PA 300.0				

Alpha Analytical Laboratories, Inc. email: clientservices@alpha-labs.com Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Bear Valley Water District	Project Manager: Guy West	
P O Box 5027	Project: Water Quality	Reported:
Bear Valley, CA 95223	Project Number: MW II	10/14/22 11:38

Notes and Definitions

- QM-4X The spike recovery was outside of QC acceptance limits for the MS and/or MSD due to analyte concentration at 4 times or greater the spike concentration. The QC batch was accepted based on LCS and/or LCSD recoveries within the acceptance limits.
- ND Analyte NOT DETECTED at or above the reporting limit
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference

Non-accredited analytes are reported only when ELAP accreditation for a requested analyte method pair is not available. For a list of accredited analytes, view our certificates at the Company link on our website at www.alpha-labs.com or contact your Project Manager directly.

www.alpha-labs.com

WATERS, SEDIMENTS, SOLIDS

Corporate Laboratory 208 Mason Street, Ukiah CA 95482 707-468-0401 F) 707-468-5267 email: clientservices@alpha-labs.com

ELAP Certifications Ukiah 1551 / Dublin 2728 / Elk Grove 2922 **Bay Area Laboratory** 262 Rickenbacker Circle, Livermore, CA 94551 925-828-6226 F) 925-828-6309

Central Valley Laboratory 9090 Union Park Way #113, Elk Grove CA 95624 916-686-5190 F) 916-686-5192

Chain of Custody - Work Order

Reports and Invoices delivered by email in PDF format

of منطء

Lab No

Ā 77

Report to	Inv	oice to (if d	liffere	ent)				Pr	oject	t Inf	form	atio	n					Signa	ature	belov	w au	nonz	es w	OIK U	nueri	enns stated on rev	
Company:	Contact:						Pro	oject	ID:									A	na	ysis	Re	ques	st			ТАТ	Temp upon
Bear Valley Water District			_		_					ΜW	v 11				ļ					,		1			-		Receipt ^o C
Attn:	Email address:						L_				-			_												Standard 10 days	Ukiah temp:
							Pro	oject	No:						≙										1	10 days	
Address:	Address:														Sample ID												2
PO Box 5027							PO	Nu	mbei	r:				-	am											Standard 🕁	
Bear Valley, CA 95223	Phone/Fax:						ľĭ	114							per S											5 days	Dublin temp:
															ā. S	1										x p	
209-753-2112 Email Address:							Inte	erna	La	b Us	se:				inei											48 hours	
										57	70				Containe	•										bro	
Field Sampler - Printed Name & Signature	e:			Con	ntain	er		Pres	erva	ntive	,	Ma	atrix			<u>n</u>										Other: days d	Elk Grove temp:
buy West D.	Ŵ		al							33		Water WW	i 1		Total Number of	, Mn, N	•									Lab	2.1
	Sam	pling	40ml Vial	~	SS	Sleeve Other	_	ß	Š	IS2	e	ate		ī,	tal	Ч			1							-	Notes or
Sample Identificatión	Date	Time	ę	Pol	ទី	s ş	오	Ŧ	H2S04	Na2	۶	Š 8	8 8	5	۴	ຕົ	ū									CDPH Sour	rce Numbers:
₩ell #1				-×	_			×			*	×	_	_	-2-	*	-*•				_				_		
Well #2	0.5.22	0934		x				×			х	x			2	х	х										
Well #3	10.5.22		11	х				x			х	x			2	х	x										
Well #4		0745	11	x				x			х	x		T	2	x	x									DUE ANNUAL	LY IN
								\downarrow_{\star}			×	<u>_</u>			-2-	×	-**									SEPTEMBER	2
Well #5				^		_		Ļ			Â	<u></u>	-	_							-	-	+	+			
Well #6				*				+ *			×	<u>*</u>	_		2	<u> </u>			_			+	_		_	<u> </u>	
								Т																			
		+				+	\top	+																			1
					┝─┤	-	+	+	+													-	+			مرید میں	an an Anna an Anna an Anna A
			L			eceiv		<u> </u>						4	Date			Time								smission?	Yes No
Relinquished by		<u> </u>	+	_		eceiv	eu u	,y		-				-	-		•			CDPI	HV	rite (JUL		rans	smission	
6 West		2	4_										k	*	-fæ	<u>ک</u>	<u> </u>	:56		State	-					1991 - 1991 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 -	
2001)		1	•	A		1					5	11	Ľ	14	<u>m</u>		lf	"Y"	olease	e en	ter the	e Sou	rce Number(s) in th	
	MM		(t	10	• 1•						ĺ	610	512	V	1	631	シ	Mail	Har	dcop	y to	DD\	N- ?		Yes No
	Ab			31	<u></u>	<u> </u>							_	10		_		il a		Hard	icop	y to	טט	w a	ttn:		
	<u>II</u> JF	_		-	Ĵ.	-							Ť	10	·- 3	5	-	340		Travel a						Misc. Supp	lies:
	\mathcal{O}	1		0	▶+~									•	\sim		Ĩ	• •						10			

25 October 2022

Bear Valley Water District Attn: Guy West P O Box 5027 Bear Valley, CA 95223 RE: Water Quality Work Order: 22J1881

Enclosed are the results of analyses for samples received by the laboratory on 10/12/22 23:00. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Karen L. Lantz Project Manager

Bear Valley Water District	Project Manager: Guy West	
P O Box 5027	Project: Water Quality	Reported:
Bear Valley, CA 95223	Project Number: MW I	10/25/22 15:31

Bay Area: 262 Rickenbacker Circle | Livermore, CA 94551 | 925-828-6226 | ELAP# 2728 Central Valley: 9090 Union Park Way Suite 113 | Elk Grove, CA 95624 | 916-686-5190 | ELAP# 2922 North Bay: 737 Southpoint Blvd Unit D | Petaluma, CA 94954 | 707-769-3128 | ELAP# 2303 San Diego: 2722 Loker Avenue West Suite A | Carlsbad, CA 92010 | 760-930-2555 | ELAP# 3055 Los Angeles: 1230 E. 223rd Street Suite 205 | Carson, CA 90745 | 424-267-5032 | Service Center

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Well #1	22J1881-01	Water	10/12/22 08:38	10/12/22 23:00
Well #6	22J1881-02	Water	10/12/22 09:15	10/12/22 23:00

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Bear Valley Water District	Project I	Manager: Guy	v West						
P O Box 5027		Project: Wat	er Qual	ty				Rej	ported:
Bear Valley, CA 95223	Project	Number: MW	I					10/25/22	2 15:31
	Result Units	Reporting Limit	Dilution	Batch	Prepared	Analyzed	ELAP#	Method	Note
Well #1 (22J1881-01)		Sample Type:	Water		Sampled	l: 10/12/22 08:38	3		
Conventional Chemistry Parameters by APHA	A/EPA Methods								
Ammonia as N	ND mg/L	0.20	1	AJ24085	10/20/22 12:30	10/20/22 19:54	1551	SM4500-NH3 G	
Total Dissolved Solids	150 mg/L	10	1	AJ24458	10/15/22 08:14	10/21/22 15:20	2922	SM2540C	
Total Kjeldahl Nitrogen	ND mg/L	1.0	1	AJ24003	10/17/22 13:15	10/18/22 13:27	1551 l	EPA 351.2	
Anions by EPA Method 300.0									
Nitrate as N	ND mg/L	0.20	1	AJ23841	10/14/22 02:12	10/14/22 02:12	1551 l	EPA 300.0	
Microbiological Parameters by APHA Standar	rd Methods								
Total Coliforms	4.5 MPN/100mL	1.8	1	AJ24138	10/12/22 15:13	10/16/22 12:04	2922	SM9221B,C	
Well #6 (22J1881-02)		Sample Type:	Water		Sampled	I: 10/12/22 09:15	;		
Conventional Chemistry Parameters by APHA	VEPA Methods								
Ammonia as N	0.30 mg/L	0.20	1	AJ24085	10/20/22 12:30	10/20/22 19:57	1551	SM4500-NH3 G	
Total Dissolved Solids	140 mg/L	10	1	AJ24458	10/15/22 08:14	10/21/22 15:20	2922	SM2540C	
Total Kjeldahl Nitrogen	ND mg/L	1.0	1	AJ24003	10/17/22 13:15	10/18/22 14:17	1551 I	EPA 351.2	
Anions by EPA Method 300.0									
Nitrate as N	ND mg/L	0.20	1	AJ23841	10/14/22 02:28	10/14/22 02:28	1551 I	EPA 300.0	
Microbiological Parameters by APHA Standar	rd Methods								
Total Coliforms	2.0 MPN/100mL	1.8	1	AJ24138	10/12/22 15:19	10/16/22 12:08	2922 \$	SM9221B,C	

Bear Valley Water District	Project Manager: Guy West	
P O Box 5027	Project: Water Quality	Reported:
Bear Valley, CA 95223	Project Number: MW I	10/25/22 15:31

Notes and Definitions

- ND Analyte NOT DETECTED at or above the reporting limit
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference

Non-accredited analytes are reported only when ELAP accreditation for a requested analyte method pair is not available. For a list of accredited analytes, view our certificates at the Company link on our website at www.alpha-labs.com or contact your Project Manager directly.

WATERS, SEDIMENTS, SOLIDS

Corporate Laboratory 208 Mason Street, Ukiah CA 95482 707-468-0401 F) 707-468-5267 email: clientservices@alpha-labs.com

ELAP Certifications Ukiah 1551 / Dublin 2728 / Elk Grove 2922 Bay Area Laboratory 262 Rickenbacker Circle, Livermore, CA 94551 925-828-6226 F) 925-828-6309

Central Valley Laboratory

9090 Union Park Way #113, Elk Grove CA 95624 916-686-5190 F) 916-686-5192

Chain of Custody - Work Order

Reports and Invoices delivered by email in PDF format

Pg_____ of

Misc. Supplies:

2271881		Reports and Invoices
Lab No	Lab No	2231881

TAVA AND SHOTTING

200

Report to		nvoice to (if	voice to (if different) Project Information								n	Signature below authorizes v									wor	rk under terms stated on reverse side.						
Company:	Contact:						Pr	ojec	t ID:					1	Т													
Bear Valley Water District						_	MW i									Analysis Request									ΤΑΤ	Temp	-	
Attn:	Email address	:					L			IVIV	V I					T			Τ	Т		T				Standard	Recei	pt °C
Adda							Project No:																	10 days	Ukiah t	temp:		
Address:	Address:												9														iomp.	
PO Box 5027														Sample													2.	
Bear Valley, CA 95223 Phone/Fax:	Phone/Fax:						PC) Nu	mbe	r:																Standard 👳		
209-753-2112														- Pe				Ι.								5 days in X e	Dublin t	temp:
Email Address:	L						100			h -				- 5				17										
							Int	erna	al La	D Us 56				ain				2								48 hours		
Field Sampler - Printed Name & Signatur	re:	_		Con	taine	r		Pres	erva	_	_	Ma	trix	Containe	3			R			ĺ					pro d		
- 1	. 1/				Τ	Ť					╋			- 8	S		-	N					ĺ			Other: days	Elk Grove	e temp:
Guy West /2	\mathcal{N}														15	N-20N	IKN					1				days to	116	
			<u>a</u>							2	N.	§		Total Number	P	lõ	5	TDS								Lab	4.7	
Sample Identification	Sam	pling	Ξ		Sleeve	12		ខ	H2S04	82	e l	5 	5	Z			NH3-N,								-	Sample	Notes or	
Sample Identification	Date	Time	40ml	ā l	Se Ga	١ <u></u>	Ę	Ĭ	42S			Vater	Other	10 ti	∂	B	Ξ,	5								CDPH Source		
Well #1	10.12.22	0878		x	+	1-						x	-	<u> </u>	F		-						-+			CDFH Soun		ərs:
Well-#2	~ 1LU	10.98	╉┼┼	<u>^</u>		-	-	┝─┤	Ĥ	<u> </u>	4	4	+	4	×	×	×	×					\downarrow					
				<u>×</u>					*	<u>* :</u>	<u>*</u> _'	*		-4	*	×	×	[* ·										
Well #3		<u> </u>	╉─┼	*		-			-×	*+	×	×	+	4	+×	<u>+</u> ∗-	 ×	*			Τ	T	T					
Wejl #4				×	+				-×	×	×	×	1	44	- *		9						+			SAMPLE 3 TIN		
Wei #5	10-1222			\mathbf{v}				4	_		土										-	-	-+					
Well #6		mil	╉┼┼		+	+			Ŧ	<u> </u>	Ĥ	<u>^</u> -			<u> </u>	Â		<u>^</u>			-		\rightarrow			JUNE, AUG, S	EPI	
	10.1222	ORIS		×		_			×	×)	x)	×		4	×	X	×	х										
																							Т					~
				Τ							1					<u>†</u>					-†	+	+	-+				
	<u>+</u>			+	+				+		╋		+			┢──					\rightarrow	_	-+			CANN	JEC	1
· · · · · · · · · · · · · · · · · · ·	+		┠──┼		+-	\vdash		-+	_	_	╇		Ļ		ļ													
														ſ	1										T			
Relinquished by					Rec	eive	d by							Date			Time	,	CDF	PH W	rite	On F		Tra	ner	mission?	Yes	No
6 West		Loc	:k	he	\checkmark									_		Γ								H	101	111331011 (
laction				<u>~~</u>	$\frac{y}{1}$	Ī														-		Numb						-
	<u> </u>	ar	3	+	\mathbf{t}	╉							10/	ĺŹĴ	Z	17	217							_	_	e Number(s) in the		
- tot		/	4	Ŋ	\sim								<u>io</u>	_	r		70	5			-	oy to				Ŷ	(es	No
	.0		-	N	7								10	hal	ns.	I	71	17	Har	deor	v to		M -	atte				

10-12 1940

10

JE/ JE JE

20 October 2022

Bear Valley Water District Attn: Guy West P O Box 5027 Bear Valley, CA 95223 RE: Water Quality Work Order: 22J1882

Enclosed are the results of analyses for samples received by the laboratory on 10/12/22 23:00. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Karen L. Lantz Project Manager

Bear Valley Water District	Project Manager: Guy West	
P O Box 5027	Project: Water Quality	Reported:
Bear Valley, CA 95223	Project Number: MW II	10/20/22 14:22

Bay Area: 262 Rickenbacker Circle | Livermore, CA 94551 | 925-828-6226 | ELAP# 2728 Central Valley: 9090 Union Park Way Suite 113 | Elk Grove, CA 95624 | 916-686-5190 | ELAP# 2922 North Bay: 737 Southpoint Blvd Unit D | Petaluma, CA 94954 | 707-769-3128 | ELAP# 2303 San Diego: 2722 Loker Avenue West Suite A | Carlsbad, CA 92010 | 760-930-2555 | ELAP# 3055 Los Angeles: 1230 E. 223rd Street Suite 205 | Carson, CA 90745 | 424-267-5032 | Service Center

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Well # 1	22J1882-01	Water	10/12/22 08:38	10/12/22 23:00
Well # 6	22J1882-02	Water	10/12/22 09:15	10/12/22 23:00

AlphaAnalytical Laboratories, Inc.email: clientservices@alpha-labs.comCorporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Bear Valley Water District P O Box 5027 Bear Valley, CA 95223	-	t Manager: Guy Project: Wat ct Number: MW	er Quali	ty				10/2	Reported: 0/22 14:22
	Result Units	Reporting Limit		Batch	Prepared	Analyzed	ELAP		Note
Well # 1 (22J1882-01)		Sample Type:	Water		Sampled	I: 10/12/22 08:3	8		
Metals by EPA 200 Series Methods									
Boron	ND mg/L	0.20	1	AJ24132	10/18/22 17:10	10/19/22 11:40) 1551	EPA 200.7	
Iron	5.2 mg/L	0.10	1	AJ24132	10/18/22 17:10	10/19/22 11:40) 1551	EPA 200.7	
Manganese	0.77 mg/L	0.020	1	AJ24132	10/18/22 17:10	10/19/22 11:40) 1551	EPA 200.7	
Sodium	7.2 mg/L	1.0	1	AJ24132	10/18/22 17:10	10/19/22 11:40) 1551	EPA 200.7	
Anions by EPA Method 300.0									
Chloride	2.1 mg/L	0.50	1	AJ23898	10/15/22 10:45	10/15/22 10:45	5 1551	EPA 300.0	
Well # 6 (22J1882-02)		Sample Type:	Water		Sampled	l: 10/12/22 09:1	5		
Metals by EPA 200 Series Methods									
Boron	ND mg/L	0.20	1	AJ24132	10/18/22 17:10	10/19/22 11:44	4 1551	EPA 200.7	
Iron	0.30 mg/L	0.10	1	AJ24132	10/18/22 17:10	10/19/22 11:44	4 1551	EPA 200.7	
Manganese	1.2 mg/L	0.020	1	AJ24132	10/18/22 17:10	10/19/22 11:44	4 1551	EPA 200.7	
Sodium	8.4 mg/L	1.0	1	AJ24132	10/18/22 17:10	10/19/22 11:44	4 1551	EPA 200.7	
Anions by EPA Method 300.0									
Chloride	5.2 mg/L	0.50	1	AJ23898	10/15/22 11:02	10/15/22 11:02	2 1551	EPA 300.0	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Bear Valley Water District	Project Manager: Guy West	
P O Box 5027	Project: Water Quality	Reported:
Bear Valley, CA 95223	Project Number: MW II	10/20/22 14:22

Notes and Definitions

- ND Analyte NOT DETECTED at or above the reporting limit
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference

Non-accredited analytes are reported only when ELAP accreditation for a requested analyte method pair is not available. For a list of accredited analytes, view our certificates at the Company link on our website at www.alpha-labs.com or contact your Project Manager directly.

wwww.alpha-labes.com

WATERS, SEDIMENTS, SOLIDS

Corporate Laboratory 208 Mason Street, Ukiah CA 95482 707-468-0401 F) 707-468-5267 email: clientservices@alpha-labs.com

ELAP Certifications Ukiah 1551 / Dublin 2728 / Elk Grove 2922 Bay Area Laboratory 262 Rickenbacker Circle, Livermore, CA 94551 925-828-6226 F) 925-828-6309

9090 Union Park Way #113, Elk Grove CA 95624

Central Valley Laboratory

916-686-5190 F) 916-686-5192

Chain of Custody - Work Order

Reports and Invoices delivered by email in PDF format

of

22 J1882 Lab No

Report to	oice to (if d	iffere	ent)				Pr	ojec	t Inf	form	natic	on	Т				Signa	ture	belov	v aut	norize	s wo	rk und	ier te	erms stated on rev	erse side	
Company:	Contact:						Pro	ject	ID:					T				Δ	nal	ysis	Rec	11100	t			TAT	Temp upon
Bear Valley Water District							Γ			ΜV	/ 11			1	Ļ					y 313		luco			_		Receipt °C
Attn:	Email address:								N.					-												Standard 10 days	Ukiah temp:
	Address:							ject	No:					9	₽											it days	7^{ε}
Address:	Address.																1										U
PO Box 5027 Bear Valley, CA 95223							PO	Nur	nbe	r:				1	Sample											Standard 🕁	
Phone/Fax:	Phone/Fax:														per											5 days 5 days 2	Dublin temp:
209-753-2112															20												
Email Address:							Inte	erna	I La	b Us 57				•	aine	1										48 hours re	
				Con	taine			706	01/2	57 Itive	_	M	atrix	-	Contai											Other:	Elk Grove temp:
Field Sampler - Printed Name & Signature			ΗŤ			1	╉╴			T	+				ĕ	Ra										Other: d	
Guy West 12	-h														ber	Ĕ						1				Lab	9.5
Cuy West 1	y v		<u>a</u>							g		§			Number											_	
	Sam	pling	40ml Vial	>	ISS	j j	-	β	8	Na2S203	e E	Water			Total P	ц										-	Notes or
Sample Identification /	Date	Time	4 0	DO	ซื่อ	ŝ t	£	Ĩ	ΪĮ	Naž	۶	Š (Soil Other		۴	ш	ō									CDPH Sour	rce Numbers:
Well #1	10-12-2-	0838		x				х			x	×			2	х	х										<u> </u>
Well #2			╂╌┼	×	_	+	-	×		-	×	×		+	2	. x	. x -										
Well #3			\square	×	1			×		-+	×	. -		+	2	×	*										
	1	<u>}</u>					_	¥		_	\mathbf{x}^{\dagger}	<u>*</u>		1	2	- <u>×</u> -	x-	1					\top			DUE ANNUAL	
Woll #4			\mathbf{H}		+	+	+-			-					_				+		+	+				SEPTEMBER	2
Vyell #5	12-12-22			<u>*</u>	_		1-	L_	_	_	Â	^		+	2	~			+		+	+	+				<u> </u>
Well #6	12122	0915		×				×			×	×			2	х	х						4				
					Т		Г																			L	
			╂╴┦	-			1							╈												5CAN	NED
		+	╂╌╂		+	╉	+				-	-+		+	·				\neg	+	+		+				
		<u></u>						L						_)ate			Time	+								Yes No
Relinquished by		ļ			-	ceiv	ed b	y					_		ale			~	-1	CDPH	+ Wr	ite O	n EC	DT Tr	ans	mission?	
G WZ>T		La	ch	0	<u>L</u>														!	State	Syste	em Nu	umbe	r:			
Lockto					1	1	٨						-		21:	\overline{n}	12	210		lf	"Y" p	lease	ente	r the S	Sour	ce Number(s) in th	e column above
Locate	γ <u>γ</u>		-Ø	۶ <u> </u>	X	大	犬	/					1	<i>y</i>	12			ng	T	Mail I	Hard	copy	to I	DDW	-?		Yes No
-++	40-	+		い	T	わ)								1/2			100		Hard	con		DDV	v atti	n:		
	= 10	17		rf)	μv	Y	/-		10	010	<u></u>								_							Misc. Supp	plies:
	FT/	JF 1	0	邗	_ (9	-12	/	<u>14</u>	: Y	9		L	xe	$\sim l_{e}$	/	02	360		1 4 4 JMI 97							

BEAR VALLEY WATER DISTRICT – THIRD TRI-ANNUAL 2022 GROUNDWATER MONITORING REPORT

Appendix C Historical Groundwater Elevations and Quality January 23, 2023

Appendix C Historical Groundwater Elevations and Quality

		Depth To GW	GW Elev. (ft,		Field EC	Temp.	NO3-N	TKN	Ammo nia as	TDS	Total Coliform		Fe	Mn	Na	CI	ORP	Dissolved Oxygen	Lab SC	Ca	Mg
Well	Date	(ft)	NAVD88)	Field pH	(μS/cm)	(C)	(mg/L)	(mg/L)	Ν	(mg/L)	(MPN/100ml)	B (mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mV)	(mg/L)	(µS/cm)	(mg/L)	(mg/L)
MW-1	9/1/2004	10.29	7103.79	6.7	221	4.8	<0.050	<1.0		166	28	NR^3	0.940	0.370	NR^3	NR^3					
MW-1	10/13/2004	12.73	7101.35	6.9	180	6.2	<0.1	1	<1	150	<2	0.05	<0.02	0.350	7.0	3.4					
MW-1	8/11/2005	9.32	7104.76	6.5	150	6.4	<0.1	2	<1	200	<2	<0.03	0.210	0.280	6.0	1.2	71	5.5	160	19.0	5.2
MW-1	9/15/2005	9.54	7104.54	7.0	150	6.4	<0.1	<1	<1	150	<2	<0.03	0.730	0.300	6.0	3.6	56	7.9	160	20.0	5.3
MW-1	10/13/2005	9.50	7104.58	6.6	1482	7.1	<0.1	<1	<1	120	2	0.03	0.150	0.260	6.0	2.2	138	7.5	170	18.0	4.8
MW-1	6/29/2006	9.60	7104.48	6.9	125	5.1	<0.1	<1	<1	110	<2	<0.03	0.060	0.140	5.0	1.6	103	1.7	140	14.0	3.9
MW-1	8/2/2006	8.25	7105.83	7.7	156	6.9	<0.1	<1	<1	150	21	<0.03	<0.02	0.280	7.0	1.4	65	4.3	170	20.0	5.0
MW-1	10/10/2006	8.08	7106.00	6.8	171	5.9	<0.1	<1	<1	160	<2	<0.03	0.130	0.360	7.0	1.5	70	2.7	180	22.0	5.7
MW-1	7/12/2007	10.10	7103.98	7.0	173	7.0	<0.1	<1	<1	220	2	<0.03	0.130	0.370	6.0	1.2	110	6.7	180	23.0	5.8
MW-1	8/29/2007	9.00	7105.08	7.1	180	7.7	<0.1	<1	<1	170	14	0.037	0.340	0.430	6.0	1.5	-2	4.9	200	25.0	5.8
MW-1	9/26/2007	12.30	7101.78	7.2	189	7.4	<0.1	<1	<1	170	<2	<0.03	0.140	0.380	6.7	1.0	-121	4.7	200	23.0	6.0
MW-1	7/8/2008	10.25	7103.83	7.2	168	7.4	<0.1	<1	<1	170	4	< 0.03	0.060	0.270	6.0	1.1	141	1.9	180	21.0	6.0
MW-1	9/18/2008	9.70	7104.38	7.3	189	6.9	<0.1	<1	<1	180	230	< 0.03	0.060	0.330	7.0	<1.0	156	7.4	200	22.0	5.1
MW-1	1/16/2008	12.30	7101.78	7.6	180	6.4	<0.1	<0.1	<1	150	11	< 0.03	0.180	0.360	11.0	1.2	78	7.1	190	26.0	7.7
MW-1	7/7/2009	8.95	7105.13	7.2	168	6.8	<0.1	<1	<1	220	2	< 0.03	0.140	0.260	7.0	0.8	469	6.2	180	23.0	5.8
MW-1	9/30/2009	9.00	7105.08	6.2	194	6.8	<0.1	<1	<1	170	8	< 0.03	0.120	0.420	7.0	0.6	52	1.9	190	25.0	5.5
MW-1	10/26/2009	10.30	7103.78	2.7	142	6.3	0.3	1	<1	160	80	<0.03	0.110	0.280	9.0	1.1	281	1.0	190	23.0	6.2
MW-1	7/13/2010	8.80	7105.28	6.4	150	6.0	<0.1	<1	<1	140	<2	<0.03	0.040	0.220	6.0 7.0	1.9	402	1.7	150	19.0	4.7 5.4
MW-1	8/24/2010	9.03	7105.05	7.0	185 173	6.1	<0.1	<1	<1	170	2	<0.03	<0.02	0.300	7.0	0.9	43	0.9	190	20.0	5.4
MW-1	11/4/2010	8.80 8.10	7105.28 7105.98	5.9 5.6	173	6.3	<0.1	6	<1	140	17	<0.03	< 0.02	0.310	6.0	2.2	132 101	2.0	170	18.0	4.3
MW-1 MW-1	7/21/2011 9/8/2011	9.54	7103.98	5.6 7.0	140	5.7 6.2	<0.1 <0.1	<1 2	<1 <1	130 140	<2 <2	<0.03 <0.03	0.017 0.040	0.200 0.272	4.6 5.7	1.6 1.1	38	1.1 1.3	150 180	14.7 17.2	4.1 5.1
MW-1	10/20/2011	9.44 9.44	7104.64	6.6	167	0.2 5.7	<0.1 <0.1	2	<1	140	4.5	<0.03 <0.03	0.040	0.272	5.4	1.6	58 61	1.5	170	17.2	4.3
MW-1	6/26/2012	9.00	7105.08	6.7	93	5.4	0.2	2 <1	<1	140	<1.8	<0.03	<0.02	0.190	5.6	1.7	63	2.1	93	15.9	4.1
MW-1	7/31/2012	10.30	7103.78	7.0	197	8.5	<0.2	1	<1	150	2	<0.03	0.02	0.263	6.6	0.7	103	0.1	200	23.9	5.8
MW-1	10/9/2012	12.40	7101.68	6.5	184	5.8	<0.1	2	<1	140	<1.8	<0.03	0.105	0.322	6.5	1.6	87	1.5	180	20.4	5.0
MW-1	5/30/2013	11.00	7103.08	6.4	153	6.1	<0.2	<1	<1	120	<1.8	< 0.03	<0.02	0.143	5.3	1.7	198		150	16.7	4.5
MW-1	8/21/2013	12.39	7101.69	6.6	177	8.1	<0.1	<1	<1	150	<1.8	< 0.03	0.080	0.280	5.3	1.5	276	2.3	180	18.6	4.6
MW-1	10/15/2013	12.95	7101.13	6.4	193	7.1	<0.2	<1	<1	150	<1.8	< 0.03	0.093	0.300	6.8	1.5	514	1.3	190	25.7	5.9
MW-1	6/12/2014	11.04	7103.04	6.2	130	6.4	<0.2	<1	<1	120	<1.8	< 0.03	< 0.02	0.052	5.0	2.6	266	2.9	130	14.4	4.1
MW-1	8/12/2014	10.67	7103.41	7.4	157	6.7	<0.2	<1	<1	140	<1.8	< 0.03	< 0.02	0.206	5.6	2.4	258	2.3	160	18.9	4.6
MW-1	10/14/2014		7101.69	7.2	189	6.7	<0.2	<1	<1	170	<1.8	< 0.03	< 0.02	0.299	6.2	1.0	264	0.3	190	21.8	5.6
MW-1	6/17/2015	10.72	7103.36	7.2	138	6.8	<0.2	<1	<1	110	<1.8	< 0.03	<0.02	0.046	4.6	5.2	306	1.8	140	12.5	3.7
MW-1	9/9/2015	10.19	7103.89	6.6	165	6.7	<0.2	<1	<1	150	<1.8	0.034	< 0.03	0.203	5.9	2.2	241	2.7	170	19.4	5.0
MW-1	11/12/2015	11.00	7103.08	6.5	161	8.3	<0.2	<1	<1	160	17	<0.03	<0.03	0.205	5.1	3.7	270		160	17.3	4.6
MW-1	7/7/2016	8.89	7105.19	6.1	154	8.6	<0.2	<1	<1	110	<1.8	<0.03	<0.03	0.108	5.4	2.0			150	17.7	4.6
MW-1	9/8/2016	11.11	7102.97	6.4	168	6.9	<0.1	0.62	<0.1	170	<1.8	<0.03	<0.03	0.196	5.5	1.9				19.1	4.8
MW-1	10/20/2016	9.48	7104.60	6.4	172	6.5	<0.1	0.31	0.19	140	230	<0.03	0.043	0.236	5.8	2.1				20.5	5.1
MW-1	7/13/2017	10.09	7103.99	7.6	88	7.3	<0.4	<1	<1	92	5400	<0.03	<0.03	0.016	4.5	1.9			88	8.9	2.7
MW-1	8/24/2017	9.85	7104.23	6.1	154	6.5	<0.4	<1	<1	130	490	<0.03	<0.03	0.128	5.5	1.3			150	15.0	4.6
MW-1	9/28/2017	10.45	7103.63	6.1	152	5.8	<0.4	<1	<1	130	1.8	<0.03	<0.03	0.148	5.7	1.6			150	16.5	4.3
MW-1	6/29/2018	8.70	7105.38	6.7	233	5.6	<0.2	<1	<0.2	161	<1.8										
MW-1	8/23/2018	10.81	7103.27	6.8	185	5.5	<0.2	<1	<0.2	140	<1.8										
MW-1	10/10/2018	13.11	7100.97	6.7	198	5.1	2.8	<1	<0.2	160	<1.8	<0.2	14	1.400	9.3	1.7					
MW-1	7/18/2019	9.35	7104.73	6.0	90	7.1	<0.2	<1	<0.2	90	<1.8										
MW-1	8/29/2019	9.41	7104.67	6.6	173	6.4	<0.2	<1	<0.2	130	<1.8										
MW-1	10/3/2019	10.33	7103.75	6.9	175	4.9	<0.2	<1	<0.2	130	<1.8	<0.2	0.39	0.220	6.1	1.0					

		Denth							•									D's solution			
		Depth To GW	GW Elev. (ft,		Field EC	Temp.	NO3-N	TKN	Ammo nia as	TDS	Total Coliform		Fe	Mn	Na	CI	ORP	Dissolved Oxygen	Lab SC	Са	Mg
Well	Date	(ft)	NAVD88)	Field pH	(μS/cm)	(C)	(mg/L)	(mg/L)	N	(mg/L)		B (mg/L)		(mg/L)	(mg/L)	(mg/L)	(mV)	(mg/L)		(mg/L)	
MW-1	6/11/2020	8.30	7105.78	6.5	109	5.9	<0.2	<1	<0.2	110	<1.8										
MW-1	8/13/2020	8.78	7105.30	6.6	173	5.8	<0.2	<1	<0.2	140	<1.8										
MW-1	10/15/2020	12.16	7101.92	6.7	193	6.0	< 0.2	<1	< 0.2	130	<1.8	<0.2	6.5	0.870	7.3	0.8					
MW-1	6/10/2021	9.07 9.86	7105.01 7104.22	6.6 6.7	170	3.9 7 7	<0.2	<1 <1	<0.2	130 150	<1.8										
MW-1 MW-1	8/12/2021 10/21/2021	9.00 13.52	7104.22	6.7 7.1	203 190	7.7 6.5	<0.2 <0.2	<1 <1	<0.2 <0.2	150 160	2 <1.8	<0.2	18	1.500	11.0	0.8					
MW-1	6/30/2022	9.00	7105.08	6.9	164	5.5	<0.2	<1	<0.2	130	<1.8	SO.2	10	1.000	11.0	0.0					
MW-1	8/31/2022	9.35	7104.73	7.1	183	6.7	<0.2	<1	<0.2	160	<1.8										
MW-1	10/5/2022	11.45	7102.63	7.3	188	6.6	<0.2	<1	<0.2	150	4.5	<0.2	5.2	0.770	7.2	2.1					
MW-2	10/30/2002	12.25	7055.28	6.7			<0.050	NR ¹	<0.4	186	>2400	< 0.10 ^T	79 ^T	1.13 [™]	19.8 ^T	58.0					
MW-2	7/29/2003			7.1	112	9.2	<0.1	1	<0.2	80	6	NR ³	NR ³	NR ³	NR ³	NR ³					
MW-2	11/13/2003	10.95	7056.58	7.7			<0.050*	NR^1	<0.4		2	<0.10 ^T	37 [⊤]	0.82 ^T	5.7^{T}	<1.0					
MW-2	6/22/2004	3.76	7063.77	6.7	70	4.8	<0.050	2	<0.4	82	2	NR ³	0.920	<0.02	NR ³	NR ³					
MW-2	9/1/2004	8.86	7058.67	6.9	68	7.2	<0.050	1	<0.4	90	<2	NR ³	0.590	<0.02	NR ³	NR ³					
MW-2	10/13/2004	17.80	7049.73	6.5	63	11.4	<0.1	10	<1	96	4	0.03	0.020	0.110	3.0	2.2					
MW-2	8/11/2005	3.82	7063.71	6.2	50	11.9	<0.1	2	<1	140	<2	<0.03	0.310	0.040	2.0	<1	11	1.1	54	5.5	1.8
MW-2	9/15/2005	8.00	7059.53	7.1	51	12.3	0.1	2	0.5	130	<2	<0.03	0.680	0.010	3.0	<1	99	NS	56	6.1	2.1
MW-2	10/13/2005	8.35	7059.18	6.8	59	10.0	<0.1	<1	<1	110	30	<0.03	0.280	0.010	3.0	<1	1	9.4	67	6.4	2.2
MW-2	6/29/2006	0.50	7067.03	7.9	45	12.5	<0.1	<1	<1	93	<2	< 0.03	0.100	< 0.01	2.0	<1	133	0.6	48	4.6	1.5
MW-2	8/2/2006	7.24	7060.29	7.8	45	13.1	<0.1	<1	<1	100	<2	< 0.03	0.070	0.060	4.0	<1	37	1.8	53	5.0	1.7
MW-2	10/10/2006	7.30	7060.23	6.8	66	7.9	<0.1	<1	<1	130	<2	< 0.03	0.440	0.020	4.0	2.3	160	7.6	75	8.0	2.8
MW-2	7/12/2007	8.10	7059.43	6.8	41	15.9	<0.1	0.7	<1	43	2	< 0.03	1.200	0.020	3.0	1.1	229	8.5	49	5.5	1.7
MW-2	8/29/2007	8.70	7058.83	7.3	67	16.0	0.1	<1	<1	100	<2	<0.03	0.970	0.040 0.100	3.0	1.9	150	6.4	75	7.8	2.2
MW-2	9/26/2007	10.30	7057.23				0.1			130	2	<0.03 <0.03	0.023	0.015		2.0	-121	0.4 12.0			2.2 1.7
MW-2	7/8/2008	2.90	7064.63	6.7 6.6	54 45	11.0		<1	<1			<0.03 <0.03	0.023 0.450	0.015	3.0		137		65 40	5.2	
				6.6	45	13.8	<0.1	<1	<1	130	220				2.0	<1		4.1	49	5.0	2.0
MW-2	9/18/2008	7.95	7059.58	6.7	115	13.1	0.2	3	<1	86	<2	< 0.03	0.510	0.010	7.0	6.8	764	13.1	99	5.2	1.7
MW-2	10/16/2008		7058.75	7.5	52	18.3	0.2	<0.1	<1	97	2	< 0.03	0.220	0.010	3.0	1.6	214	7.6	56	5.7	1.7
MW-2	7/7/2009	6.30	7061.23	6.9	44	9.4	<0.1	<1	<1	330	2	< 0.03	0.910	0.020	3.0	<0.2	363	8.5	48	6.1	1.8
MW-2	9/30/2009	8.70	7058.83	6.0	59	8.4	<0.1	<1	<1	47	8	<0.03	0.620	0.020	3.0	0.9	85	0.0	61	6.9	1.6
MW-2	10/26/2009	7.85	7059.68	6.1	47	9.0	0.5	<1	<1	54	2200	<0.03	0.520	0.040	3.0	1.8	480	4.2	61	6.8	1.9
MW-2	7/13/2010	0.80	7066.73	6.1	43	9.3	<0.1	<1	<1	61	11	<0.03	0.200	<0.01	2.0	1.4	134	0.3	43	4.7	1.5
MW-2	8/24/2010	8.34	7059.19	6.3	47	9.8	<0.1	<1	<1	90	23	<0.03	<0.02	<0.01	2.0	0.5	136	7.9	47	4.7	1.5
MW-2	11/4/2010	0.70	7066.83	5.8	57	9.5	<0.1	3	<1	49	500	<0.03	0.080	0.010	3.0	1.9	201	4.0	57	6.4	1.8
MW-2	7/21/2011	0.40	7067.13	6.2	42	7.2	<0.1	<1	<1	59	13	<0.03	0.116	0.200	1.8	<0.2	179	0.4	42	4.5	1.4
MW-2	9/8/2011	4.40	7063.13	6.4	56	10.2	<0.1	2	<1	70	2	<0.03	1.540	0.014	2.6	0.6	77	1.7	56	5.3	2.1
MW-2	10/20/2011	3.30	7064.23	6.1	67	10.8	<0.1	1	<1	60	79	<0.03	0.034	<0.01	2.5	1.0	121	2.1	67	6.5	2.0
MW-2	6/26/2012	2.95	7064.58	6.2	40	9.9	<0.1	2	<1	53	<1.8	<0.03	<0.02	<0.01	2.5	0.3	70	0.7	40	6.0	1.9
MW-2	7/31/2012	4.75	7062.78	6.3	74	9.7	<0.2	<1	<1	67	23	<0.03	0.054	<0.01	3.7	0.8	139	0.9	74	8.4	2.7
MW-2	10/9/2012	11.24	7056.29	5.9	100	9.0	<0.2	<1	<1	81	<1.8	<0.03	0.029	0.220	8.6	8.7	691	2.6	100	7.0	2.1
MW-2	5/30/2013	1.00	7066.53	6.1	43	8.3	<0.2	<1	<1	53	4.5	<0.03	<0.02	<0.01	2.1	0.4	150		43	4.3	1.4
MW-2	8/21/2013	7.00	7060.53	5.2	50	11.8	<0.2	<1	<1	160	4.5	< 0.03	0.197	0.168	3.0	0.8	231	2.2	50	5.8	1.8

w	/eli E	Date	Depth To GW (ft)	GW Elev. (ft, NAVD88)	Field pH	Field EC (μS/cm)	Temp. (C)	NO3-N (mg/L)	TKN (mg/L)	Ammo nia as N	TDS (mg/L)	Total Coliform (MPN/100ml)	B (mg/L)	Fe (mg/L)	Mn (mg/L)	Na (mg/L)	CI (mg/L)	ORP (mV)	Dissolved Oxygen (mg/L)	Lab SC (µS/cm)	Ca (mg/L)	Mg (mg/L)
M	N-2 10/1	5/2013	12.41	7055.12	5.6	56	9.6	<0.2	<1	<1	87	4	<0.03	0.044	0.023	3.2	0.7	571	3.1	56	4.9	1.4
M	N-2 6/1	2/2014	1.54	7065.99	5.9	47	7.7	<0.2	<1	<1	65	4.5	<0.03	<0.02	<0.01	2.3	0.3	83	4.1	47	4.5	1.2
M	N-2 8/1	2/2014	7.94	7059.59	6.7	54	11.4	<0.2	<1	<1	85	21	<0.03	<0.02	0.023	2.6	0.3	155	4.1	54	5.5	1.7
M	N-2 10/1	4/2014	10.28	7057.25	5.9	55	10.1	<0.2	<1	<1	120	<1.8	<0.03	0.101	0.115	3.2	0.7	616	2.6	55	7.1	2.1
M	N-2 6/1	7/2015	1.94	7065.59	7.7	47	9.2	<0.2	<1	<1	45	<1.8	<0.03	<0.02	<0.01	2.4	0.3	78	0.4	47	4.8	1.5
M	N-2 9/9	9/2015	10.31	7057.22	6.9	50	11.6	<0.2	<1	<1	70	<1.8	<0.03	<0.03	0.042	2.8	0.6	201	2.7	50	5.1	1.6
M	N-2 11/1	3/2015	8.81	7058.72	6.1	60	12.1	<0.2	<1	<1	90	6.8	<0.03	<0.03	0.023	2.4	0.9	349		60	5.9	1.9
M	N-2 7/7	7/2016	2.29	7065.24	5.7	49	11.2	<0.2	<1	<1	54	<1.8	<0.03	<0.03	<0.01	2.3	0.3			49	5.9	1.5
M	N-2 9/8	3/2016	7.63	7059.90	6.3	70	10.6	<0.1	0.40	<0.1	180	<1.8	<0.03	<0.03	<0.01	2.7	1.3				7.1	2.2
M	N-2 10/2	20/2016	2.04	7065.49	5.8	64.5	10.3	0.2	0.35	0.14	54	170	<0.03	<0.03	<0.01	3.2	2.2				6.9	2.1
M	N-2 7/1	3/2017	1.83	7065.70	7.2	46	10.7	<0.4	<1	<1	54	<1.8	<0.03	0.077	0.160	3.0	0.3			46	7.1	2.0
M	N-2 8/2	4/2017	6.57	7060.96	6.0	57	12.9	<0.4	<1	<1	55	1300	<0.03	<0.03	0.022	2.9	0.6			57	5.2	1.8
M	N-2 9/2	8/2017	8.45	7059.08	5.8	57	12.6	<0.4	1	<1	67	2	<0.03	<0.03	0.041	2.8	0.7			57	6.1	1.8
M	N-2 6/2	8/2018	3.60	7063.93	6.5	77	8.9	<0.2	<1	<0.2	54	<1.8										
M	N-2 8/2	2/2018	8.80	7058.73	5.3	64.7	8.7	<0.2	2.50	<0.2	65	79										
M	N-2 10/1	0/2018	10.57	7056.96	IVS																	
M	N-2 7/1	7/2019	0.60	7066.93	6.3	48.1	11.0	<0.2	<1	<0.2	50	2										
M	N-2 8/2	8/2019	6.22	7061.31	6.3	56.1	11.0	<0.2	<1	<0.2	56	<1.8										
M	N-2 10/2	2/2019	6.63	7060.90	6.3	68.8	11.1	<0.2	<1	<0.02	66	<1.8	<0.2	16	0.170	4.7	1.2					
M	N-2 6/1	0/2020	1.50	7066.03	6.3	44	6.3	<0.2	<1	<0.2	43	6.1										
M	N-2 8/1	2/2020	5.18	7062.35	6.6	68.6	10.8	<0.2	<1	<0.2	12	<1.8										
M	N-2 10/1	4/2020	9.68	7057.85	7.0	75.4	7.7	IVS														
M	N-2 6/9	9/2021	0.91	7066.62	6.6	49.3	6.3	<0.2	<1	<0.2	45	22										
M	N-2 8/1	1/2021	8.08	7059.45	6.4	60.5	11.7	<0.2	<1	<0.2	61	2										
M	N-2 10/2	20/2021	11.21	7056.32	6.6	284	6.8	IVS														
M	N-2 6/2	9/2022	2.13	7065.40	6.5	52.2	8.8	<0.2	<1	<0.2	52	23										
M	N-2 8/2	4/2022	6.55	7060.98	6.4	97	9.8	<0.2	<1	<0.2	81	4										
M	N-2 10/	5/2022	5.90	7061.63	6.4	113.2	9.0	<0.2	<1	<0.2	99	13	<0.2	<0.1	<0.02	3.6	11.0					
M	N-3 10/3	30/2002	6.38	7049.99	6.3			<0.050	NR ¹		256	>2400	< 0.10 ^T	63 ^T	0.92 ^T	32 ^T	74.0					
M	N-3 7/29	9/2003			6.4	98	6.9	0.3	1		60	1600	NR^{3}	NR^3_{-}	NR ³ _	NR ³ _	NR ³					
M	N-3 11/1	3/2003	6.30	7050.07	6.3			0.06*	NR^1			9	<0.10	46 ^T	0.73 ^T	10.7 ¹	8.6					
M		2/2004	2.45	7053.92	6.1	94	4.2	0.52	2		122	9	NR ³	0.650	<0.02	NR ³	NR ³					
		/2004	4.75	7051.62	6.6	100	7.2	0.63	<1.0		124	<2	NR^3	0.380	<0.02	NR^3	NR ³					
		3/2004	6.59	7049.78	6.1	85	8.9	0.3	<1	<1	100	<2	0.04	< 0.02	<0.01	7.0	6.5					. –
		1/2005	3.12	7053.25	6.3	70 79	7.5	0.5	<1	<1	88	2	<0.03	0.040	<0.01	6.0	5.0	59 100	4.4	75 70	6.2	1.7
		5/2005 3/2005	2.97 3.48	7053.40 7052.89	6.1 6.8	78 NM	10.8 10.1	<0.1 0.4	<1 2	<1 <1	82 80	30 9	<0.03 <0.03	0.070 0.030	<0.02 0.040	6.0 7.0	7.7 11	100 84	9.1	70 02	5.9 7.3	1.5 2.2
		9/2005	3.40 2.02	7052.89	6.8 7.6	50	10.1 6.3	0.4 <0.1	2 <1	<1	80 49	9 2	<0.03 <0.03	0.030	0.040 <0.01	7.0 4.0	11 3	84 180	4.4 2.7	92 56	7.3 4.3	2.2 1.2
		2/2006	2.75	7053.62	7.7	88	7.9	0.2	<1	<1		<2	<0.03	<0.02	<0.01 <0.01	4.0 6.0	5	70	3.6	68	4.3 5.4	1.5
		0/2006	3.15	7053.22	6.4	76	8.7	<0.1	2	<1	82	13	< 0.03	< 0.02	<0.01	6.0	7.4	169	2.6	82	6.6	2.0

Depth GW Elev. Ammo To GW (ft, Field EC Temp. NO3-N TKN nia as TDS **Total Coliform** Fe Mn Na Date NAVD88) Field pH (mg/L) Ν (mg/L)(MPN/100ml) B (mg/L) (mg/L) (mg/L) (mg/L)Well (ft) (µS/cm) (C) (mg/L)MW-3 7/12/2007 3.17 7053.20 10.4 < 0.03 0.053 < 0.01 6.2 59 0.2 <1 <1 91 <2 8.0 MW-3 8/29/2007 3.40 7052.97 6.4 89 13.6 < 0.1 <1 <1 71 800 < 0.03 0.024 < 0.01 6.0 MW-3 9/26/2007 5.00 7051.37 5.8 89 10.9 0.1 <1 <1 90 80 < 0.03 < 0.02 < 0.01 7.0 2.50 7053.87 47 72 0.210 < 0.01 6.0 MW-3 7/8/2008 6.4 8.8 0.1 <1 <1 2 < 0.03 9/18/2008 3.85 7052.52 6.0 93 12.8 <1 <1 94 < 0.02 < 0.01 7.0 MW-3 < 0.1 <2 < 0.03 MW-3 10/16/2008 5.54 7050.83 7.0 101 11.6 < 0.1 0.15 <1 94 2 < 0.03 < 0.02 < 0.01 7.0 7/7/2009 2.40 7053.97 6.1 77 6.0 <1 100 < 0.03 0.060 < 0.01 6.0 MW-3 0.5 <1 4 9/30/2009 3.65 7052.72 5.5 106 12.4 <1 <1 100 < 0.03 0.060 < 0.01 8.0 MW-3 <0.1 4 5.7 10.5 0.9 <1 <1 70 22 < 0.01 6.0 MW-3 10/26/2009 4.10 7052.27 61 < 0.03 0.100 7/13/2010 7054.27 < 0.01 MW-3 2.10 6.1 58 3.8 < 0.1 <1 <1 60 8 < 0.03 0.030 5.0 2.65 <1 <1 87 < 0.02 7.0 MW-3 8/24/2010 7053.72 5.8 79 11.8 < 0.1 2 < 0.03 < 0.01 11/4/2010 105 3.00 <1 92 800 0.020 < 0.01 8.0 MW-3 2.10 7054.27 5.6 9.8 < 0.1 < 0.03 MW-3 7/21/2011 0.90 7055.47 6.2 52 3.6 < 0.1 <1 <1 56 34 < 0.03 < 0.02 < 0.01 3.8 71 9.5 2.00 <1 62 5.3 MW-3 9/8/2011 2.45 7053.92 6.1 <0.1 2 < 0.03 <0.02 < 0.01 7054.23 8.2 68 5.5 MW-3 10/20/2011 2.14 6.1 76 1.00 <1 130 < 0.03 0.032 < 0.01 < 0.1 MW-3 6/26/2012 2.35 7054.02 6.0 48 6.3 <0.1 <1 <1 64 <1.8 < 0.03 < 0.02 < 0.01 6.4 7053.51 MW-3 7/31/2012 2.86 6.0 89 12.1 < 0.2 <1 <1 69 <1.8 < 0.03 0.330 0.029 6.1 72 10/9/2012 5.98 7050.39 5.7 85 9.4 <1 0.067 0.017 6.2 MW-3 <0.2 <1 <1.8 < 0.03 5/30/2013 2.20 7054.17 5.9 54 7.0 <0.2 <1 <1 60 < 0.03 0.039 0.031 4.7 MW-3 6.8 MW-3 8/21/2013 4.90 7051.47 4.2 73 9.3 <0.2 <1 <1 68 <1.8 < 0.03 0.042 0.017 5.3 7050.26 5.4 76 9.4 <1 <1 79 < 0.02 6.1 MW-3 10/15/2013 6.11 < 0.2 <1.8 < 0.03 < 0.01 6/12/2014 2.33 7054.04 5.7 61 <1 <1 65 < 0.02 < 0.01 5.3 MW-3 5.2 <0.2 6.8 < 0.03 MW-3 8/12/2014 4.62 7051.75 5.6 62 10.5 0.3 <1 <1 69 9.3 < 0.03 0.072 0.033 5.8 7.12 7049.25 5.5 10/14/2014 70 9.1 <0.2 <1 <1 64 0.052 0.011 6.4 MW-3 <1.8 < 0.03 6/17/2015 7054.39 7.8 6.7 <1 <1 63 < 0.02 5.2 MW-3 1.98 68 0.3 <1.8 < 0.03 < 0.01 MW-3 9/9/2015 4.87 7051.50 7.4 67 9.0 <0.2 <1 <1 75 7.8 < 0.03 < 0.03 < 0.01 5.5 5.78 7050.59 6.0 68 <1 <1 67 5.1 MW-3 11/13/2015 10.6 < 0.2 <1.8 < 0.03 < 0.03 < 0.01 7/7/2016 7054.29 <1 69 < 0.03 0.022 MW-3 2.08 5.7 68 5.7 <0.2 <1 <1.8 < 0.03 4.9 4.62 7051.75 5.5 87 <0.1 0.041 5.4 MW-3 9/8/2016 12.7 <0.1 0.35 66 230 < 0.03 < 0.03 10/20/2016 2.37 7054.00 88 6.1 MW-3 5.8 9.1 < 0.1 0.35 < 0.1 71 <1.8 < 0.03 < 0.03 < 0.01 7/13/2017 2.19 7054.18 7.6 68 <1 60 < 0.03 < 0.01 4.9 MW-3 4.6 <0.4 <1 2 < 0.03 MW-3 8/24/2017 2.82 7053.55 6.0 79 11.7 <1 <1 67 5.3 <0.4 330 < 0.03 < 0.03 < 0.01 2 MW-3 9/28/2017 3.53 7052.84 5.5 79 12.0 < 0.4 <1 71 7.8 < 0.03 < 0.03 < 0.01 5.0 <0.2 82 MW-3 6/28/2018 2.20 7054.17 6.1 117 5.4 <0.2 <1 <1.8 <1 59 MW-3 8/22/2018 4.30 7052.07 6.2 74 10.2 <0.2 <0.2 4.5 73 6.54 <1 MW-3 10/10/2018 7049.83 6.1 81.4 7.2 < 0.2 < 0.2 <1.8 <0.2 0.96 0.021 6.2 7/17/2019 7054.57 6.2 80.5 5.5 <0.2 <1 <0.2 56 7.8 MW-3 1.80 <1 60 MW-3 8/28/2019 2.91 7053.46 6.1 84.1 8.5 <0.2 < 0.2 2 <1 MW-3 10/2/2019 4.01 7052.36 5.9 84 10.9 <0.2 < 0.2 61 <1.8 <0.2 1.3 0.025 6.0 MW-3 6/10/2020 0.20 7056.17 6.2 64.1 6.4 <0.2 <1 <0.2 48 <1.8 MW-3 8/12/2020 3.11 7053.26 6.2 87.5 10.7 <0.2 <1 <0.2 63 <1.8 MW-3 10/14/2020 5.90 7050.47 6.6 80.3 9 <1 < 0.2 81 <1.8 <0.2 <0.1 < 0.02 5.4 < 0.2 6.2 <1 52 13 MW-3 6/9/2021 1.80 7054.57 6.3 73.9 <0.2 <0.2 MW-3 8/11/2021 4.72 7051.65 6.2 80.5 9.2 <0.2 <1 <0.2 65 2 7049.2 7.3 <1 < 0.2 73 <1.8 0.79 < 0.02 5.6 MW-3 10/20/2021 7.17 6.3 82.1 <0.2 < 0.2 MW-3 6/29/2022 1.85 7054.52 6.4 74.2 5.7 < 0.2 <1 < 0.2 61 <1.8 MW-3 8/24/2022 3.60 7052.77 6.0 107.6 12.8 <0.2 <1 <0.2 87 <1.8

		Dissolved			
CI	ORP	Oxygen	Lab SC	Са	Mg
(mg/L)	(mV)	(mg/L)	(µS/cm)	(mg/L)	(mg/L)
4.3	249	4.2	66	5.9	1.6
11.0	176	4.5	97	7.5	1.8
11.0	-109	7.8	96	7.5	2.1
5.3	218	2.5	66	5.0	2.0
13.0	681	3.9	97	6.8	1.9
16.0	109	5.1	110	10.0	2.7
11.0	680	1.4	81	7.1	1.9
12.0	211	1.7	110	9.3	2.0
8.6	239	6.1	77	4.9	1.4
3.6	116	1.8	58	3.8	0.6
6.1	153	0.8	79	6.3	1.8
12.0	157	0.7	110	8.5	2.2
2.4	113	2.3	52	3.9	1.0
3.1	122	0.5	71	5.1	1.6
3.7	123	0.9	76	5.7	1.5
3.8	84	0.4	48	6.1	1.7
6.3	157	0.0	89	7.7	2.0
5.3	436	1.2	85	6.5	1.8
3.4	147		54	4.3	1.2
5.0	359	1.6	73	5.2	1.4
4.8	588	2.2	76	6.2	1.5
3.9	66	0.6	61	4.5	1.0
7.3	224	2.8	62	5.5	1.4
4.5	187	0.1	70	5.7	1.5
4.1	197	4.6	68	5.5	1.4
3.8	164	3.3	67	5.1	1.4
4.1	243		68	5.3	1.5
5.3			68	6.1	1.5
9.6				7.4	1.9
9.9				7.4	2.0
4.5			68	5.3	1.4
4.3			79	6.0	1.8
3.1			79	6.8	1.8

4.5

4.8

5.8

6.3

Well	Date	Depth To GW (ft)	GW Elev. (ft, NAVD88)	Field pH	(µS/cm)	Temp. (C)	NO3-N (mg/L)	TKN (mg/L)	Ammo nia as N	TDS (mg/L)	Total Coliform (MPN/100ml)	B (mg/L)	Fe (mg/L)	Mn (mg/L)	Na (mg/L)	CI (mg/L)	ORP (mV)	Dissolved Oxygen (mg/L)	Lab SC (µS/cm)	Ca (mg/L)	Mg (mg/L)
MW-3	10/5/2022	4.60	7051.77	6.2	102.9	10.3	<1	<1	<0.2	96	17	<0.2	<0.1	<0.02	6.2	14.0					
MW-4	10/30/2002	4.30	7050.49	7.0			<0.050	NR ¹		294	900	<0.10 ^T	370 ^T	14.8 ^T	42 ^T	44.0					
MW-4	7/29/2003			7.2	231	6.0	<0.1	<0.5		170	240	NR^3	NR^3	NR^3	NR ³	NR^3					
MW-4	11/13/2003	3.96	7050.83	7.2			0.05*	NR^1			<2	<0.10 ^T	49 [⊤]	2.06 ^T	10.5^{T}	5.5					
MW-4	6/22/2004	2.88	7051.91	6.8	254	4.7	0.05	<1.0		172	<2	NR ³	0.110	0.080	NR ³	NR ³					
MW-4	9/1/2004	12.95	7041.84	6.4	278	7.3	<0.050	<1.0		167	<2	NR ³	0.170	0.190	NR ³	NR ³					
MW-4	10/13/2004	4.38	7050.41	6.8	230	8.8	<0.1	<1	<1	150	<2	0.03	<0.02	0.580	9.0	6.9					
MW-4	8/11/2005	3.22	7051.57	6.7	210	7.0	<0.1	<1	<1	170	<2	<0.03	0.110	0.050	9.0	6.1	34	1.3	220	25.0	8.6
MW-4	9/15/2005	3.10	7051.69	6.7	230	7.0	0.1	<1	<1	180	<2	<0.03	<0.02	0.390	10.0	7.5	112	1.1	240	26.0	8.8
MW-4	10/13/2005	3.20	7051.59	7.3	25	7.5	0.2	1	<1	160	<2	<0.03	0.760	1.300	10.0	8.4	8	9.6	260	28.0	9.2
MW-4	6/29/2006	2.65	7052.14	7.2	193	5.0	0.1	<1	<1	130	<2	<0.03	0.020	0.030	8.0	4.8	165	1.5	200	22.0	7.4
MW-4	8/2/2006	3.08	7051.71	8.3	186	8.2	<0.1	<1	<1	150	<2	<0.03	<0.02	0.030	9.0	5.9	94	0.7	200	22.0	7.4
MW-4	10/10/2006	3.00	7051.79	6.9	205	6.9	<0.1	1	<1	160	2	<0.03	<0.02	0.050	10.0	6.1	101	1.5	210	24.0	7.9
MW-4	7/12/2007	3.70	7051.09	7.2	180	10.0	<0.1	0.1	<1	180	<2	<0.03	0.031	0.059	10.0	6.3	213	1.6	200	24.0	7.5
MW-4	8/29/2007	3.30	7051.49	7.0	187	10.1	<0.1	<1	<1	140	<2	<0.03	0.160	0.073	8.0	6.7	127	6.6	200	22.0	7.3
MW-4	9/26/2007	3.60	7051.19	6.8	191	9.5	<0.1	<1	<1	140	<2	<0.03	0.067	0.067	9.0	6.4	-106	9.4	210	21.0	7.0
MW-4	7/8/2008	3.00	7051.79	6.9	203	8.2	<0.1	<1	<1	180	<2	<0.03	0.060	0.030	8.0	6.6	216	1.1	220	24.0	8.0
MW-4	9/18/2008	3.49	7051.30	7.0	196	9.5	<0.1	<1	<1	160	<2	<0.03	<0.02	<0.01	9.0	6.3	476	2.4	210	20.0	6.5
MW-4	10/16/2008	3.75	7051.04	7.7	191	9.5	<0.1	<0.1	<1	170	2	<0.03	0.020	<0.01	9.0	6.3	133	6.2	210	22.0	7.2
MW-4	7/7/2009	3.35	7051.44	7.0	207	7.3	0.4	2	<1	210	<2	<0.03	0.040	0.040	9.0	6.6	476	5.6	220	25.0	8.2
MW-4	9/30/2009	3.30	7051.49	4.5	199	8.1	<0.1	<1	<1	160	<2	<0.03	0.080	<0.01	9.0	7.2	243	3.9	200	23.0	7.0
MW-4	10/26/2009	3.35	7051.44	6.2	188	8.6	0.3	<1	<1	220	1300	<0.03	0.030	0.260	9.0	8.2	300	4.7	240	25.0	7.5
MW-4	7/13/2010	2.50	7052.29	6.6	227	5.5	<0.1	<1	<1	150	2	< 0.03	0.030	<0.01	9.0	6.9	105	0.6	230	25.0	8.3
MW-4	8/24/2010	3.03	7051.76	6.4	228	6.9	<0.1	<1	<1	180	<2	< 0.03	<0.02	0.040	9.0	7.1	83	0.2	230	23.0	7.6
MW-4	11/4/2010	2.15	7052.64	6.5	194	7.8	<0.1	<1	<1	140	50	< 0.03	< 0.02	0.040	8.0	6.9	172	0.1	190	21.0	6.5
MW-4	7/21/2011	1.60	7053.19	6.9	208	5.3	<0.1	<1	<1	160	<2	< 0.03	< 0.02	< 0.01	7.4	4.8	104	0.4	210	21.0	7.1
MW-4	9/8/2011	2.85	7051.94	6.9	215	6.6	< 0.1	1	<1	150	<2	< 0.03	< 0.02	0.019	7.8	6.2	84	0.2	220	18.4	7.2
MW-4	10/20/2011	2.30	7052.49	7.0	191	7.3	<0.1	<1	<1	140	2	< 0.03	< 0.02	0.079	7.4	6.1	88	0.2	190	17.4	5.8
MW-4	6/26/2012	2.55	7052.24	8.0	125	6.4	<0.1	<1	<1	130	<1.8	< 0.03	< 0.02	0.022	9.5	20.0	94	0.4	130	22.2	7.5
MW-4	7/31/2012		7051.79	6.6	204	6.9	< 0.2	2	<1	150	6.8	< 0.03	< 0.02	0.012	8.6	6.4	86	0.1	200	22.4	7.0
MW-4	10/9/2012	4.30	7050.49	5.8	191	8.1	<0.2	<1	<1	140	<1.8	< 0.03	0.020	0.046	8.3	6.4	357	1.0	190	18.2	5.9
MW-4	5/30/2013	2.30	7052.49	6.4 6.5	210	6.1	<0.2	<1	<1 ~1	150	<1.8	<0.03	<0.02 <0.02	0.027	7.7	6.9	109		210	20.8	7.2
MW-4	8/21/2013	3.30	7051.49	6.5 6.6	200	8.2	<0.2	<1	<1 ~1	140 150	<1.8	<0.03	<0.02 <0.02	0.030	7.5	6.8	448 552	0.4	200	18.8	6.3
MW-4 MW-4	10/15/2013 6/12/2014	4.31 2.66	7050.48 7052.13	6.6 5.6	200	8.9 6.1	<0.2 <0.2	<1 <1	<1 <1	150 160	<1.8 <1.8	<0.03 <0.03	<0.02 <0.02	0.014 <0.01	8.2 8.5	6.8 7.3	553 129	0.5	200	21.8	6.5
MW-4	8/12/2014	2.00 3.57	7052.13	5.6	227 208	6.1 7.0	<0.2 <0.2	<1	<1	160	<1.8	< 0.03	<0.02 0.026	0.01	8.5 8.5	7.3 6.8	213	0.3 0.1	230 210	23.1 21.8	8.2
MW-4	10/14/2014	4.69	7051.22	6.9 6.7	208	7.9 9.0	<0.2 <0.2	<1	<1	130	<1.8	< 0.03	<0.020	0.009	8.5 7.7	6.8	574	0.1	200	18.9	6.9 6.8
MW-4	6/17/2015	2.41	7052.38	7.1	217	3.0 7.1	<0.2	<1	<1	140	<1.8	< 0.03	<0.02 <0.02	<0.003	7.7	6.9	-7	0.1	200	20.7	7.0
MW-4	9/9/2015	3.72	7052.38	6.7	203	9.1	<0.2 <0.2	<1	<1	140	2	<0.03 0.034	<0.02 <0.03	<0.01 0.024	8.2	6.8	-7 109	0.1	220	20.7	6.6
MW-4	11/13/2015	3.16	7051.63	6.8	189	8.9	<0.2	<1	<1	130	<1.8	< 0.034	<0.03 <0.03	<0.024 <0.01	8.2	0.0 7.7	253		190	18.4	5.7
MW-4	7/7/2016	2.82	7051.97	6.1	215	9.0	<0.2	<1	<1	150	<1.8	< 0.03	<0.03 <0.03	<0.01 0.014	8.1	6.2			220	22.6	7.2
MW-4	9/8/2016	3.58	7051.21	5.4	213	9.0 8.8	<0.2 <0.1	0.66	<0.1	180	<1.8	< 0.03	<0.03 <0.03	0.014	8.2	6.7				20.9	6.7
MW-4	10/20/2016	2.29	7052.50	6.1	169	8.5	0.17	0.00	<0.1	120	230	<0.03	<0.03	<0.01	7.3	5.5				18.4	5.9
MW-4	7/13/2017	2.36	7052.43	7.8	197	6.3	<0.4	<1	<1	140	<1.8	< 0.03	<0.03	<0.01	7.9	4.0			200	19.4	6.5
MW-4	8/24/2017	2.82	7051.97	7.3	199	7.9	<0.4	<1	<1	140	490	<0.03	<0.03	<0.01	8.0	5.2			200	17.2	6.5

		Denth							A									Disashaad			
		Depth To GW	GW Elev.		Field EC	Temp.	NO3-N	TKN	Ammo nia as	TDS	Total Coliform		Fe	Mn	Na	СІ	ORP	Dissolved Oxygen	Lab SC	Ca	Ма
Well	Date	(ft)	(ft, NAVD88)	Field pH	(μS/cm)	(C)	(mg/L)	(mg/L)	N	(mg/L)	(MPN/100ml)	B (mg/L)		(mg/L)	(mg/L)	(mg/L)	(mV)	(mg/L)	(μS/cm)	Ca (mg/L)	Mg (mg/L)
MW-4	9/28/2017	3.02	7051.77	6.0	201	9.4	<0.4	<1 <1	<1	140	13	<0.03	< 0.03	0.288	8.0	5.9			200	20.6	6.3
MW-4	6/28/2018	2.60	7052.19	6.9	289	6.0	<0.2	<1	<0.2	206	<1.8										
MW-4	8/22/2018	3.45	7051.34	7.2	407	7.3	<0.2	<1	<0.2	140	<1.8										
MW-4	10/10/2018	4.41	7050.38	6.8	205	6.9	3	<1	<0.2	150	<1.8	<0.2	1.4	0.086	8.2	7.0					
MW-4	7/17/2019	2.50	7052.29	6.7	227	6.0	<0.2	<1	<0.2	140	<1.8										
MW-4	8/28/2019	3.15	7051.64	6.7	211	8.0	<0.2	<1	<0.2	140	<1.8										
MW-4	10/2/2019	3.15	7051.64	6.7	232	7.1	<0.2	<1	<0.02	130	<1.8	<0.2	0.21	<0.02	8.3	7.1					
MW-4	6/10/2020	1.80	7052.99	7.1	224	6.2	<0.2	<1	<0.2	130	<1.8										
MW-4	8/12/2020	3.13	7051.66	6.8	223	8.3	<0.2	<1	<0.2	100	<1.8										
MW-4	10/14/2020	4.07	7050.72	6.9	215	7.9	<0.2	<1	<0.2	140	<1.8	<0.2	3.1	0.120	9.0	6.3					
MW-4	6/9/2021	2.42	7052.37	6.9	231	5.4	<0.2	<1	<0.2	140	<1.8										
MW-4	8/11/2021	3.68	7051.11	6.7	206	7.7	<0.2	<1	<0.2	130	<1.8										
MW-4	10/20/2021	4.92	7049.87	6.6	201	7.2	<0.2	<1	<0.2	130	<1.8	<0.2	<0.1	<0.02	7.9	6.4					
MW-4	6/29/2022	2.55	7052.24	7.0	197	6.3	<0.2	<1	<0.2	140	<1.8			-							
MW-4	8/24/2022	3.20	7053.17	6.9	195.7	7.5	<0.2	<1	<0.2	130	6.8										
MW-4	10/5/2022	3.40	7052.97	6.9	191.2	8.1	<0.2	<1	<0.2	140	4.5	<0.2	0.54	0.069	8.7	6.5					
MW-5	9/1/2004	12.95	7190.83	6.6	307	6.4	0.064	<1.0		276	80	NR ³	1.280	0.200	NR ³	NR ³					
MW-5	10/13/2004	13.74	7190.04	6.2	230	8.9	<0.1	2	<1	340	500	0.08	<0.02	0.230	18.0	28.0					
MW-5	8/11/2005	11.74	7192.04	6.3	110	15.7	<0.1	2	<1	180	2	<0.03	0.620	0.060	6.0	5.5	51	4.2	120	1.0	4.4
MW-5	9/15/2005	12.50	7191.28	7.0	170	11.2	0.1	<1	<1	170	<2	<0.03	0.750	0.130	7.0	5.8	41	NS	120	12.0	4.6
MW-5	10/13/2005	9.27	7194.51	6.5	103	8.8	0.2	<1	<1	120	11	<0.03	0.210	0.040	6.0	8.5	133	8.5	110	8.9	3.9
MW-5	6/29/2006	12.50	7191.28	7.6	71	14.7	<0.1	<1	<1	120	<2	<0.03	0.280	0.050	4.0	4.1	159	6.5	81	5.8	2.5
MW-5	8/2/2006	11.49	7192.29	8.4	34	19.8	<0.1	<1	<1	120	<2	<0.03	0.090	0.040	8.0	8.0	98	5.0	98	6.4	2.5
MW-5	10/11/2006	11.89	7191.89	5.8	93	8.4	<0.1	1	<1	170	2	<0.03	0.540	0.060	6.0	3.6	186	5.7	110	12.0	4.6
MW-5	7/12/2007	13.10	7190.68	6.1	142	13.9											226	NS			
MW-5	8/29/2007	13.50	7190.28	ed dry befo	re sampling																
MW-5	9/26/2007	13.70	7190.08	6.7	88	11.6											-87	8.9			
MW-5	7/8/2008	13.00	7190.78	7.3	104	15.1											136	NS			
MW-5	9/18/2008	13.80	7189.98	ed dry befo	re sampling																
MW-5	10/16/2008	13.95		-	re sampling																
MW-5	7/7/2009	12.80	7190.98	6.7	214	11.0	0.3	<1	<1	230	<2	<0.03	0.430	0.100	10.0	4.8	818	8.1	130	11.0	3.8
MW-5	9/30/2009	13.30	7190.48	6.3	109	8.6	0.4	NS	NS	NS	NS	0.23	<0.02	0.050	22.0	5.3	141	4.6	130	9.9	3.4
MW-5	10/26/2009	13.25			re sampling																
MW-5	7/13/2010	11.50	7192.28	6.0	94	8.0	<0.1	<1	<1	200	2	<0.03	0.270	0.060	5.0	5.1	158	2.5	94	8.0	2.7
MW-5	8/24/2010	12.52	7191.26	6.7	95	11.0	<0.1	<1	<1	170	2	< 0.03	< 0.02	0.020	5.0	4.8	129	7.1	95	7.9	3.3
MW-5	11/4/2010	12.15	7191.63	6.1	98	7.4	<0.1	<1	<1	84	23	0.06	< 0.02	0.020	6.0	5.5	209	6.5	98	7.5	3.0
MW-5	7/21/2011	9.15	7194.63	4.9	74	5.7	<0.1	<1	<1	100	4	< 0.03	0.121	0.072	4.1	3.6	115	4.4	74	5.9	2.3
MW-5	9/8/2011	12.50	7191.28	6.5	101	8.0	<0.1	1	<1	150	<2	< 0.03	2.400	0.056	5.1	4.0	102	5.7	100	8.2	4.0
MW-5	10/20/2011	11.58	7192.20	6.0	95	7.0	<0.1	<1	<1	150	4.5	< 0.03	0.216	0.012	4.1	4.5	157	4.5	95	8.1	3.0
MW-5	6/26/2012	12.70	7191.08	6.9	26	7.1	0.1	<1	<1	130	IVS	0.074	0.039	0.054	6.9	8.2	58	15.3	120	9.5	3.9
MW-5	7/31/2012	11.87	7191.91	6.3	106	9.7	<0.2	<1	<1	120	<1.8	< 0.03	< 0.02	0.037	4.8	4.7	231	5.3	110	10.2	3.7
MW-5	10/9/2012	14.64			re sampling				-												
MW-5	5/30/2013	13.20	7190.58	6.0	85	9.9	<0.2	<1	<1	140	IVS	<0.03	0.151	0.049	4.8	4.7	390		85	6.6	2.7
MW-5	8/21/2013	12.99	7190.79	6.0	40	21.8	<0.2	<1	<1	110	<1.8	< 0.03	0.074	0.016	3.9	5.1	702	6.2	40	6.2	2.3
MW-5	10/15/2013	14.06	7189.72	8.1	91	10.2	<0.2	<1	<1	160	<1.8	< 0.03	< 0.02	< 0.01	10.1	11.0	694	11.6	91	6.8	2.6
MW-5	6/12/2014	13.11	7190.67	5.8	80	11.3	<0.2	<1	<1	240	<1.8	< 0.03	0.046	< 0.01	4.3	5.1	692	7.8	80	6.9	3.0
	5, 1 <i>L</i> /L017			0.0			5.2			_ 10	1.0	0.00	0.010	0.01		0.1	002			0.0	0.0

Well	Date	Depth To GW (ft)	• •	Field pH	Field EC (μS/cm)	Temp. (C)	NO3-N (mg/L)	TKN (mg/L)	Ammo nia as N	TDS (mg/L)	Total Coliform (MPN/100ml)	B (mg/L)	Fe (mg/L)	Mn (mg/L)	Na (mg/L)	CI (mg/L)	ORP (mV)	Dissolved Oxygen (mg/L)	Lab SC (μS/cm)	Ca (mg/L)	Mg (mg/L)
 MW-5	8/12/2014	13.01	7190.77	5.6	111	3.3	<0.2	<1	<1	120	14	<0.03	0.284	0.063	5.4	6.0	279	3.3	110	10.1	3.9
MW-5	10/14/2014	14.23		ed dry befor	re sampling																
MW-5	6/17/2015	13.19	7190.59	4.5	106	11.7	<0.2	<1	<1	150	<1.8	0.041	<0.02	0.137	4.8	6.4	418.2	6.9	110	8.7	3.5
MW-5	9/9/2015	12.44	7191.34	7.0	108	11.8	<0.2	<1	<1	220	IVS	<0.03	<0.03	0.078	5.5	6.8	675.4	5.4	110	9.6	3.9
MW-5	11/12/2015	13.23	7190.55	6.6	108	7.7	<0.2	<1	<1	220	IVS	<0.03	<0.03	0.071	4.2	6.7	200.1		110	9.5	3.7
MW-5	7/7/2016	12.05	7191.73	5.6	110	9.3	<0.2	<1	<1	130	<1.8	<0.03	<0.03	0.034	6.5	6.3			110	15.5	5.1
MW-5	9/8/2016	13.26	7190.52	7.0	121	11.3													IVS		
MW-5	10/20/2016	12.56		would not p	•																
MW-5	7/13/2017	13.24	7190.54	•	•																
MW-5	8/24/2017	12.83	7190.95	6.0	111	10.4	<0.4	<2	<2	120	79	<0.03	0.1	0.074	5.4	5.3			110	8.0	3.4
MW-5	9/28/2017	13.64	7190.14	6.9	108	6.7	<0.4	2	<1	120	2	<0.03	<0.03	0.059	4.9	5.2			110	8.6	3.3
MW-5	6/29/2018	10.70	7193.08	6.1	145	5.6	<0.2	<1	<0.2	103	<1.8										
MW-5	8/23/2018	13.13	7190.65	6.4	259	6.6	pumped dry														
MW-5	10/10/2018	13.96	7189.82	IVS																	
MW-5	7/18/2019	12.25	7191.53	5.9	97	7.4	<0.2	<1	<0.2	95	<1.8										
MW-5	8/29/2019	12.61	7191.17	6.2	372	7.5	pumped dry														
MW-5	10/3/2019	13.41	7190.37	IVS																	
MW-5	6/11/2020	11.68	7192.10	6.4	93	6.4	pumped dry														
MW-5	8/13/2020	12.63	7191.15	6.0	137	7.0	pumped dry														
MW-5	10/15/2020	14.11	7189.67	6.2	153	8.3	IVS														
MW-5	6/10/2021	12.33	7191.45	6.1	3	5.6	IVS														
MW-5	8/12/2021	13.15	7190.63	6.1	175	8.6	IVS														
MW-5	10/21/2021	14.37	7189.41	6.7	289	7.5	IVS														
MW-5	6/30/2022	12.10	7191.68	6.3	103	6.7	IVS														
MW-5	8/31/2022	11.80	7191.98	6.3	201	8.8	IVS														
MW-5	10/12/2022	13.45	7190.33	6.9	928	7.8	IVS														
								4					_	_							
MW-6	10/30/2002	6.45	7053.04	6.6			<0.050	NR^1		376	240	<0.10	335 ^T	6.89'	36'	59.0					
MW-6	7/29/2003			7.1	457	7.5	<0.1	<0.5		260	<2	NR^{3}	NR ³	NR^3	NR^3	NR^3					
MW-6	11/13/2003	6.17	7053.32	7.0			<0.050*	NR^1			<2	<0.10 ^T	132 [⊤]	4.78 [⊤]	18.5 [⊤]	6.9					
MW-6	6/22/2004	2.14	7057.35	7.1	508	4.5	<0.05	<1.0		280	<2	NR ³	0.210	1.760	NR ³	NR ³					
MW-6	9/1/2004	5.43	7054.06	6.8	479	6.5	<0.050	<1.0		297	<2	NR ³	0.390	2.190	NR ³	NR ³					
MW-6	10/13/2004	6.39	7053.10	7.1	470	7.5	<0.1	<1	<1	320	<2	0.03	< 0.02	2.100	16.0	6.6					
MW-6	8/11/2005	3.21	7056.28	6.9	470	6.9	<0.1	<1	<1	300	<2	< 0.03	0.650	2.400	17.0	7.0	14	1.5	500	71.0	16.0
MW-6	9/15/2005	4.71	7054.78	6.7	440	7.0	0.2	1	<1	290	<2	< 0.03	0.340	2.200	17.0	7.1	41	<0.2	460	66.0	15.0
MW-6	10/13/2005	5.15	7054.34	7.1	450	7.3	0.2	- <1	<1	290	2	< 0.03	0.530	2.200	16.0	7.0	10	8.8	470	62.0	14.0
MW-6	6/29/2006	1.11	7058.38	7.5	431	7.6	<0.1	<1	<1	270	<2	< 0.03	0.290	2.100	15.0	7.4	25	0.6	450	62.0	14.0
MW-6	8/2/2006	3.63	7055.86	7.6	417	8.6	<0.1	<1	<1	280	<2	< 0.03	0.300	2.100	16.0	6.7	-38	0.5	460	62.0	14.0
MW-6	10/10/2006	5.60	7053.89	7.3	476	7.1	<0.1	<1	<1	300	<2	< 0.03	0.310	2.400	17.0	6.7	-12	2.5	500	70.0	15.0
MW-6	7/12/2007	4.40	7055.09	7.1	434	8.0	<0.1	<1	<1	370	<2	< 0.03	0.300	2.400	17.0	6.3	52	2.3	460	68.0	15.0
MW-6	8/29/2007	5.90	7053.59	7.1	461	8.8	<0.1	<1	<1	280	50	< 0.03	0.430	2.600	17.0	7.4	45	4.5	490	69.0	15.0
MW-6	9/26/2007	6.70	7052.79	6.9	473	8.4	<0.1	<1	<1	280	4	< 0.03	0.520	2.500	16.0	7.2	-123	9.9	500	65.0	15.0
MW-6	7/8/2008	3.00	7056.49	7.0	473	8.1	<0.1	<1	<1	330	<2	< 0.03	0.450	2.300	15.0	6.9	21	3.1	500	67.0	16.0
								<1	<1											69.0	16.0
																				70.0	16.0
						7.3		<1	<1	370	<2	< 0.03								71.0	16.0
MW-6 MW-6 MW-6	9/18/2008 10/16/2008 7/7/2009	6.13 6.85 2.70	7053.36 7052.64 7056.79	7.1 7.3 7.2	490 481 490	8.1 7.1 7.3	<0.1 <0.1 <0.1	<0.1	<1	390 320	<2 <2	<0.03 <0.03 <0.03	0.220 0.580 0.900	2.400 2.700 2.800	17.0 16.0 16.0	6.7 7.0 7.1	78 18 232	2.7 8.3 2.0	510 510 500	69. 70.	.0 .0

Well	Date	To GW (ft)	GW Elev. (ft, NAVD88)	Field pH	Field EC (μS/cm)	Temp. (C)	NO3-N (mg/L)	TKN (mg/L)	Ammo nia as N	TDS (mg/L)	Total Coliform (MPN/100ml)	B (mg/L)	Fe (mg/L)	Mn (mg/L)	Na (mg/L)	Cl (mg/L)	ORP (mV)	Dissolved Oxygen (mg/L)	Lab SC (μS/cm)	Ca (mg/L)	Mg (mg/L)
MW-6	9/30/2009	6.50	7052.99	6.8	464	7.3	<0.1	<1	<1	320	<2	<0.03	0.630	2.900	16.0	7.3	-32	1.8	510	71.0	15.0
MW-6	10/26/2009	5.40	7054.09	6.7	389	7.1	<0.1	<1	<1	320	<2	<0.03	1.000	2.700	16.0	7.2	24	0.3	520	68.0	15.0
MW-6	7/13/2010	1.70	7057.79	6.8	485	5.5	<0.1	<1	<1	310	2	<0.03	0.620	2.600	16.0	7.0	-98	0.5	490	66.0	15.0
MW-6	8/24/2010	4.66	7054.83	6.7	497	6.3	<0.1	<1	<1	430	<2	<0.03	<0.02	2.700	19.0	6.4	-25	0.3	500	64.0	15.0
MW-6	11/4/2010	1.05	7058.44	6.5	479	6.9	<0.1	<1	<1	330	<2	<0.03	0.710	3.100	15.0	6.3	-22	0.4	480	63.0	14.0
MW-6	7/21/2011	0.70	7058.79	7.0	492	5.5	<0.1	<1	<1	320	<2	<0.03	0.582	2.160	15.7	6.6	43	0.3	490	55.1	14.0
MW-6	9/8/2011	4.33	7055.16	7.0	507	6.3	<0.1	<1	<1	280	<2	<0.03	0.616	2.530	13.6	6.1	-38	0.4	510	57.3	15.8
MW-6	10/20/2011	1.86	7057.63	6.6	416	6.5	<0.1	<1	<1	250	6.8	<0.03	0.793	2.380	13.5	4.0	17	0.7	420	43.8	11.9
MW-6	6/26/2012	2.60	7056.89	6.8	310	5.2	<0.1	<1	<1	300	<1.8	<0.03	0.724	4.090	15.6	6.2	62	1.1	310	66.8	16.8
MW-6	7/31/2012	4.65	7054.84	6.8	516	6.4	<0.2	<1	<1	310	4.5	<0.03	0.493	2.920	15.1	6.1	29	0.1	520	65.1	15.2
MW-6	10/9/2012	7.80	7051.69	6.7	525	6.7	<0.2	<1	<1	340	<1.8	<0.03	0.812	2.280	15.0	6.4	28	1.3	530	60.9	15.3
MW-6	5/30/2013	6.48	7053.01	6.5	375	6.2	<0.2	<1	<1	250	<1.8	<0.03	0.107	2.070	12.3	4.7	-3		380	44.0	10.6
MW-6	8/21/2013	5.10	7054.39	6.5	469	8.5	<0.2	<1	<1	270	<1.8	<0.03	0.644	2.700	13.9	6.1	18	0.5	470	54.2	13.4
MW-6	10/15/2013	6.71	7052.78	6.3	523	7.5	<0.2	<1	<1	310	2	<0.03	0.698	2.700	16.2	6.4	52	0.8	520	76.4	16.2
MW-6	6/12/2014	2.60	7056.89	5.9	455	5.9	<0.2	<1	<1	310	<1.8	<0.03	0.521	2.780	14.7	6.2	7	0.4	490	62.1	15.4
MW-6	8/12/2014	4.90	7054.59	5.7	529	7.4	<0.2	2	<1	370	<1.8	< 0.03	0.747	2.870	15.7	6.6	42	0.1	530	72.7	16.0
MW-6	10/14/2014	6.96	7052.53	6.5	549	7.5	<0.2	<1	<1	370	<1.8	< 0.03	0.736	2.910	14.9	6.8	48	0.5	550	67.6	17.5
MW-6	6/17/2015	2.12	7057.37	7.4	342	6.6	0.3	<1	<1	240	<1.8	0.03	<0.02	1.850	10.5	4.0	49	0.1	340	39.3	9.5
MW-6	9/9/2015	4.50	7054.99	6.5	457	8.4	<0.2	<1	<1	280	<1.8	0.045	0.656	2.710	14.2	5.2	96	0.8	460	57.2	13.7
MW-6	11/12/2015	0.00	7059.49	6.2	209	8.1	<0.2	<1	<1	120	<1.8	< 0.03	0.176	0.815	7.5	9.7	93		210	23.8	6.0
MW-6	7/7/2016	2.15	7057.34	6.3	325	7.1	<0.2	<1	<1	190	<1.8	< 0.03	0.800	1.840	11.0	4.5			330	40.6	9.5
MW-6	9/8/2016	5.84	7053.65	6.2	451	7.8	<0.1	0.31	0.1	280	<1.8	< 0.03	0.838	2.840	14.5	6.0				59.4	13.9
MW-6	10/20/2016	3.53	7055.96	6.9	362	7.3	<0.1	0.44	0.11	230	<1.8	< 0.03	0.812	2.090	12.3	4.7				48.5	11.5
MW-6	7/13/2017	1.41	7058.08	7.4	375	5.9	<0.4	<1	<1	230	4	< 0.03	0.823	2.240	12.0	4.4			380	45.9	10.9
MW-6	8/24/2017	1.65	7057.84	6.4	216	7.8	<0.4 <0.4	<1	<1	130	220	<0.03	0.422	1.160	8.3	2.3			220	22.3	6.3
MW-6	9/28/2017	1.58	7057.91	6.1	167	7.9	<0.4 <0.4	<1	<1	110	<1.8	<0.03	0.413	0.768	6.5	2.3			170	18.3	4.5
MW-6	6/29/2018	2.80	7056.69	7.2	1100	5.7	<0.4	<1	<0.2	706	<1.8	-0.05	0.415	0.700	0.5	2.1			170	10.5	4.5
MW-6	8/23/2018	2.00 6.00	7053.49	7.0	530	6.4	<0.2 <0.2	<1	<0.2 <0.2	290	<1.8										
	10/10/2018	7.43	7052.06	7.0	555				<0.2 <0.2		<1.8	<0.2	7.300	3.200	16.0	7.2					
MW-6						5.9	0.98	<1		310		<0.2	7.300	3.200	10.0	1.2					
MW-6	7/18/2019	1.35	7058.14	7.0	558	6.2	<0.2	<1	<0.2	310	<1.8										
MW-6	8/29/2019	4.75	7054.74	7.0	573	6.7	< 0.2	<1	< 0.2	310	<1.8	-0.0	C 400	2 000	47.0	7.0					
MW-6	10/3/2019	6.01	7053.48	7.1	608	5.7	< 0.2	<1	< 0.2	320	<1.8	<0.2	6.400	3.600	17.0	7.8					
MW-6	6/11/2020	2.56	7056.93	7.0	434	5.5	< 0.2	<1	<0.2	220	<1.8										
MW-6	8/13/2020	4.67	7054.82	6.9	504	6.7	<0.2	<1	<0.2	260	<1.8										
MW-6	10/15/2020	6.88	7052.61	6.9	563	6.9	<0.2	<1	<0.2	310	<1.8	<0.2	3.100	3.600	15.0	6.3					
MW-6	6/10/2021	0.57	7058.92	6.9	416	4.7	<0.2	<1	<0.2	230	23										
MW-6	8/12/2021	5.09	7054.40	7.0	462	7.5	<0.2	1.20	<0.2	260	<1.8										
MW-6	10/21/2021	7.34	7052.15	6.9	520	7.4	<0.2	<1	13	320	49	<0.2	18.000	3.400	18.0	6.1					
MW-6	6/30/2022	1.60	7057.89	6.7	269	5.9	<0.2	<1	<0.2	160	<1.8										
MW-6	8/31/2022	4.30	7055.19	6.7	248	7.9	<0.2	<1	<0.2	140	<1.8										
MW-6	10/12/2022	3.50	7055.99	6.6	232	8.6	<0.2	<1	0.3	140	2	<0.2	0.300	1.200	8.4	5.2					
Discharge Pump	8/11/2005						<0.1	12	8.5	120	23	< 0.03	0.630	0.200	14.0	13.0			190	6.8	1.3
Discharge Pump	9/15/2005						1.1	8	6.4	140	>16000	0.06	1.000	0.050	23.0	17.0		0.3	250	7.5	1.8
Discharge Pump	10/13/2005						1.7	13	11.0	150	800	0.06	0.840	0.040	24.0	20.0			290	6.8	1.7
Discharge Pump	6/29/2006						<0.1	8	7.0	100	8	0.04	2.600	0.500	13.0	13.0			180	6.8	1.4
Discharge Pump	8/2/2006						0.1	12	9.0	120	<2	0.05	0.940	0.060	18.0	17.0			230	7.1	4.5

		Depth							Ammo									Dissolved			
		To GW	(ft,		Field EC	Temp.	NO3-N	TKN	nia as	TDS	Total Coliform		Fe	Mn	Na	CI	ORP	Oxygen	Lab SC	Са	Mg
Well	Date	(ft)	NAVD88)	Field pH	(μS/cm)	(C)	(mg/L)	(mg/L)	N	(mg/L)	(MPN/100ml)	B (mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mV)	(mg/L)	(μS/cm)	(mg/L)	(mg/L)
Discharge Pump	10/11/2006						0.7	12	10.0	100	23	0.06	0.400	0.050	23.0	16.0			150	8.1	2.0
Discharge Pump	7/12/2007						<0.1	7	4.3	210	500	<0.03	2.700	0.400	17.0	12.0			170	7.2	1.5
Discharge Pump	7/8/2008			7.3	225	20.0	<0.1	<1	<1	140	22	0.05	1.800	0.460	18.0	15.0	98	3.1	240	13.0	3.0
Discharge Pump	9/18/2008			8.3	143	18.6	<0.1	<1	<1	230	230	0.07	3.000	0.150	25.0	22.0	219	8.8	230	3.2	0.6
Discharge Pump	10/16/2008						0.5	4.97	<1	250	1300	0.08	1.300	0.120	34.0	21.0			320	16.0	3.4
Discharge Pump	7/7/2009						<0.1	14.00	<1	180	50	0.05	1.500	0.290	23.0	19.0			300	12.0	2.1
Treatment Pond	8/11/2005						<0.1	14	9.6	120	>3000	0.04	0.170	0.020	20.0	3.1			76	7.3	1.7
Treatment Pond	9/15/2005						2.1	10	8.1	130	>16000	0.07	0.120	0.030	24.0	17.0		2.8	260	8.5	1.8
Treatment Pond	10/13/2005						1.7	15	11.0	150	2400	0.05	0.210	0.090	22.0	20.0			290	9.8	2.4
Treatment Pond	6/29/2006						0.1	9	8.0	91	170	0.03	0.290	0.040	22.0	10.0			180	6.1	1.3
Treatment Pond	8/2/2006						0.1	13	9.0	130	>16000	< 0.03	0.580	0.040	18.0	13.0			230	<0.03	4.6
Treatment Pond	10/11/2006						1.1	19	16.0	150	16000	0.09	0.620	0.030	30.0	17.0			340	10.0	2.2
Treatment Pond	7/12/2007						0.2	18	11.6	240	16000	0.042	0.550	0.070	25.0	16.0			270	9.7	1.9
Treatment Pond	7/8/2008			7.8	281	26.2	0.4	14	<1	180	5000	0.06	0.470	0.040	25.0	16.0	102	3.0	300	9.0	2.0
Treatment Pond	9/18/2008			7.3	401	16.0	0.7	22	16.0	240	16000	0.08	0.520	0.060	35.0	20.0	213	7.8	420	11.0	2.0
Treatment Pond	10/16/2008						1.4	23	<1	200	9000	0.08	0.340	0.020	36.0	21.0			400	12.0	2.3
Treatment Pond	7/7/2009						1	12	<1	200	9000	0.04	0.310	0.050	20.0	14.0			250	9.9	1.8
Bloods Creek Upstream	8/11/2005						<0.1	2	<1	86	170	< 0.03	0.360	0.020	5.0	2.0			67	6.5	1.6
Bloods Creek Upstream	6/20/2006						<0.1	<1	<1	46	<2	< 0.03	<0.02	< 0.01	1.0	1.2			34	3.1	0.7
Bloods Creek Upstream	7/12/2007						<0.1	<1	<1	69	14	< 0.03	0.210	0.060	5.0	1.1			57	6.5	1.3
Bloods Creek Upstream	7/8/2008			7.2	66	24.6	<0.1	<1	<1	64	130	< 0.03	0.170	0.020	5.0	1.8	204	5.8	51	5.0	1.0
Bloods Creek Upstream	7/7/2009					2.110	<0.1	<1	<1	100	500	< 0.03	0.280	0.040	4.0	2.2	201	0.0	56	5.9	1.3
Bloods Creek Downstream	8/11/2005						<0.1	2	<1	100	>16000	0.05	0.160	0.020	20.0	3.2			76	7.3	1.7
Bloods Creek Downstream	6/20/2006						<0.1	<1	<1	84	17	< 0.03	0.050	<0.01	1.0	1.4			40	3.7	0.9
Bloods Creek Downstream	7/12/2007						<0.1	<1	<1	110	>16000	< 0.03	0.340	0.020	5.0	2.6			71	7.7	2.1
Bloods Creek Downstream	7/8/2008			7.3	61	25.0	<0.1	<1	<1	98	500	< 0.03	0.220	<0.01	3.0	2.8	178	6.7	65	6.0	2.0
Bloods Creek Downstream	7/7/2009			7.0	01	20.0	<0.1	<1	<1	110	170	< 0.03	0.290	<0.01	4.0	2.9	170	0.7	64	6.8	1.6
							-			-	-				-	-			-		-

							Total Alkalinit			Hardness				Ammo
				HCO3 as	CO3 as	OH as	y as		Fecal	as		***Total	Lab pH	nia as
		K	CaCO3	HCO3	CaCO3	CaCO3	CaCO3	Sulfate	Coliform	CaCO3	NO2-N	Nitrogen	(std	NH3
Well	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(MPN/100ml)	(mg/l)	(mg/L)	(mg/L)	units)	(mg/L)
MW-1	9/1/2004								2		NR ²	NR^2	6.9	<0.50
MW-1	10/13/2004								<2		NR^2	1.0	7.3	
MW-1	8/11/2005	2.0	71	87	<1	<1	71	3.7	<2		<0.1	2.0	7.2	
MW-1	9/15/2005	4.0	76	93	<1	<1	76	3.9	<2		<0.1	<1	6.7	
MW-1	10/13/2005	3.0	61	74	<1	<1	61	3.0	<2		<0.1	<1	6.8	
MW-1	6/29/2006	<1	55	67	<1	<1	55	0.6	<2		<0.1	<1	5.9	
MW-1	8/2/2006	4.0	75	91	<1	<1	75	3.7	8		<0.1	<1	6.8	
MW-1	10/10/2006	2.0	70	85	<1	<1	70	3.6	<2		<0.1	<1	6.6	
MW-1	7/12/2007	5.0	87.8	107	<1	<1	88	3.7	<2		<0.1	<1	7.2	
MW-1	8/29/2007	4.4	96	117	<1	<1	96	4.5	2		<0.1	<1	7.4	
MW-1	9/26/2007	4.0	100	122	<1	<1	100	4.3	<2		<0.1	<1	7.3	
MW-1	7/8/2008	4.0	65	79	<1	<1	65	4.0	<2		<0.1	<1	7.0	
MW-1	9/18/2008	4.0	95	116	<1	<1	95	4.3	30		<0.1	<1	7.3	
MW-1	1/16/2008	4.0	90	109	<1	<1	90	4.5	4		<0.1	<1	7.2	
MW-1	7/7/2009	4.0	75	91	<1	<1	75	5.6	<2		<0.2	<1	7.3	
MW-1	9/30/2009	5.0	110	134	<1	<1	110	4.5	4		<0.1	<1	7.0	
MW-1	10/26/2009	4.0	100	122	<1	<1	100	5.1	11		<0.1	1.3	7.5	
MW-1	7/13/2010	3.0	65	79	<1	<1	65	4.4	<2		<0.1	<1	6.4	
MW-1	8/24/2010	3.0	78	95	<1	<1	78	4.7	<2		<0.1	<1	7.0	
MW-1	11/4/2010	3.0	76	93	<1	<1	76	3.3	2		<0.1	6.0	5.9	
MW-1	7/21/2011	2.9	76	93	<1	<1	76	3.6	<2		<0.1	<1	5.6	
MW-1	9/8/2011	3.1	76	93	<1	<1	76	4.7	<2		<0.1	2.0	7.0	
MW-1	10/20/2011	3.3	87	106	<1	<1	87	4.6	<2		<0.1	2.0	6.6	
MW-1	6/26/2012	2.5	54	66	<1	<1	54	3.1	<1.8	56.4	<0.1	0.2	6.7	
MW-1	7/31/2012	3.6	99	121	<1	<1	99	3.9	<1.8	00.1	<0.1	1.0	7.0	
MW-1	10/9/2012	3.5	85	104	<1	<1	85	4.4	<1.8		<0.1	2.0	6.5	
MW-1	5/30/2013	3.1	80	98	<1	<1	80	4.3	<1.8	60.2	<0.2	<1	6.4	
MW-1	8/21/2013	3.3	85	104	<1	<1	85	4.4	<1.8	65.4	<0.2	<1	6.6	
MW-1	10/15/2013	4.7	100	122	<1	<1	100	4.3	<1.8	88.6	<0.2	<1	6.4	
MW-1	6/12/2014	2.5	58	71	<1	<1	58	4.6	<1.8	52.7	~0.2		6.2	
MW-1	8/12/2014	2.5 3.6	38 86	105	<1	<1	38 86	4.0 4.4	<1.8	66.0			0.2 7.4	
MW-1	10/14/2014	3.7	86	105	<1	<1	86	4.4	<1.8	77.6			7.2	
MW-1	6/17/2015	2.0	42	51	<1	<1	42	4.0 3.6	<1.8	77.0			1.2	
MW-1	9/9/2015	2.0 3.7	42 80	98	<1	<1	42 80	3.0 4.2	<1.8	69.2			6.6	
MW-1			68	98 83			68			62.0				
	11/12/2015	3.0			<1	<1		4.2	<1.8				6.5	
MW-1	7/7/2016	2.9	86	105	<1	<1	86	3.6	<1.8	63.4				
MW-1	9/8/2016	3.2	80	98	<10	<10	80	3.5	<1.8					
MW-1	10/20/2016	3.6	81	99	<10	<10	81	3.1	6.8					
MW-1	7/13/2017	1.3	37	41	<1	<1	34	2.3	<1.8					
MW-1	8/24/2017	3.0	62	76	<1	<1	62	4.5	<1.8					
MW-1	9/28/2017	2.8	60	73	<1	<1	60	4.5	<1.8	58.8				
MW-1	6/29/2018													
MW-1	8/23/2018													
MW-1	10/10/2018													
MW-1	7/18/2019													
MW-1	8/29/2019													
N/N/ 1	10/2/2010													

MW-1

10/3/2019

Well	Date	K (mg/l)	CaCO3	HCO3 as HCO3	CaCO3	OH as CaCO3	Total Alkalinit y as CaCO3	Sulfate	Fecal Coliform (MPN/100ml)	Hardness as CaCO3 (mg/l)	NO2-N	***Total Nitrogen	Lab pH (std units)	NH3
MW-1	6/11/2020	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)		(mg/l)	(mg/L)	(mg/L)	units)	(mg/L)
MW-1	8/13/2020													
MW-1	10/15/2020													
MW-1	6/10/2021													
MW-1	8/12/2021													
MW-1	10/21/2021													
MW-1	6/30/2022													
MW-1	8/31/2022													
MW-1	10/5/2022													
MW-2	10/30/2002								NR ²		<0.020	NR ²		<0.50
MW-2	7/29/2003								4		NR^2	NR ²	6.7	<0.2
MW-2	11/13/2003								NR ²		<0.050*	NR^2	6.7	<0.50
MW-2	6/22/2004								<2		NR^2	NR^2	6.5	<0.50
MW-2	9/1/2004								<2		NR^2	NR^2	6.5	<0.50
MW-2	10/13/2004								<2		NR^2	10.0	7.1	
MW-2	8/11/2005	1.0	25	30	<1	<1	25	<0.5	<2		<0.1	2.0	6.9	
MW-2	9/15/2005	2.0	30	37	<1	<1	30	0.6	<2		<0.1	2.1	6.5	
MW-2	10/13/2005	2.0	25	30	<1	<1	25	<0.5	<2		<0.1	<1	6.5	
MW-2	6/29/2006	<1	20	24	<1	<1	20	<0.5	<2		<0.1	<1	5.6	
MW-2	8/2/2006	2.0	20	24	<1	<1	20	<0.5	<2		<0.1	<1	6.1	
MW-2	10/10/2006	<1	25	30	<1	<1	25	<0.5	<2		<0.1	<1	6.0	
MW-2	7/12/2007	2.0	25	30	<1	<1	25	<0.5	2		<0.1	0.7	6.8	
MW-2	8/29/2007	2.2	35	43	<1	<1	35	1.6	<2		<0.1	<1	7.0	
MW-2	9/26/2007	2.0	30	37	<1	<1	30	1.4	<2		<0.1	<1	6.7	
MW-2	7/8/2008	1.0	25	30	<1	<1	25	<0.5	<2		<0.1	<1	6.5	
MW-2	9/18/2008	2.0	25	30	<1	<1	25	0.6	<2		<0.1	3.2	6.9	
MW-2	10/16/2008	2.0 1.0	25 25	30 30	<1	<1	25 25	0.6	<2		<0.1 <0.1	3.2 <1	7.0	
MW-2	7/7/2009	1.0	25 25	30 30	<1 <1	<1 <1	25 25	0.0	<2		<0.1 <0.2	<1 <1	7.0	
MW-2				30 37		<1 <1		<0.5 <0.5						
	9/30/2009	2.0	30		<1		30 05		<2		<0.1	<1 0.5	6.8	
MW-2	10/26/2009	2.0	25	30	<1	<1	25	<0.5	800		<0.1	0.5	6.7	
MW-2	7/13/2010	<1	20	24	<1	<1	20	<0.5	<2		<0.1	<1	6.1	
MW-2	8/24/2010	<1	22	27	<1	<1	22	<0.5	<2		<0.1	<1	6.3	
MW-2	11/4/2010	<1	25	30	<1	<1	25	<0.5	4		<0.1	3.0	5.8	
MW-2	7/21/2011	0.8	22	27	<1	<1	22	<0.5	<2		<0.1	<1	6.2	
MW-2	9/8/2011	1.0	27	33	<1	<1	27	<0.5	<2		<0.1	2.0	6.4	
MW-2	10/20/2011	1.0	33	40	<1	<1	33	<0.5	<2		<0.1	1.0	6.1	
MW-2	6/26/2012	0.9	30	37	<1	<1	30	<0.5	<1.8	22.7	<0.1	2.0	6.2	
MW-2	7/31/2012	1.0	35	43	<1	<1	35	<0.5	11		<0.2	<1	6.3	
MW-2	10/9/2012	1.4	30	37	<1	<1	30	0.8	<1.8		<0.2	<1	5.9	
MW-2	5/30/2013	0.8	18	22	<1	<1	18	0.5	<1.8	16.5	<0.2	<1	6.1	
MW-2	8/21/2013	1.4	28	34	<1	<1	28	0.6	<1.8	21.8	<0.2	<1	5.2	

							Total							
Well	Date	K (mg/L)	HCO3 as CaCO3 (mg/L)	HCO3 as HCO3 (mg/L)	CO3 as CaCO3 (mg/L)	OH as CaCO3 (mg/L)	Alkalinit y as CaCO3 (mg/L)	Sulfate (mg/L)	Fecal Coliform (MPN/100ml)	Hardness as CaCO3 (mg/l)	NO2-N (mg/L)	***Total Nitrogen (mg/L)	Lab pH (std units)	Ammo nia as NH3 (mg/L)
MW-2	10/15/2013	1.4	22	27	<1 <1	<1	22	0.6	<1.8	17.8	<0.2	<1 <1	5.6	(9, =)
MW-2	6/12/2014	0.9	18	22	<1	<1	18	0.5	<1.8	16.3	•	-	5.9	
MW-2	8/12/2014	5.8	28	34	<1	<1	28	0.6	<1.8	20.9			6.7	
MW-2	10/14/2014	1.1	24	29	<1	<1	24	0.6	<1.8	26.5			5.9	
MW-2	6/17/2015	1.0	30	36	<1	<1	30	<0.5	<1.8	20.0			0.0	
MW-2	9/9/2015	1.6	40	49	<1	<1	40	0.8	<1.8	19.5			6.9	
MW-2	11/13/2015	1.0	26	32	<1	<1	26	<0.5	2	22.5			6.1	
MW-2	7/7/2016	0.9	30	37	<1 <1	<1	30	<0.5 <0.5	<1.8	19.2			0.1	
						<10								
MW-2	9/8/2016	1.1	34	41	<10		34	<0.5	<1.8					
MW-2	10/20/2016	1.1	28	34	<10	<10	28	<0.5	170					
MW-2	7/13/2017	1.0	16	19	<1	<1	16	<0.5	<1.8					
MW-2	8/24/2017	1.2	22	27	<1	<1	22	<0.5	<1.8					
MW-2	9/28/2017	1.1	28	34	<1	<1	28	<0.5	<1.8	22.5				
MW-2	6/28/2018													
MW-2	8/22/2018													
MW-2	10/10/2018													
MW-2	7/17/2019													
MW-2	8/28/2019													
MW-2	10/2/2019													
MW-2	6/10/2020													
MW-2	8/12/2020													
MW-2	10/14/2020													
MW-2	6/9/2021													
MW-2	8/11/2021													
MW-2	10/20/2021													
MW-2	6/29/2022													
MW-2	8/24/2022													
MW-2	10/5/2022													
MW-3	10/30/2002								NR ²		<0.020	NR ²		<0.50
MW-3	7/29/2003								80		NR ²	NR^{2}	6.6	<0.2
MW-3	11/13/2003								NR ²		0.06*	NR^2	6.0	**
MW-3	6/22/2004								<2		NR ²	NR^2	6.0	<0.50
MW-3	9/1/2004								<2		NR^2	NR ²	6.2	<0.50
MW-3	10/13/2004		00	0.4			00	4.0	<2		NR ²	0.3	6.7	
MW-3	8/11/2005	<1 2.0	20	24	<1 <1	<1 ~1	20 25	1.9	<2		<0.1	<1 <1	6.2	
MW-3 MW-3	9/15/2005 10/13/2005	2.0 2.0	25 20	30 24	<1 <1	<1 <1	25 20	1.4 1.8	8 <2		<0.1 <0.1	<1 2.4	5.9 6.1	
MW-3	6/29/2006	2.0 <1	20	24 24	<1 <1	<1	20	1.0	<2 <2		<0.1 <0.1	2.4 <1	5.5	
MW-3	8/2/2006	2.0	20	24	<1	<1	20	1.3	<2		<0.1	0.2	5.7	

							Total Alkalinit			Hardness				Amn
				HCO3 as		OH as	y as		Fecal	as		***Total	Lab pH	
Well	Dete	K (mg/l)	CaCO3	HCO3	CaCO3	CaCO3	CaCO3	Sulfate	Coliform (MPN/100ml)	CaCO3	NO2-N	Nitrogen	(std	NH
MW-3	Date 7/12/2007	(mg/L) 2.0	(mg/L) 28	(mg/L) 34	(mg/L) <1	(mg/L) <1	(mg/L) 28	(mg/L) 1.1	(WFN/100111) <2	(mg/l)	(mg/L) <0.1	(mg/L) 0.2	units) 6.5	(mg
MW-3	8/29/2007	1.7	25	30	<1	<1	25	1.6	4		<0.1	<1	6.3	
MW-3	9/26/2007	2.0	30	37	<1	<1	30	0.5	2		<0.1	<1	6.3	
MW-3	7/8/2008	1.0	35	43	<1	<1	35	1.2	<2		<0.1	<1	6.3	
MW-3	9/18/2008	2.0	20	24	<1	<1	20	2.0	<2		<0.1	<1	6.2	
MW-3	10/16/2008	2.0	30	37	<1	<1	30	2.1	<2		<0.1	0.15	6.2	
MW-3	7/7/2009	1.0	20	24	<1	<1	20	3.5	<2		<0.2	<1	6.5	
MW-3	9/30/2009	3.0	40	49	<1	<1	40	3.2	<2		<0.1	<1	6.0	
MW-3	10/26/2009	2.0	15	18	<1	<1	15	3.3	4		<0.1	0.90	6.4	
MW-3	7/13/2010	<1	20	24	<1	<1	20	<0.5	<2		<0.1	<1	6.1	
MW-3	8/24/2010	<1	27	33	<1	<1	27	<0.5	<2		<0.1	<1	5.8	
MW-3	11/4/2010	<1	25	30	<1	<1	25	<0.5	26		<0.1	3.00	5.6	
MW-3	7/21/2011	0.9	16	20	<1	<1	16	<0.5	<2		<0.1	<1	6.2	
MW-3	9/8/2011	1.1	22	27	<1	<1	22	<0.5	<2		<0.1	2.00	6.1	
MW-3	10/20/2011	1.2	27	33	<1	<1	27	<0.5	11		<0.1	1.00	6.1	
MW-3	6/26/2012	1.2	30	37	<1	<1	30	1.3	<1.8	22.1	<0.1	<1	6.0	
MW-3	7/31/2012	1.4	35	43	<1	<1	35	1.2	<1.8	22.1	<0.1	<1	6.0	
MW-3	10/9/2012	1.4	35	43	<1	<1	35	1.5	<1.8		<0.2	<1	5.7	
MW-3	5/30/2013	0.9	20	24	<1	<1	20	2.3	<1.8	15.7	<0.2	<1	5.9	
MW-3	8/21/2013	1.1	18	24	<1	<1	18	1.3	<1.8	18.7	<0.2 <0.2	<1	4.2	
MW-3	10/15/2013	1.5	32	39	<1	<1	32	1.3	<1.8	21.8	<0.2 <0.2	<1	4.2 5.4	
MW-3	6/12/2014	1.5	20	24	<1	<1	20	1.4	<1.8	15.3	~0.2		5.7	
MW-3	8/12/2014	4.6	20	24	<1	<1	20	1.3	<1.8	19.4			5.6	
MW-3	10/14/2014	4.0 1.2	20	24 27	<1	<1	20	1.2	<1.8	20.5			5.5	
MW-3	6/17/2015	1.2	28	34	<1	<1	28	1.3	<1.8	20.5			5.5	
MW-3	9/9/2015	1.5 1.6	42	54	<1	<1	42	1.3	7.8	18.7			7.4	
MW-3	11/13/2015	1.0	42 24	29	<1	<1	42 24	1.4	<1.8	19.1			7.4	
MW-3	7/7/2016	1.1	30	29 37	<1	<1	24 30	1.3	<1.8	21.7				
MW-3	9/8/2016	1.1	26	32	<10	<10	26	1.1	49					
MW-3	10/20/2016	1.4	20	32	<10 <10	<10 <10	20	1.2	49 <1.8					
MW-3		1.5	50	55 61	_	<10	50		<1.8					
MW-3	7/13/2017 8/24/2017	1.1	38	46	<1 <1	<1	38	1.2 1.0	<1.8					
MW-3	9/28/2017	1.0	40	40 49	<1	<1	40	1.0	<1.8	 24.2				
MW-3	6/28/2018	1.5	40	49			40	1.1	\$1.0	24.2				
MW-3	8/22/2018													
MW-3	10/10/2018													
MW-3	7/17/2019													
MW-3	8/28/2019													
MW-3	10/2/2019													
MW-3	6/10/2020													
MW-3	8/12/2020													
MW-3	10/14/2020													
MW-3	6/9/2021													

MW-3

MW-3

MW-3

MW-3

8/11/2021

10/20/2021

6/29/2022

8/24/2022

		ĸ	CaCO3	HCO3 as HCO3	CaCO3	OH as CaCO3	Total Alkalinit y as CaCO3	Sulfate	Fecal Coliform	Hardness as CaCO3	NO2-N	***Total Nitrogen	Lab pH (std	Ammo nia as NH3
Well MW-3	Date 10/5/2022	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(MPN/100ml)	(mg/l)	(mg/L)	(mg/L)	units)	(mg/L)
MW-4	10/30/2002								NR ²		<0.020	NR ²		<0.50
MW-4	7/29/2003								<2		NR ²	NR^{2}	6.5	<0.2
MW-4	11/13/2003								NR^2		0.05*	NR ²	6.9	**
MW-4	6/22/2004								<2		NR ²	NR ²	6.8	<0.50
MW-4	9/1/2004								<2		NR ²	NR ²	6.9	<0.50
MW-4	10/13/2004								<2		NR ²	<1.1	7.1	-0.50
MW-4	8/11/2005	3.0	96	117	<1	<1	96	5.7	<2		<0.1	<1	6.9	
MW-4	9/15/2005	5.0 5.0	100	122	<1 <1	<1	90 100	5.8	<2		<0.1 <0.1	0.1	6.6	
MW-4	10/13/2005	4.0	110	134	<1	<1	110	5.0 5.1	<2		<0.1 <0.1	1.2	6.8	
MW-4	6/29/2006	2.0	90	110	<1	<1	90	4.1	<2		<0.1 <0.1	0.1	6.2	
MW-4	8/2/2006	2.0 5.0	85	102	<1	<1	85	6.2	<2		<0.1 <0.1	<1	6.7	
MW-4	10/10/2006	<1	85	102	<1	<1	85	6.0	<2		<0.1 <0.1	1.0	6.8	
MW-4	7/12/2007	4.0	87	104	<1	<1	87	6.7	<2		<0.1 <0.1	0.1	6.8	
MW-4	8/29/2007	4.0	91	111	<1	<1	91	6.9	<2		<0.1 <0.1	<1	7.2	
MW-4	9/26/2007	4.0	86	105	<1	<1	86	10.0	<2		<0.1 <0.1	<1	7.0	
MW-4	7/8/2008	4.0	86	105	<1	<1	86	5.8	<2		<0.1 <0.1	<1	7.0	
MW-4	9/18/2008	4.0	85	103	<1	<1	85	6.2	<2		<0.1	<1	6.9	
MW-4	10/16/2008	4.0	90	109	<1	<1	90	5.9	<2		<0.1	<0.1	6.9	
MW-4	7/7/2009	4.0	95	116	<1	<1	95	7.0	<2		<0.1	2.4	7.1	
MW-4	9/30/2009	4.0	80	98	<1	<	80	6.3	<2		<0.2	<1	6.8	
MW-4	10/26/2009	3.0	90	110	<1	<1	90	5.4	13		<0.1	0.3	7.1	
MW-4	7/13/2010	4.0	100	122	<1	<1	100	5.2	<2		<0.1	<1	6.6	
MW-4	8/24/2010	3.0	82	100	<1	<1	82	5.6	<2		<0.1	<1	6.4	
MW-4	11/4/2010	3.0	75	91	<1	<1	75	6.8	13		<0.1	<1	6.5	
MW-4	7/21/2011	3.7	92	112	<1	<1	92	4.1	<2		<0.1	<1	6.9	
MW-4	9/8/2011	3.1	87	106	<1	<1	87	5.0	<2		<0.1	1.0	6.9	
MW-4	10/20/2011	3.2	70	85	<1	<1	70	7.3	<2		<0.1	<1	7.0	
MW-4	6/26/2012	3.4	89	108	<1	<1	89	7.0	_ <1.8	86.4	<0.1	<1	8.0	
MW-4	7/31/2012	3.4	84	102	<1	<1	84	6.6	<1.8		<0.2	2.0	6.6	
MW-4	10/9/2012	3.2	75	91	<1	<1	75	6.8	<1.8		<0.2	<1	5.8	
MW-4	5/30/2013	3.5	86	105	<1	<1	86	6.1	<1.8	81.7	<0.2	<1	6.4	
MW-4	8/21/2013	3.4	89	109	<1	<1	89	6.7	<1.8	72.9	<0.2	<1	6.5	
MW-4	10/15/2013	4.0	91	111	<1	<1	91	6.7	<1.8	81.2	<0.2	<1	6.6	
MW-4	6/12/2014	4.1	89	109	<1	<1	89	5.9	<1.8	91.2			5.6	
MW-4	8/12/2014	4.0	92	112	<1	<1	92	6.0	<1.8	82.8			6.9	
MW-4	10/14/2014	3.2	78	95	<1	<1	78	6.5	<1.8	75.2			6.7	
MW-4	6/17/2015	3.4	86	105	<1	<1	86	6.0	<1.8					
MW-4	9/9/2015	3.9	110	134	<1	<1	110	6.3	<1.8	77.4			6.7	
MW-4	11/13/2015	11.4	78	95	<1	<1	78	5.3	<1.8	69.5			6.8	
MW-4	7/7/2016	3.6	22	27	<1	<1	22	4.8	<1.8	85.9				
MW-4	9/8/2016	3.4	92	112	<10	<10	92	5.4	<1.8					
MW-4	10/20/2016	3.4	75	91	<10	<10	75	4.8	7.8					
MW-4	7/13/2017	3.3	86	104	<1	<1	86	4.2	<1.8					
MW-4	8/24/2017	3.7	240	292	<1	<1	240	5.8	130					

							,							
Well	Date (K (mg/L)	HCO3 as CaCO3 (mg/L)	HCO3 as HCO3 (mg/L)	CO3 as CaCO3 (mg/L)	OH as CaCO3 (mg/L)	Total Alkalinit y as CaCO3 (mg/L)	Sulfate (mg/L)	Fecal Coliform (MPN/100ml)	Hardness as CaCO3 (mg/l)	NO2-N (mg/L)	***Total Nitrogen (mg/L)	Lab pH (std units)	Ammo nia as NH3 (mg/L)
MW-4	9/28/2017	3.3	90	110	<1	<1 <1	90	5.4	13	77.4	(119, 2)	(119/2)	unitoj	(mg/ L)
MW-4	6/28/2018	0.0	30	110			30	0.4	10	77.4				
MW-4	8/22/2018													
MW-4	10/10/2018													
MW-4	7/17/2019													
MW-4	8/28/2019													
MW-4	10/2/2019													
MW-4	6/10/2020													
MW-4	8/12/2020													
MW-4	10/14/2020													
MW-4	6/9/2021													
MW-4	8/11/2021													
MW-4	10/20/2021													
MW-4	6/29/2022													
MW-4	8/24/2022													
MW-4	10/5/2022													
MW-5	9/1/2004								17		NR ²	NR ²	6.6	<0.50
MW-5	10/13/2004								2		NR ²	2.0	6.8	
MW-5	8/11/2005	1.0	45	55	<1	<1	45	1.8	<2		<0.1	2.0	6.2	
MW-5	9/15/2005	3.0	51	62	<1	<1	51	2.0	<2		<0.1	0.1	7.6	
MW-5	10/13/2005	3.0	35	43	<1	<1	35	1.3	<2		<0.1	0.1	6.1	
MW-5	6/29/2006	2.0	25	30	<1	<1	25	0.7	<2		<0.1	<1	5.4	
MW-5	8/2/2006	3.0	35	42	<1	<1	35	1.0	<2		<0.1	<1	6.1	
MW-5	10/11/2006	<1	45	55	<1	<1	45	1.7	<2		<0.1	1.0	6.0	
MW-5	7/12/2007	1	-0	00			-10	1.7	<u>۲</u> ۲		-0.1	1.0		nped dry
MW-5	8/29/2007												wen pu	npeu ury
MW-5	9/26/2007												Wall nur	nped dry
MW-5	7/8/2008													nped dry
MW-5	9/18/2008												wen pu	npeu ury
MW-5														
	10/16/2008	2.0	45	EE	<1	-1	45	0.7	~2		<0.0	-1	6 F	
MW-5	7/7/2009	2.0 2.0	45 NS	55 NS	NS	<1 NS	45 NS	2.7 2.5	<2 NS		<0.2	<1 NS	6.5 7.5	ميرما المريد
MW-5 MW-5	9/30/2009 10/26/2009	2.0	INO	113	NO NO	110	NO	2.5	NO		0.2	113	7.5	well pun
MW-5		2.0	25	40	-1	-1	25	<0 E	~2		-0.1	-1	6.0	
	7/13/2010	3.0	35	43	<1	<1	35	<0.5	<2		<0.1	<1	6.0	
MW-5	8/24/2010	1.0	37	45	<1	<1	37	<0.5	<2		<0.1	<1	6.7	
MW-5	11/4/2010	2.0	41	50	<1	<1	41	<0.5	<2		<0.1	<1	6.1	
MW-5	7/21/2011	1.9	27	33	<1	<1	27	<0.5	<2		<0.1	<1	4.9	
MW-5	9/8/2011	2.2	43	52	<1	<1	43	<0.5	<2		<0.1	1.0	6.5	
MW-5	10/20/2011	2.2	38	46	<1	<1	38	1.7	<2	00.0	<0.1	<1	6.0	
MW-5	6/26/2012	4.6	39	48	<1	<1	39	1.0	IVS	39.8	<0.1	0.1	6.9	
MW-5	7/31/2012	2.4	39	48	<1	<1	39	2.1	<1.8		<0.2	<1	6.3	
MW-5	10/9/2012							_						
MW-5	5/30/2013	1.5	38	46	<1	<1	38	0.9	IVS	27.6	<0.2	<1	6.0	well pun
MW-5	8/21/2013	1.7	26	32	<1	<1	26	0.8	<1.8	25.2	<0.2	<1	6.0	
MW-5	10/15/2013	2.4	33	40	<1	<1	33	2.7	<1.8	27.3	<0.2	<1	8.1	
MW-5	6/12/2014	2.4	36	44	<1	<1	36	1.0	<1.8	29.8			5.8	

		к	HCO3 as CaCO3	HCO3 as HCO3	CO3 as CaCO3	OH as CaCO3	Total Alkalinit y as CaCO3	Sulfate	Fecal Coliform	Hardness as CaCO3	NO2-N	***Total Nitrogen	Lab pH (std	Ammo nia as NH3
Well	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(MPN/100ml)	(mg/l)	(mg/L)	(mg/L)	units)	(mg/L)
MW-5		3.2	46	56	<1 <1	<1 <1	46	1.2	<1.8	41.1	(ing/L)	(ing/L)	5.6	(ing/L)
MW-5		•												
MW-5		2.6	42	51	<1	<1	42	1.1	<1.8					
MW-5		3.3	46	56	<1	<1	46	1.2	IVS	39.9			7.0	
MW-5		1.4	42	51	<1	<1	42	1.0	IVS	39.1				
MW-5	7/7/2016	3.2	46	56	<1	<1	46	1.0	<1.8	59.5				
MW-5	9/8/2016													
MW-5	10/20/2016													
MW-5	7/13/2017													
MW-5		3.2	58	71	<1	<1	58	1.0	<1.8					
MW-5		2.9	34	41	<1	<1	34	1.0	<1.8	34.8				
MW-5	6/29/2018													
MW-5	8/23/2018													
MW-5	10/10/2018													
MW-5	7/18/2019													
MW-5	8/29/2019													
MW-5	10/3/2019													
MW-5	6/11/2020													
MW-5	8/13/2020													
MW-5	10/15/2020													
MW-5	6/10/2021													
MW-5	8/12/2021													
MW-5	10/21/2021													
MW-5														
	0/00/2022													
M\\/_5	8/31/2022													
MW-5														
MW-5 MW-5														
	10/12/2022								NR ²		<0.020	NR ²		<0.50
MW-5	10/12/2022										<0.020 NR ²	NR ² NR ²	6.5	<0.50 <0.2
MW-5 MW-6 MW-6	10/12/2022 10/30/2002 7/29/2003								<2		NR ²	NR ²		
MW-5 MW-6 MW-6 MW-6	10/12/2022 10/30/2002 7/29/2003 11/13/2003								<2 NR ²		NR ² <0.050*	NR ² NR ²	6.7	<0.2 **
MW-5 MW-6 MW-6 MW-6 MW-6	10/12/2022 10/30/2002 7/29/2003 11/13/2003 6/22/2004								<2 NR ² <2		NR ² <0.050* NR ²	NR ² NR ² NR ²	6.7 7.0	<0.2 ** <0.50
MW-5 MW-6 MW-6 MW-6 MW-6	10/12/2022 10/30/2002 7/29/2003 11/13/2003 6/22/2004 9/1/2004								<2 NR ² <2 <2		NR ² <0.050* NR ² NR ²	NR ² NR ² NR ² NR ²	6.7 7.0 7.0	<0.2 **
MW-5 MW-6 MW-6 MW-6 MW-6 MW-6 MW-6	10/12/2022 10/30/2002 7/29/2003 11/13/2003 6/22/2004 9/1/2004 10/13/2004	5.0	250	305	~1	~1	250	1 8	<2 NR ² <2 <2 <2 <2		NR ² <0.050* NR ² NR ² NR ²	NR ² NR ² NR ² <1.1	6.7 7.0 7.0 7.6	<0.2 ** <0.50
MW-5 MW-6 MW-6 MW-6 MW-6 MW-6 MW-6 MW-6	10/12/2022 10/30/2002 7/29/2003 11/13/2003 6/22/2004 9/1/2004 10/13/2004 8/11/2005	5.0	250	305	<1	<1	250 240	1.8	<2 NR ² <2 <2 <2 <2 <2		NR ² <0.050* NR ² NR ² NR ² <0.1	NR ² NR ² NR ² <1.1 <1	6.7 7.0 7.0 7.6 7.3	<0.2 ** <0.50
MW-5 MW-6 MW-6 MW-6 MW-6 MW-6 MW-6 MW-6 MW-6	10/12/2022 10/30/2002 7/29/2003 11/13/2003 6/22/2004 9/1/2004 10/13/2004 8/11/2005 9/15/2005	4.0	240	293	<1	<1	240	1.9	<2 NR ² <2 <2 <2 <2 <2 <2 <2 <2		NR ² <0.050* NR ² NR ² <0.1 <0.1	NR ² NR ² NR ² <1.1 <1 1.2	6.7 7.0 7.6 7.3 7.0	<0.2 ** <0.50
MW-5 MW-6 MW-6 MW-6 MW-6 MW-6 MW-6 MW-6 MW-6	10/12/2022 10/30/2002 7/29/2003 11/13/2003 6/22/2004 9/1/2004 10/13/2004 8/11/2005 9/15/2005 10/13/2005	4.0 4.0	240 240	293 292	<1 <1	<1 <1	240 240	1.9 1.8	<2 NR ² <2 <2 <2 <2 <2 <2 <2 <2 <2		NR ² <0.050* NR ² NR ² <0.1 <0.1 <0.1	NR ² NR ² NR ² <1.1 <1 1.2 0.2	6.7 7.0 7.6 7.3 7.0 7.3	<0.2 ** <0.50
MW-5 MW-6 MW-6 MW-6 MW-6 MW-6 MW-6 MW-6 MW-6	10/12/2022 10/30/2002 7/29/2003 11/13/2003 6/22/2004 9/1/2004 10/13/2004 8/11/2005 9/15/2005 10/13/2005 6/29/2006	4.0 4.0 <1	240 240 230	293 292 280	<1 <1 <1	<1 <1 <1	240 240 230	1.9 1.8 1.8	<2 NR ² <2 <2 <2 <2 <2 <2 <2 <2 <2 <2		NR ² <0.050* NR ² NR ² <0.1 <0.1 <0.1 <0.1	NR ² NR ² NR ² <1.1 <1 1.2 0.2 <1	6.7 7.0 7.6 7.3 7.0 7.3 6.8	<0.2 ** <0.50 <0.50
MW-5 MW-6 MW-6 MW-6 MW-6 MW-6 MW-6 MW-6 MW-6	10/12/2022 10/30/2002 7/29/2003 11/13/2003 6/22/2004 9/1/2004 10/13/2004 8/11/2005 9/15/2005 10/13/2005 6/29/2006 8/2/2006	4.0 4.0 <1 3.0	240 240 230 230	293 292 280 280	<1 <1 <1 <1	<1 <1 <1 <1	240 240 230 230	1.9 1.8 1.8 1.6	<2 NR ² <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2		NR ² <0.050* NR ² NR ² <0.1 <0.1 <0.1 <0.1 <0.1	NR ² NR ² NR ² <1.1 <1 1.2 0.2 <1 <1	6.7 7.0 7.6 7.3 7.0 7.3 6.8 6.8	<0.2 ** <0.50
MW-5 MW-6 MW-6 MW-6 MW-6 MW-6 MW-6 MW-6 MW-6	10/12/2022 10/30/2002 7/29/2003 11/13/2003 6/22/2004 9/1/2004 10/13/2004 8/11/2005 9/15/2005 10/13/2005 6/29/2006 8/2/2006 10/10/2006	4.0 4.0 <1 3.0 <1	240 240 230 230 250	293 292 280 280 304	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1	240 240 230 230 250	1.9 1.8 1.8 1.6 1.9	<2 NR ² <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2		NR ² <0.050* NR ² NR ² <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	NR ² NR ² NR ² <1.1 <1 1.2 0.2 <1 <1 <1	6.7 7.0 7.6 7.3 7.0 7.3 6.8 6.8 7.0	<0.2 ** <0.50 <0.50
MW-5 MW-6 MW-6 MW-6 MW-6 MW-6 MW-6 MW-6 MW-6	10/12/2022 10/30/2002 7/29/2003 11/13/2003 6/22/2004 9/1/2004 10/13/2004 8/11/2005 9/15/2005 10/13/2005 6/29/2006 8/2/2006 10/10/2006 7/12/2007	4.0 4.0 <1 3.0 <1 6.0	240 240 230 230 250 233	293 292 280 280 304 284	<1 <1 <1 <1 <1 <1	<1 <1 <1 <1 <1 <1	240 240 230 230 250 233	1.9 1.8 1.6 1.9 1.9	<2 NR ² <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2		NR ² <0.050* NR ² NR ² <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	NR ² NR ² NR ² <1.1 <1 1.2 0.2 <1 <1 <1 <1	6.7 7.0 7.6 7.3 7.0 7.3 6.8 6.8 6.8 7.0 7.1	<0.2 ** <0.50 <0.50
MW-5 MW-6 MW-6 MW-6 MW-6 MW-6 MW-6 MW-6 MW-6	10/12/2022 10/30/2002 7/29/2003 11/13/2003 6/22/2004 9/1/2004 10/13/2004 8/11/2005 9/15/2005 10/13/2005 6/29/2006 8/2/2006 10/10/2006 7/12/2007 8/29/2007	4.0 4.0 <1 3.0 <1 6.0 4.3	240 240 230 230 250 233 260	293 292 280 280 304 284 317	<1 <1 <1 <1 <1 <1 <1	<1 <1 <1 <1 <1 <1 <1	240 240 230 230 250 233 260	1.9 1.8 1.8 1.6 1.9 1.9 2.1	<2 NR ² <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2		NR ² <0.050* NR ² NR ² <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	NR ² NR ² NR ² <1.1 <1 1.2 0.2 <1 <1 <1 <1 <1 <1	6.7 7.0 7.6 7.3 7.0 7.3 6.8 6.8 6.8 7.0 7.1 7.3	<0.2 ** <0.50 <0.50
MW-5 MW-6 MW-6 MW-6 MW-6 MW-6 MW-6 MW-6 MW-6	10/12/2022 10/30/2002 7/29/2003 11/13/2003 6/22/2004 9/1/2004 10/13/2004 8/11/2005 9/15/2005 10/13/2005 6/29/2006 8/2/2006 10/10/2006 7/12/2007 8/29/2007 9/26/2007	4.0 4.0 <1 3.0 <1 6.0 4.3 5.0	240 240 230 230 250 233 260 260	293 292 280 280 304 284 317 317	<1 <1 <1 <1 <1 <1 <1 <1	<1 <1 <1 <1 <1 <1 <1 <1	240 240 230 250 233 260 260	1.9 1.8 1.8 1.6 1.9 1.9 2.1 1.7	<2 NR ² <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2		NR ² <0.050* NR ² NR ² <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	NR ² NR ² NR ² <1.1 <1 1.2 0.2 <1 <1 <1 <1 <1 <1 <1	6.7 7.0 7.6 7.3 7.0 7.3 6.8 6.8 7.0 7.1 7.3 7.3	<0.2 ** <0.50 <0.50
MW-5 MW-6 MW-6 MW-6 MW-6 MW-6 MW-6 MW-6 MW-6	10/12/2022 10/30/2002 7/29/2003 11/13/2003 6/22/2004 9/1/2004 10/13/2004 8/11/2005 9/15/2005 10/13/2005 6/29/2006 8/2/2006 10/10/2006 7/12/2007 8/29/2007 9/26/2007 7/8/2008	4.0 4.0 <1 3.0 <1 6.0 4.3 5.0 4.0	240 240 230 250 250 233 260 260 236	293 292 280 280 304 284 317 317 288	<1 <1 <1 <1 <1 <1 <1 <1 <1	<1 <1 <1 <1 <1 <1 <1 <1 <1	240 230 230 250 233 260 260 236	1.9 1.8 1.6 1.9 1.9 2.1 1.7 1.9	<2 NR ² <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2		NR ² <0.050* NR ² NR ² <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	NR ² NR ² NR ² <1.1 <1 1.2 0.2 <1 <1 <1 <1 <1 <1 <1 <1 <1	6.7 7.0 7.6 7.3 7.0 7.3 6.8 6.8 7.0 7.1 7.3 7.3 7.3 7.2	<0.2 ** <0.50 <0.50
MW-5 MW-6 MW-6 MW-6 MW-6 MW-6 MW-6 MW-6 MW-6	10/12/2022 10/30/2002 7/29/2003 11/13/2003 6/22/2004 9/1/2004 10/13/2004 8/11/2005 9/15/2005 10/13/2005 6/29/2006 8/2/2006 10/10/2006 7/12/2007 8/29/2007 9/26/2007 7/8/2008 9/18/2008	4.0 4.0 <1 3.0 <1 6.0 4.3 5.0	240 240 230 230 250 233 260 260	293 292 280 280 304 284 317 317	<1 <1 <1 <1 <1 <1 <1 <1	<1 <1 <1 <1 <1 <1 <1 <1	240 240 230 250 233 260 260	1.9 1.8 1.8 1.6 1.9 1.9 2.1 1.7	<2 NR ² <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2		NR ² <0.050* NR ² NR ² <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	NR ² NR ² NR ² <1.1 <1 1.2 0.2 <1 <1 <1 <1 <1 <1 <1	6.7 7.0 7.6 7.3 7.0 7.3 6.8 6.8 7.0 7.1 7.3 7.3	<0.2 ** <0.50 <0.50

					Thistorie	Croundwe	iter Quality							
							Total							
							Alkalinit			Hardness				Ammo
			HCO3 as	HCO3 as	CO3 as	OH as	y as		Fecal	as		***Total	Lab pH	nia as
		к	CaCO3	HCO3	CaCO3	CaCO3	CaCO3	Sulfate	Coliform	CaCO3	NO2-N	Nitrogen	(std	NH3
Well	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(MPN/100ml)	(mg/l)	(mg/L)	(mg/L)	units)	(mg/L)
MW-6	9/30/2009	5.0	260	317	<1	<1	260	2.6	<2		<0.1	<1	7.0	
MW-6	10/26/2009	4.0	250	305	<1	<1	250	3.2	<2		<0.1	<1	7.6	
MW-6	7/13/2010	4.0	250	305	<1	<1	250	<0.5	<2		<0.1	<1	6.8	
MW-6	8/24/2010	3.0	230	280	<1	<1	230	<0.5	<2		<0.1	<1	6.7	
MW-6	11/4/2010	2.0	230	281	<1	<1	230	2.9	<2		<0.1	<1	6.5	
MW-6	7/21/2011	4.3	270	329	<1	<1	270	2.3	<2		<0.1	<1	7.0	
MW-6	9/8/2011	3.5	270	329	<1	<1	270	<0.5	<2		<0.1	<1	7.0	
MW-6	10/20/2011	3.7	190	232	<1	<1	190	<0.5	<2		<0.1	<1	6.6	
MW-6	6/26/2012	3.7	230	280	<1	<1	230	1.9	<1.8	236	<0.1	<1	6.8	
MW-6	7/31/2012	3.8	260	317	<1	<1	260	3.0	<1.8		<0.2	<1	6.8	
MW-6	10/9/2012	4.1	290	354	<1	<1	290	2.0	<1.8		<0.2	<1	6.7	
MW-6	5/30/2013	3.3	190	232	<1	<1	190	2.8	<1.8	154	<0.2	<1	6.5	
MW-6	8/21/2013	3.9	250	305	<1	<1	250	2.0	<1.8	191	<0.2	<1	6.5	
MW-6	10/15/2013	4.4	270	329	<1	<1	270	3.1	<1.8	257	<0.2	<1	6.3	
MW-6	6/12/2014	4.6	260	317	<1	<1	260	3.0	<1.8	218			5.9	
MW-6	8/12/2014	4.9	310	378	<1	<1	310	3.1	<1.8	248			5.7	
MW-6	10/14/2014	4.3	280	341	<1	<1	280	2.0	<1.8	241			6.5	
MW-6	6/17/2015	2.4	190	231	<1	<1	190	1.6	<1.8					
MW-6	9/9/2015	3.3	250	305	<1	<1	250	1.8	<1.8	199			6.5	
MW-6	11/12/2015	1.4	90	110	<1	<1	90	0.8	<1.8	84			6.2	
MW-6	7/7/2016	2.6	170	207	<1	<1	170	1.2	<1.8	140				
MW-6	9/8/2016	3.3	226	276	<10	<10	226	1.7	<1.8					
MW-6	10/20/2016	2.9	183	223	<10	<10	183	1.8	<1.8					
MW-6	7/13/2017	3.0	190	231	<1	<1	190	1.4	<1.8					
MW-6	8/24/2017	1.9	120	146	<1	<1	120	0.9	<1.8					
MW-6	9/28/2017	1.3	80	98	<1	<1	80	0.7	<1.8	64.4				
MW-6	6/29/2018													
MW-6	8/23/2018													
MW-6	10/10/2018													
MW-6	7/18/2019													
MW-6	8/29/2019													
MW-6	10/3/2019													
MW-6	6/11/2020													
MW-6	8/13/2020													
MW-6	10/15/2020													
MW-6	6/10/2021													
MW-6	8/12/2021													
MW-6	10/21/2021													
MW-6	6/30/2022													
MW-6	8/31/2022													
MW-6	10/12/2022													
Discharge Durre	0/44/0005	2.0	40	40	-1	-1	40	2.6	-0		-0.4	40.0	67	
Discharge Pump Discharge Pump	8/11/2005 9/15/2005	3.0 5.0	40 61	49 74	<1 <1	<1 <1	40 61	3.6 6.1	<2 1700		<0.1 0.8	12.0 9.9	6.7 6.9	
2 .	9/15/2005	5.0 6.0	76	74 93	<1 <1	<1 <1	76	6.1 7.2	22		0.8	9.9 15.0	6.9 7.2	
Discharge Pump Discharge Pump	6/29/2006	6.0 7.0	76 55	93 67	<1 <1	<1 <1	76 55	7.2 3.4	<2		0.3 <0.1	15.0 8.0	7.2 6.4	
	8/2/2006	7.0 6.0	55 70	67 85	<1 <1	<1 <1	55 70	3.4 4.2	<2 <2		<0.1 <0.1	8.0 12.1	6.4 6.9	
Discharge Pump	0/2/2000	0.0	70	CO	~1		70	4.2	~2		NO.1	12.1	0.9	

							Total Alkalinit			Hardness				Ammo
			HCO3 as	HCO3 as	CO3 as	OH as	y as		Fecal	as		***Total	Lab pH	nia as
		K	CaCO3	HCO3	CaCO3	CaCO3	CaCO3	Sulfate	Coliform	CaCO3	NO2-N	Nitrogen	(std	NH3
Well	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(MPN/100ml)	(mg/l)	(mg/L)	(mg/L)	units)	(mg/L)
Discharge Pump	10/11/2006	<1	70	85	<1	<1	70	5.6	4		0.1	12.8	7.1	<u> </u>
Discharge Pump	7/12/2007	6.0	52.8	64	<1	<1	52.8	3.6	2		<0.1	6.5	7.2	
Discharge Pump	7/8/2008	6.0	75	91	<1	<1	75	4.9	6		<0.1	<1	7.3	
Discharge Pump	9/18/2008	5.0	28	34	<1	<1	28	6.7	30		<0.1	<1	8.9	
Discharge Pump	10/16/2008	7.0	15	18	<1	<1	15	85.0	13		<0.1	5.5	7.9	
Discharge Pump	7/7/2009	6.0	95	116	<1	<1	95	7.3	11		<0.2	14.0	7.2	
Treatment Pond	8/11/2005	5.0	30	37	<1	<1	30	1.0	1300		<0.1	14.0	8.5	
Treatment Pond	9/15/2005	6.0	66	81	<1	<1	66	6.1	>3000		0.8	12.9	7.1	
Treatment Pond	10/13/2005	6.0	76	93	<1	<1	76	7.2	1300		0.3	17.0	7.3	
Treatment Pond	6/29/2006	5.0	55	67	<1	<1	55	3.7	17		<0.1	9.1	6.9	
Treatment Pond	8/2/2006	5.0	75	91	<1	<1	75	4.2	700		0.1	13.2	7.2	
Treatment Pond	10/11/2006	<1	110	134	<1	<1	110	6.7	2800		0.2	20.3	7.3	
Treatment Pond	7/12/2007	8.0	90.8	111	<1	<1	90.8	4.4	1100		0.1	18.4	7.6	
Treatment Pond	7/8/2008	7.0	50	61	<1	<1	50	5.4	30		0.2	14.6	7.8	
Treatment Pond	9/18/2008	10.0	190	231	<1	<1	190	6.8	16000		0.4	23.1	8.0	
Treatment Pond	10/16/2008	10.0	130	159	<1	<1	130	7.7	2400		0.1	24.5	7.6	
Treatment Pond	7/7/2009	6.0	75	91	<1	<1	75	6.8	700		0.7	13.7	7.9	
Bloods Creek Upstream	8/11/2005	<1	30	37	<1	<1	30	0.5	80		<0.1	2.0	7.0	
Bloods Creek Upstream	6/20/2006	<1	10	12	<1	<1	10	<0.5	<2		<0.1	<1	6.3	
Bloods Creek Upstream	7/12/2007	2.0	25.6	31	<1	<1	25.6	0.5	8		<0.1	<1	7.0	
Bloods Creek Upstream	7/8/2008	2.0	24	29	<1	<1	24	<0.5	13		<0.1	<1	7.1	
Bloods Creek Upstream	7/7/2009	1.0	15	18	<1	<1	15	2.1	50		<0.2	<1	6.8	
Bloods Creek Downstream	8/11/2005	6.0	81	99	<1	<1	81	1.0	130		<0.1	2.0	6.8	
Bloods Creek Downstream	6/20/2006	<1	15	18	<1	<1	15	<0.5	2		<0.1	<1	6.3	
Bloods Creek Downstream	7/12/2007	6.0	30	37	<1	<1	30	0.7	50		<0.1	<1	6.9	
Bloods Creek Downstream	7/8/2008	1.0	25	30	<1	<1	25	0.6	130		<0.1	<1	7.1	
Bloods Creek Downstream	7/7/2009	1.0	30	37	<1	<1	30	2.2	13		<0.2	<1	7.2	