

January 23, 2022

Mr. Jeff Gouveia Bear Valley Water District PO Box 5027 Bear Valley, California 95223

RE: Bear Valley Water District – Third Tri-Annual 2021 Groundwater Monitoring Report, WDRs Order No. 5-01-208 and R5-2005-0139.

Dear Mr. Gouveia:

Please find an electronic copy of the <u>Third Tri-Annual 2021 Groundwater Monitoring Report</u> as required by the revised Monitoring and Reporting Requirements of Order No. 5-01-208. Board staff have requested that all monitoring reports be submitted electronically and have a transmittal letter signed and dated by the discharger. Accordingly, please sign (and date) the attached form and re-attach to this report before emailing to the Regional Board by the **February 1**<sup>st</sup> deadline. The report should be emailed to centralvalleysacramento@waterboards.ca.gov.

Note that historical and third tri-annual 2021 groundwater monitoring data have been reviewed and analyzed in the preparation of this groundwater monitoring report.

Please contact me at your earliest convenience should you have any questions regarding the content of this report.

Sincerely, STANTEC

Thomas W. Butler PG, CEG, CHG Senior Hydrogeologist/Geochemist

Attachment – Third Tri-Annual 2021 Groundwater Monitoring Report (e-copy)

#### **Monitoring Report Submittal Transmittal Form**

Attn: Ms. Mary Boyd

Central Valley Regional Water Quality Control Board

11020 Sun Center Drive #200 Rancho Cordova, CA 95670-6114

Discharger: Bear Valley Water District

Name of Facility: Bear Valley Wastewater Treatment and Disposal Facility

WDRs Order Number: **5-01-208**County: Alpine County

Regulator Program: Waste Discharge to Land (Non15)

Unit: CIWQS Place ID: Compliance 209035

The <u>Bear Valley Water District</u> is hereby submitting to the Regional Water Quality Control Board ("RWQCB") the following information:

#### **Check all that apply:**

| Annual Monitoring Report for the year                                                                           |
|-----------------------------------------------------------------------------------------------------------------|
| 1 <sup>st</sup> /2 <sup>nd</sup> (circle one) Semi-annual Monitoring Report for the year                        |
| 1 <sup>st</sup> /2 <sup>nd</sup> (3 <sup>rd</sup> circle one) Tri-Annual Monitoring Report for the year of 2021 |
| Monthly Monitoring Report for the month of                                                                      |

During the monitoring period, there were / were not (circle one) violations of the WDR'S

1. The violations were:

**See Attached Report** 

2. The actions to correct the violations were:

**See Attached Report** 

Certification Statement

"I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment."

Signature: Phone: (209) 753-2112

Printed Name: Jeff Gouveia Date: January 23, 2022

**BVWD** General Manager

### Bear Valley Water District – Third Tri-Annual 2021 Groundwater Monitoring Report



Prepared for:
Bear Valley Water District
PO Box 5027
Bear Valley, California 95223

Prepared by: Stantec Consulting Services Inc. 1340 Treat Boulevard, Suite 300 Walnut Creek, California 94597

### **Table of Contents**

| 1.0    | EXECUT     | IVE SUMMARY                                       | 1.1 |
|--------|------------|---------------------------------------------------|-----|
| 2.0    | INTROD     | UCTION AND BACKGROUND                             | 2.1 |
| 2.1    | INTROD     | UCTION                                            | 2.1 |
| 2.2    | BACKG      | ROUND                                             | 2.3 |
| 2.3    | GEOLO      | GY                                                | 2.3 |
| 2.4    | SOILS      |                                                   | 2.3 |
|        | 2.4.1      | Ridge Top                                         | 2.4 |
|        | 2.4.2      | Ridge Side                                        | 2.4 |
|        | 2.4.3      | Valley Floor                                      | 2.4 |
|        | 2.4.4      | Field Observations                                | 2.4 |
| 3.0    | GROUN      | DWATER REGULATORY REQUIREMENTS                    | 3.1 |
| 3.1    | WATER      | QUALITY OBJECTIVES AND BASIN PLAN REQUIREMENTS    | 3.1 |
| 3.2    | ANTIDE     | GRADATION POLICY                                  | 3.1 |
| 3.3    | BEAR V     | ALLEY WATER DISTRICT WASTE DISCHARGE REQUIREMENTS | 3.2 |
| 4.0    | GROUN      | IDWATER MONITORING RESULTS                        | 4.1 |
| 4.1    |            | ORING SUMMARY                                     |     |
| 4.2    |            | IDWATER ELEVATIONS, GRADIENTS, AND FLOW DIRECTION |     |
| 4.3    |            | IDWATER QUALITY                                   |     |
|        | 4.3.1      | Compliance Monitoring Well MW-1                   |     |
|        | 4.3.2      | Background Monitoring Well MW-2                   |     |
|        | 4.3.3      | Compliance Monitoring Well MW-3                   |     |
|        | 4.3.4      | Compliance Monitoring Well MW-4                   |     |
|        | 4.3.5      | Compliance Monitoring Well MW-5                   |     |
|        | 4.3.6      | Compliance Monitoring Well MW-6                   |     |
| 5.0    | BACKG      | ROUND GROUNDWATER QUALITY SUMMARY                 | 5.1 |
| 5.1    |            | CAL ANALYSIS INTRODUCTION                         |     |
| 5.2    |            | R ANALYSIS                                        |     |
| 5.3    |            | ALITY TEST                                        |     |
| 5.4    |            | CIFIC GROUNDWATER LIMITATIONS                     |     |
| 5.5    |            | EGRADATION ASSESSMENT                             |     |
| 6.0    | SUMMA      | RY AND CONCLUSIONS                                | 6.1 |
| 7.0    | PROFES     | SIONAL SEALS AND CERTIFICATIONS                   | 7.1 |
| LIST C | OF TABLES  |                                                   |     |
| Table  | e 1 Regior | nal Board Interim Groundwater Limitations         | 3.3 |
|        |            | dwater Monitoring Requirements                    |     |
|        |            | ri-Annual 2021 Groundwater Quality Summary        |     |
|        |            | dwater Elevation Summary                          |     |
|        |            |                                                   |     |



i

| Table 5 2021 Sto   | atistical Assessment of Background Groundwater Quality  | 5.3 |
|--------------------|---------------------------------------------------------|-----|
| Table 6 2021 Re    | commended Site-Specific Groundwater Limitations         | 5.4 |
| Table 7 2021 Gr    | oundwater Monitoring Compliance Summary                 | 5.5 |
| LIST OF FIGURES    |                                                         |     |
| Figure 1 Third Tri | -Annual 2021 Groundwater Elevation Contour Map          | 2.2 |
| Figure 2 Ground    | dwater Elevation Time Series Chart                      | 4.3 |
|                    | e Series Chart                                          |     |
| Figure 4 Chlorid   | e Time Series Chart                                     | 4.5 |
| LIST OF APPEND     | CES                                                     |     |
| APPENDIX A         | GROUNDWATER MONITORING PROTOCOL                         |     |
| APPENDIX B         | THIRD TRI-ANNUAL 2021 ANALYTICAL RESULTS AND FIELD LOGS |     |
| APPENDIX C         | HISTORICAL GROUNDWATER ELEVATIONS AND QUALITY           |     |



Executive Summary January 23, 2022

### 1.0 Executive Summary

- Groundwater elevation monitoring during the third tri-annual monitoring event of 2021 indicates flow that was roughly perpendicular to site topography and generally towards the northwest at a horizontal gradient ranging from 0.072 to 0.079;
- Groundwater quality monitoring indicates pH (MW-3), iron (MW-1, MW-3, and MW-6), manganese (MW-1 and MW-6), ammonia (MW-6), and total coliform (MW-6) exceeded water quality goals for agricultural and/or potable use during the third tri-annual monitoring event. MW-2 and MW-5 did not contain sufficient water to allow sampling.
- Revised background statistics were computed, and the site-specific groundwater limitations updated as part of this <a href="Third Tri-Annual 2021">Third Tri-Annual 2021</a> Groundwater Monitoring Report. Of all the constituents assessed tri-annually in 2021, only iron and manganese (MW-1 and MW-6) were present at concentrations that may be considered above water quality objectives, at statistically significant levels. Conditions that naturally favor iron and manganese mobilization are present in shallow groundwater in the area, including acidic soils and naturally low pH. Thus, these exceedances should not be considered as irrefutable proof that an impact do to wastewater disposal has occurred. The background statistics will again be updated as part of the <a href="Third Tri-Annual 2022">Third Tri-Annual 2022</a> Groundwater Monitoring Report.
- Statistical analysis indicates that all of the remaining parameters assessed in 2021, including: nitrate, ammonia, pH, boron, chloride, sodium, and total coliform were in compliance with site specific groundwater limitations, indicating further compliance with State's Anti-Degradation Policy;
- Only one background well exists and thus computed 2021 background statistics could
  not reasonably account for natural special variations in water chemistry common in
  shallow groundwater systems. Furthermore, surface water from a nearby stream may
  influence (likely through dilution) groundwater quality due to its close proximity to the
  shallow background monitoring well; and,
- Lack of a groundwater monitoring network that adequately accounts for spatial
  variations in background groundwater quality remains the most significant monitoring
  deficiency at the wastewater treatment and disposal facility. Should additional
  information be required regarding spatial changes in background water chemistry
  additional background well should be installed.

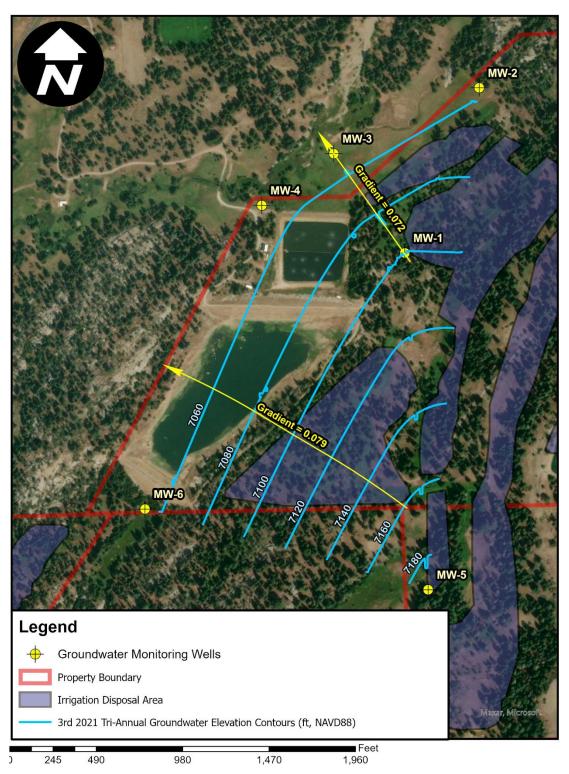
Stantec

Introduction and Background January 23, 2022

### 2.0 Introduction and Background

#### 2.1 INTRODUCTION

The Bear Valley Water District (District) provides sanitary sewer collection, treatment and disposal for approximately 600 residential and commercial connections in the Alpine County community of Bear Valley, including the Lake Alpine basin area and the Mt. Reba Ski Area. The District's service area is primarily north of State Highway 4 serving the developed private lands in the Bear Valley village area and US Forest Service campgrounds and special use permitted areas. The District wastewater treatment and disposal facility (WWTF) is regulated by the Central Valley Regional Water Quality Control Board (Regional Board) and the Regional Board's Waste Discharge Requirements Order No. R5-2005-0139 and Order No. 5-01-208 (WDRs). The WWTF is located south of Highway 4 and is shown in Figure 1.


The District's WDRs contain monitoring and reporting requirements, which include tri-annual monitoring of groundwater. This report presents groundwater monitoring data obtained during the third tri-annual monitoring event, which was conducted on October 20<sup>th</sup> and 21<sup>st</sup>, 2021 and satisfies the Tri-Annual Groundwater Monitoring Report reporting requirements as specified in the District's Revised Monitoring and Reporting Program for WDR Order No. R5-2005-0139 (MRP). The revised MRP states that groundwater monitoring reports shall be submitted "by the 1<sup>st</sup> day of February, July, and September of each year", corresponding to combined *annual/third tri-annual*, *first tri-annual*, *and second tri-annual reporting* periods, respectively. It should be noted that these reporting periods do not correspond to climate and related environmental conditions that prohibit site access and well sampling during certain times of the year and therefore the actual report submittal may vary from that which is stipulated in the MRP.

Regional Board staff's recognition of these climate controls was memorialized in the *July 31*, *2012* email correspondence. In summary, that correspondence stated that Regional Board staff will not recommend enforcement to the Executive Officer so long as the 1<sup>st</sup> and 2<sup>nd</sup> tri-annual monitoring reports are submitted by September 1<sup>st</sup> and November 1<sup>st</sup> of each year, respectively, instead of the dates currently required in the MRP. The 3<sup>rd</sup> tri-annual report will remain due by February 1<sup>st</sup>. Although Regional Board staff have informally agreed to extend tri-annual monitoring report due dates by not seeking enforcement (provided the 1<sup>st</sup> and 2<sup>nd</sup> tri-annual reports are submitted by September 1<sup>st</sup> and November 1<sup>st</sup>, respectively), we further recommend that Regional Board staff formally memorialize these changes in the MRP at their earliest convenience, in order to assure further violations and potential related enforcement actions against the District do not occur.



Introduction and Background January 23, 2022

Figure 1 Third Tri-Annual 2021 Groundwater Elevation Contour Map





Introduction and Background January 23, 2022

#### 2.2 BACKGROUND

A daily average influent flow of 0.045 million gallons per day (MGD) entered the District WWTF during 2021, which was then treated in a series of aerated treatment ponds where the biodegradable constituents are consumed and/or sequestered. Effluent from the aerated ponds was then stored in a 76.4 MG reservoir (effluent storage pond) or applied directly to land (summer months only). During the summer months, the stored effluent may be disposed of through spray irrigation to approximately 120 acres of permitted land, which includes approximately 80 acres of leased land and approximately 40 acres of land authorized by a Special Use Permit from the US Forest Service. Of the 120 gross acres of land (leased and Special Use Permit), approximately 80 acres (40 of lease land and 40 acres from the Special Use Permit) are currently suitable and/or used for effluent disposal purposes. The leased disposal area and permitted US Forest Service land have been in service before the installation of the groundwater monitoring wells (approximately 25 years for the leased land) at the site.

Effluent disposal via spray irrigation involves the disbursement of the effluent through low impact sprinklers upon soils and vegetation within the disposal area. The water is allowed to percolate into the soil and evapotranspirate into the atmosphere. The WDRs currently limit influent flow to 0.1 MGD (annual average basis) and limit application of wastewater to reasonable rates considering soil, climate and the irrigation management system.

#### 2.3 GEOLOGY

The District's WWTF is located west of the Sierra crest along Bloods Creek, a tributary of the North Fork of the Stanislaus River. The elevations range from 7080 ft (msl) at the treatment pond to 7480 ft (msl) at the ballast pond on top of the ridge, east of the treatment and storage ponds. The geologic map for the Sacramento quadrangle (Wagner, Jennings, Bedrossian and Bortugno, 1981) indicates that Mesozoic granites underlie the area. This was confirmed by the presence of numerous granite outcrops in the meadows and at the base of the ridge. The map also shows traces of the Tertiary Mehrten Formation, described as an andesitic conglomerate, sandstone, and breccia. Although a competent outcrop of andesitic rock was not observed, the ridge does contain numerous andesitic fragments, produced by parent rock weathering. Just below the eastern side of the ridge crest are numerous large granite boulders, potentially representing glacial transport and deposition.

#### 2.4 SOILS

The following soil descriptions are taken from the 1981 U.S. Forest Service soil survey of the Stanislaus National Forest. The descriptions are in agreement with field observations at the site and include the following:



Introduction and Background January 23, 2022

#### 2.4.1 Ridge Top

The soil along the southern end of the ridge top is classified as a lithic cryumbrept. This soil is described as a tan, moderately acid, loam about 5 inches thick, and containing no substantive subsoil. Rock content can range up to 60 percent from the substratum of fractured hard andesitic tuff or tuff-breccia. The soil has excessive drainage with moderately rapid permeability and a very high maximum erosion hazard. The soil supports basin sagebrush, mule's ear, perennial grasses, and scattered lodgepole pine.

### 2.4.2 Ridge Side

The soil along the disposal area, on the west side of the ridge, is classified as a gerle family generally found on 5 to 35 percent slopes. The surface soil is described as a dark gray, slightly acid, sandy loam, about 10 inches thick. The subsoil is described as a moderately acid, light brownish gray, sandy loam. The substratum is extremely stony (rock content can exceed 35%) consisting of glacial debris derived from granitic parent rocks. Additionally, the soil has excessive drainage, rapid permeability, and a moderate to high maximum erosion hazard, typically supporting mixed conifer forests.

### 2.4.3 Valley Floor

The valley floor soil, north of and below the treatment pond, is classified as an entic cryumbrept and described as a brown, moderately acid loam, sandy loam, and loamy sand, about 40 inches in thickness. The substratum is recent alluvium from granitic rocks and is well drained with moderately rapid to rapid permeability. It supports annual grasses, perennial grasses or sedge, and brush.

#### 2.4.4 Field Observations

There is a good correlation between the topography of the disposal area and soil development and thickness. Mass wasting and in place weathering/deposition created a soil continuum that one can easily recognize and follow from the ridge top to the valley floor. Starting at the top of the ridge the soil is thin and scarcely present. What soil exists is very shallow, poorly developed, poorly sorted, contains no appreciable organic matter, and has a large percentage of andesitic rock fragments. The thickness of the soil increases as one moves down slope with more organic content being observed, correlating well with increased vegetation. Although the soil is still poorly sorted, it increasingly becomes more uniform towards a sandy loam with granitics composing more of the parent material. On the valley floor the soil contains organic material and is at its maximum development and thickness within the disposal area. The alluvial substratum is well-sorted sand with the parent material consisting of mostly granitic rock, with only a minor andesitic contribution. The granitic origin is marked by numerous small mica flakes, found within the soil profile.



Groundwater Regulatory Requirements January 23, 2022

### 3.0 Groundwater Regulatory Requirements

Discharge at the Bear Valley Water District WWTF is subject to requirements contained in the wastewater permit (Waste Discharge Requirements, or WDRs), Standard Provisions and Reporting Requirements for Waste Discharge Requirements 1 March 1991, the Water Quality Control Plan for the California Regional Water Quality Control Board, Central Valley Region and associated documents (Basin Plan). These requirements and policies are discussed below as they relate to discharges to land and the groundwater limitations at the WWTF.

#### 3.1 WATER QUALITY OBJECTIVES AND BASIN PLAN REQUIREMENTS

The Central Valley Basin Plan contains water quality objectives for groundwater. These water quality objectives apply to all groundwater in the San Joaquin River Basin, though they do not require improvement over naturally occurring background concentrations. The groundwater objectives are:

- Bacteria total coliform organisms shall be less than 2.2 MPN/100ml over any sevenday period.
- Groundwater shall not contain chemical constituents that adversely affect beneficial uses.
- At a minimum, groundwater designated for municipal use shall not contain chemical constituents in concentrations greater than the maximum contaminant levels (MCLs) contained in Title 22 of the California Code of Regulations. To protect all beneficial uses, the Regional Board may apply limits more stringent than the MCLs.
- At a minimum, groundwater designated for municipal use shall not contain concentrations of radionuclides in excess of the MCLs contained in Title 22 of the California Code of Regulations.
- Groundwater shall not contain taste or odor constituents that cause nuisance or adversely affect beneficial uses.
- Groundwater shall be maintained free of toxic substances in concentrations that produce detrimental physiological response...

In conjunction with the Basin Plan groundwater objectives, the Regional Board has compiled water quality goals in the Regional Board staff report *A Compilation of Water Quality Goals*, updated in July of 2008. This report is intended to assist interpretation of the above narrative water quality objectives.

#### 3.2 ANTIDEGRADATION POLICY

In 1968, the State Water Resources Control Board adopted Resolution No. 68-16, Statement of Policy with Respect to Maintaining High Quality of Waters in California, or the State



Groundwater Regulatory Requirements January 23, 2022

Antidegradation Policy. The Antidegradation policy requires that whenever the quality of waters is better than the water quality standards or water quality objectives, and a discharge does or reasonably has the potential to degrade the high quality water, then such degradation must:

- Not unreasonably affect beneficial uses, i.e., cause the water to exceed water quality standards or water quality objectives; and
- Be consistent with the best practicable treatment and control technology such that the highest water quality is maintained consistent with the maximum benefit to the people of the State.

The Antidegradation Policy applies to surface water and groundwater.

#### 3.3 BEAR VALLEY WATER DISTRICT WASTE DISCHARGE REQUIREMENTS

The current District WDRs (Order No. 5-01-208 section D) have groundwater limitations that state:

- 1. Release of waste constituents from any storage or treatment component associated with the WWTF shall not cause groundwater under and beyond the storage or treatment component, as determined by an approved monitoring network, to:
  - a. Contain any of the constituents (identified in Table 1) in concentrations greater than as listed or greater than background quality, whichever is greater.
  - b. Contain any constituent identified in Groundwater Limitation D.1.a in concentrations greater than background quality (whether chemical, physical, biological, bacteriological, radiological, or some other property of characteristic).
  - c. Exhibit a pH of less than 6.5 or greater than 8.5 pH Units.
  - d. Impart taste, odor, or color that creates nuisance or impairs any beneficial use.
- 2. a. Release of waste constituents from any land disposal area associated with the WWTF shall not cause groundwater under and beyond the land disposal area to contain waste constituents in concentrations statistically greater than background water quality, except for coliform bacteria. For coliform bacteria, increases shall not cause the most probable number of total coliform organisms to exceed 2.2 MPN/100ml of any 7-day period.
  - b. If groundwater monitoring shows that waste constituents are present in concentrations greater than background, then upon the request of the Executive Officer, the Discharger shall complete the report described in Provision F.3.



Groundwater Regulatory Requirements January 23, 2022

**Table 1 Regional Board Interim Groundwater Limitations** 

| Parameter                | Units      | Interim Limitation* |
|--------------------------|------------|---------------------|
| рН                       | Std. units | 6.5 – 8.4**         |
| Boron                    | mg/l       | 0.6                 |
| Chloride                 | mg/l       | 142                 |
| Iron                     | mg/l       | 0.3                 |
| Manganese                | mg/l       | 0.05                |
| Sodium                   | mg/l       | 69                  |
| Total Coliform Organisms | MPN/100ml  | Non-Detect          |
| Total Dissolved Solids   | mg/l       | 450                 |
| Total Nitrogen           | mg/l       | 10                  |
| Nitrite as N             | mg/l       | 1                   |
| Nitrate as N             | mg/l       | 10                  |
| Ammonia as N             | mg/l       | 0.5                 |

<sup>\*</sup> From Waste Discharge Requirements Order No. 5-01-208



<sup>\*\*</sup>From a Compilation of Water Quality Goals, July 2008

Groundwater Monitoring Results January 23, 2022

### 4.0 Groundwater Monitoring Results

#### 4.1 MONITORING SUMMARY

The third tri-annual groundwater monitoring event occurred on October 20<sup>th</sup> and 21<sup>st</sup>, 2021 with sampling being performed by District staff and analytical activities being performed by Alpha Analytical Laboratories Inc. The sampling procedure utilized in monitoring the District's wells is included as Appendix A of this report for reference. Field measurements of depth to groundwater, electrical conductivity (EC), pH, and temperature were conducted in addition to the laboratory analysis of the parameters identified in Table 2 and according to the revised Monitoring and Reporting Program (MRP) No. 5-01-208, dated June 20, 2002. A summary of the third tri-annual water quality monitoring data is provided in Table 3. The field logs and laboratory results for the third tri-annual sampling event are included as Appendix B of this report.

**Table 2 Groundwater Monitoring Requirements** 

| Parameter                             | Units     | Frequency <sup>1</sup> |
|---------------------------------------|-----------|------------------------|
| Total Dissolved Solids                | mg/l      | 3 times per year       |
| Nitrate as Nitrogen                   | mg/l      | 3 times per year       |
| рН                                    | pH units  | 3 times per year       |
| Total Coliform Organisms <sup>2</sup> | MPN/100ml | 3 times per year       |
| Ammonia                               | mg/l      | 3 times per year       |
| Total Kjeldahl Nitrogen               | mg/l      | 3 times per year       |
| General Minerals <sup>3</sup>         | mg/l      | 1 time per year        |

<sup>1.</sup> Immediately after snowmelt, in the middle of the summer, and in the fall (shortly before wells become inaccessible due to snow cover.)



<sup>2.</sup> Method No. 9221E, using a minimum of three dilutions of 15 tubes.

<sup>3.</sup> General minerals include boron, chloride, iron, manganese, and sodium, collected during the fall

Groundwater Monitoring Results January 23, 2022

Table 3 Third Tri-Annual 2021 Groundwater Quality Summary

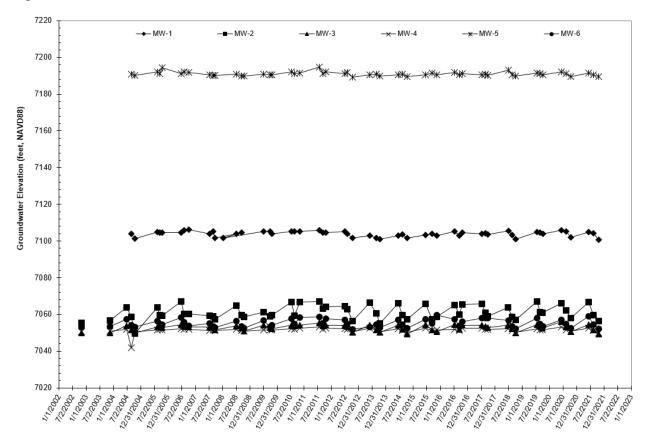
| Parameter                  | MW-1 | MW-2 | MW-3  | MW-4  | MW-5 | MW-6 |
|----------------------------|------|------|-------|-------|------|------|
| Field pH                   | 7.1  | 6.6  | 6.3   | 6.6   | 6.7  | 6.9  |
| Field EC (μS/cm)           | 190  | 284  | 82    | 201   | 289  | 520  |
| Temp. (C)                  | 6.5  | 6.8  | 7.3   | 7.2   | 7.5  | 7.4  |
| NO3-N (mg/L)               | <0.2 | IVS  | <0.2  | <0.2  | IVS  | <0.2 |
| TKN (mg/L)                 | <1   |      | <1    | <1    |      | <1   |
| Ammonia as N               | <0.2 |      | <0.2  | <0.2  |      | 13   |
| TDS (mg/L)                 | 160  |      | 73    | 130   |      | 320  |
| Total Coliform (MPN/100ml) | <1.8 |      | <1.8  | <1.8  |      | 49   |
| B (mg/L)                   | <0.2 |      | <0.2  | <0.2  |      | <0.2 |
| Fe (mg/L)                  | 18   |      | 0.8   | <0.1  |      | 18   |
| Mn (mg/L)                  | 1.5  |      | <0.02 | <0.02 |      | 3.4  |
| Na (mg/L)                  | 11   |      | 5.6   | 7.9   |      | 18   |
| CI (mg/L)                  | 0.8  |      | 6.3   | 6.4   |      | 6.1  |

**Bold** data indicates and simple exceedance of a water quality goal, not to be confused with a statistically significant exceedances. IVS – Insufficient volume of water available to sample.

#### 4.2 GROUNDWATER ELEVATIONS, GRADIENTS, AND FLOW DIRECTION

Depth to groundwater was measured on October 20<sup>th</sup> and 21<sup>st</sup>, 2021 relative to the surveyed top north quadrant of the PVC well casing. Groundwater elevations were subsequently calculated for the third tri-annual monitoring event and summarized in Table 4 below. Table 4 also contains groundwater elevations from the three previous monitoring events and provides the computed change in elevation at each well (in parentheses) relative to the previous monitoring event, illustrating recent temporal variability in groundwater elevation at the WWTF.

Calculated groundwater elevations for the third tri-annual 2021 monitoring event were utilized to construct a contour map (Figure 1), which was subsequently used to estimate both groundwater flow direction and horizontal gradient. Interpreted groundwater flow direction during the third tri-annual monitoring was found to be roughly perpendicular to site topography and generally towards the northwest at a horizontal gradient ranging from 0.072 to 0.079 (Figure 1). Historical groundwater elevations are provided as Appendix C, while a time series plot for computed groundwater elevations is provided as Figure 2, for further reference.



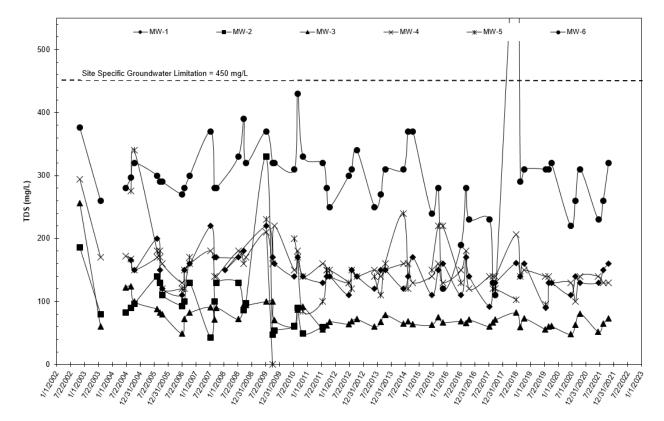

Groundwater Monitoring Results January 23, 2022

**Table 4 Groundwater Elevation Summary** 

| NA - wit - win -   | Reference                          | G               | roundwater Elevat | tion (feet , NAVD8 | 8)              |
|--------------------|------------------------------------|-----------------|-------------------|--------------------|-----------------|
| Monitoring<br>Well | Point<br>Elevation (ft,<br>NAVD88) | Third<br>2020   | First<br>2021     | Second<br>2021     | Third<br>2021   |
| MW-1               | 7114.08                            | 7101.92 (-3.38) | 7105.01 (+3.09)   | 7104.22 (-0.79)    | 7100.56 (-3.66) |
| MW-2               | 7067.53                            | 7057.85 (-4.50) | 7066.62 (+8.77)   | 7059.45 (-7.17)    | 7056.32 (-3.13) |
| MW-3               | 7056.37                            | 7050.47 (-2.79) | 7054.57 (+4.10)   | 7051.65 (-2.92)    | 7049.20 (-2.45) |
| MW-4               | 7054.79                            | 7050.72 (-0.94) | 7052.37 (+1.65)   | 7051.11 (-1.26)    | 7049.87 (-1.24) |
| MW-5               | 7203.78                            | 7189.67 (-1.48) | 7191.45 (+1.78)   | 7190.63 (-0.82)    | 7189.41 (-1.22) |
| MW-6               | 7059.49                            | 7052.61 (-2.21) | 7058.92 (+6.31)   | 7054.40 (-4.52)    | 7052.15 (-2.25) |

Figure 2 Groundwater Elevation Time Series Chart

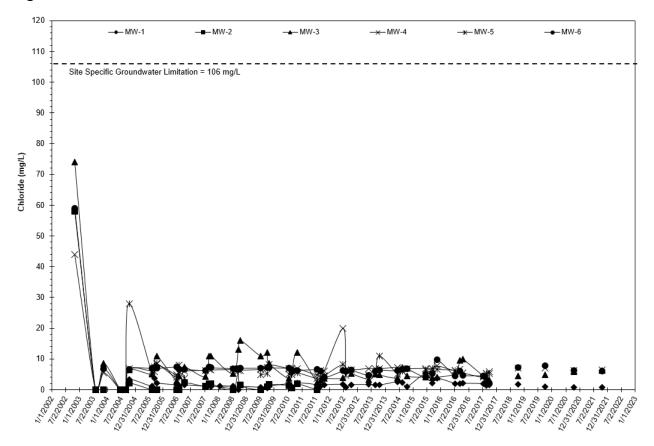





Groundwater Monitoring Results January 23, 2022

#### 4.3 GROUNDWATER QUALITY

Groundwater samples for the third tri-annual monitoring event were collected on October 20<sup>th</sup> and 21<sup>st</sup>, 2021. A summary of the lab and field results for this monitoring event are provided above in Table 3, while historical groundwater quality data are provided in Appendix C for further reference. Historical and third tri-annual data were compiled in time series plots for TDS (Figure 3) and chloride (Figure 4) to illustrate temporal variations in groundwater salinity at the site.


Figure 3 TDS Time Series Chart





Groundwater Monitoring Results January 23, 2022

Figure 4 Chloride Time Series Chart



#### 4.3.1 Compliance Monitoring Well MW-1

Monitoring well MW-1 is generally located hydrogeologically down gradient of wastewater disposal operations and hydrogeologically up gradient of the eastern portion of the treatment pond (Figure 1). Field pH, field EC, and laboratory determined TDS measured during the third tri-annual monitoring event were reported at values of 6.1, 190  $\mu$ S/cm, and 160 mg/l, respectively. Nitrate, TKN, and ammonia were not detected above their respective laboratory reporting limits, while iron and manganese were detected at concentrations of 18 and 1.5 mg/l, respectively. Furthermore, total coliform organisms were not detected above the laboratory reporting limit of 1.8 MPN/100ml.

Additional parameters monitored during the third tri-annual monitoring event of 2021 are summarized in Table 3 for reference.

#### 4.3.2 Background Monitoring Well MW-2

Monitoring well MW-2 is located hydrogeologically up gradient of the disposal areas and serves as the background monitoring well for the WWTF (Figure 1). Field pH and field EC measured



Groundwater Monitoring Results January 23, 2022

during the third tri-annual monitoring event were reported at values of 6.6 and 284  $\mu$ S/cm, respectively. Note that the well purged dry prior to sampling for laboratory constituents and thus those parameters were not reported.

Additional parameters monitored during the third tri-annual monitoring event of 2021 are summarized in Table 3 for reference.

### 4.3.3 Compliance Monitoring Well MW-3

Monitoring well MW-3 is located hydrogeologically down gradient of wastewater disposal operations, near the northwestern portion of the WWTF property (Figure 1). Field pH, field EC, and laboratory determined TDS measured during the third tri-annual monitoring event were reported at values of 6.3, 82  $\mu$ S/cm, and 73 mg/l, respectively. Nitrate, TKN, ammonia, and manganese were not detected above their respective laboratory reporting limits, while iron was detected at a concentration of 0.8 mg/l. Furthermore, total coliform organisms were not detected above the laboratory reporting limit of 1.8 MPN/100ml.

Additional parameters monitored during the third tri-annual monitoring event of 2021 are summarized in Table 3 for reference.

### 4.3.4 Compliance Monitoring Well MW-4

Monitoring well MW-4 is located hydrogeologically down gradient of wastewater disposal operations and the wastewater treatment pond, near the northwestern portion of the WWTF property (Figure 1). Field pH, field EC, and laboratory determined TDS measured during the third tri-annual monitoring event were reported at values of 6.6, 201  $\mu$ S/cm, and 130 mg/l, respectively. Nitrate, TKN, ammonia, iron, and manganese were not detected above their respective laboratory reporting limits. Furthermore, total coliform organisms were not detected above the laboratory reporting limit of 1.8 MPN/100ml.

Additional parameters monitored during the third tri-annual monitoring event of 2021 are summarized in Table 3 for reference.

#### 4.3.5 Compliance Monitoring Well MW-5

Monitoring well MW-5 is located hydrogeologically down gradient of wastewater disposal operations, near the south-central portion of the WWTF property (Figure 1). Field pH and field EC measured during the third tri-annual monitoring event were reported at values of 6.7 and 289  $\mu$ S/cm, respectively. Note that the well purged dry prior to sampling for laboratory constituents and thus those parameters were not reported.

Additional parameters monitored during the third tri-annual monitoring event of 2021 are summarized in Table 3 for reference.



Groundwater Monitoring Results January 23, 2022

#### 4.3.6 Compliance Monitoring Well MW-6

Monitoring well MW-6 is located hydrogeologically down to cross gradient of wastewater disposal operations and down gradient/adjacent to the effluent storage pond, near the southwestern portion of the WWTF property (Figure 1). Field pH, field EC, and laboratory determined TDS measured during the third tri-annual monitoring event were reported at values of 6.9, 520  $\mu$ S/cm, and 310 mg/l, respectively. Nitrate and TKN were not detected above their respective laboratory reporting limits, however, ammonia, iron, and manganese were detected at concentrations of 13, 18, and 3.4 mg/l, respectively. Furthermore, total coliform organisms were detected at a density of 49 MPN/100ml.

Additional parameters monitored during the third tri-annual monitoring event of 2021 are summarized in Table 3 for reference.



Background Groundwater Quality Summary January 23, 2022

### 5.0 Background Groundwater Quality Summary

#### 5.1 STATISTICAL ANALYSIS INTRODUCTION

On behalf of the District, ECO:LOGIC Engineering (now Stantec) submitted a <u>Groundwater Characterization Report</u> (GCR), in *January 2005*. This report was submitted in accordance with the District's WDRs and the Regional Board's *July 8, 2004* <u>Technical Report Review and Comments</u> letter requesting a statistical determination of background groundwater quality, pursuant to Title 27, Section 20415(e)(10) of the California Code of Regulations. The report compared actual COPC concentration at each of the compliance wells to both the Regional Board's Interim Groundwater Limitations and calculated background COPC using the 95% Confidence Limit (CL). As part of the <u>2006 Annual Report</u>, the statistical assessment was revised via an alternative methodology utilizing the 99% upper prediction limit (UPL) for parametrically distributed data, combined with alternative tests for non-parametric data. The background groundwater quality assessment has been updated annually since 2006. The analysis provided below represents the most current update to the statistical assessment of background groundwater quality, utilizing data collected through the third tri-annual monitoring event of 2021.

The following provides a summary of the assumptions used to compute the 99% UPL of background groundwater quality:

- Statistical analysis performed annually;
- Statistical test performed for the parameters TDS, nitrate, ammonia, pH, total coliform, boron, chloride, iron, sodium, and manganese;
- Data collected during the year of 2003 and earlier were not assessed due in part to several factors including the influence of well drilling activities and lack of filtration for metals. All data following 2003 were included in the statistical analysis;
- A pass 1 of 3 re-sampling strategy was employed; and,
- Maximum reported value, not reflective of an unreasonable anomaly, was used to represent background groundwater quality for non-parametric data.

#### 5.2 OUTLIER ANALYSIS

Prior to the evaluation of background groundwater quality, all background data (MW-2) were reviewed using Dixon's test (where n is between 3 and 25) or Rosner's test (for n > 25) for statistically significant outliers at the 99% confidence limit. The following provides a summary of the identified outliers and any actions taken.



Background Groundwater Quality Summary January 23, 2022

**Field pH:** No outliers identified.

**TDS:** One statistical outlier was identified during the 7/7/09 monitoring event. The results are anomalously high and do not correspond with the reported EC values, suggesting a laboratory error. The reported outlier was subsequently removed.

**Nitrate as N:** Four outliers were identified and were reviewed and found to be close or at the reporting limit. The outliers were thus determined to be reasonable and subsequently retained for further analysis.

**Ammonias as N:** No outliers identified.

**Total Coliform:** Four outliers were identified and during the 7/8/08, 10/26/09, 11/4/10, and 8/24/17 monitoring events. The outliers were reviewed, determined to be representative of the range of detected values, and thus retained for further analysis.

**Boron:** One outlier was identified and found to be at an alternative reporting limit. The outlier was retained for further analysis.

**Chloride:** Two statistical outlier were identified and during the 9/18/08 and 10/9/2012 monitoring events. These data were reviewed and no anthropogenic cause could be attributed to the anomalies. Accordingly, they were retained for further analysis.

**Iron:** One outlier was identified (10/2/2019); however no anthropogenic cause could be attributed to its detection. Accordingly, the outlier was retained for further analysis

**Sodium:** Two statistical outliers were identified and during 9/18/08 and 10/9/12 monitoring events. These outliers were reviewed and no anthropogenic cause could be attributed to the anomalies. Accordingly, they were retained for further analysis.

**Manganese:** Eight statistical outliers were identified during the 10/13/04, 8/29/07, 7/21/11, 10/9/12, 8/21/13, 10/14/14, 7/13/17, and 10/2/19 monitoring events. These outliers were reviewed and no anthropogenic cause could be attributed to the anomalies. Accordingly, they were retained for further analysis.

#### 5.3 NORMALITY TEST

Following the outlier analysis a normality test was performed using either the Shapiro-Wilks Test (50 or fewer measurements) or the Shapiro-Francia Test (greater than 50 measurements) at the 99% level of confidence. If the background monitoring data were normally distributed, or could be made normal through an appropriate transformation, parametric tests were applied. Alternatively, if the data were found to be non-parametrically distributed, non-parametric statistical tests were used. Following the initial data review, as summarized above, 99%



Background Groundwater Quality Summary January 23, 2022

background UPLs were computed, based on inclusion of the 2021 monitoring data the results of which are summarized in Table 5.

Table 5 2021 Statistical Assessment of Background Groundwater Quality

| СОРС                       | Background<br>99% UPL | Data Distribution/Method                 | Data<br>Points |
|----------------------------|-----------------------|------------------------------------------|----------------|
| TDS (mg/l)                 | 120                   | Parametric UPL (Square Root Transformed) | 50             |
| Nitrate as N (mg/l)        | 0.5                   | Non-Parametric UPL                       | 51             |
| Ammonia as N (mg/l)        | 1                     | Non-Parametric UPL                       | 51             |
| рН                         | <b>5.7</b> – 7.2      | Parametric UPL (Natural Log Transformed) | 53             |
| Total Coliform (MPN/100ml) | 2200                  | Non-Parametric UPL                       | 51             |
| Boron (mg/l)               | 0.2                   | Non-Parametric UPL                       | 41             |
| Chloride (mg/l)            | 2.5                   | Parametric UPL (Natural Log Transformed) | 41             |
| Iron (mg/l)                | 16                    | Non-Parametric UPL                       | 43             |
| Sodium (mg/l)              | 8.6                   | Non-Parametric UPL                       | 41             |
| Manganese (mg/l)           | 0.22                  | Non-Parametric UPL                       | 43             |

Bold data indicate an exceedance of the Regional Board's Interim Groundwater Limitations

#### 5.4 SITE SPECIFIC GROUNDWATER LIMITATIONS

For COPC's where the background 99% UPL or non-parametric statistics are greater than the Regional Board's Interim Groundwater Limitation, the background statistic should be used for facility compliance. Of the COPCs analyzed, computed background (MW-2) statistics for iron, manganese, and total coliform exceeded the Regional Board's Interim Groundwater Limitations of 0.3 mg/l, 0.05 mg/l, and non-detect, respectively. Furthermore, background pH values were statistically lower than the lower limit of the groundwater goal of 6.5. Conversely, where an Interim Groundwater Limitation is greater than the background statistic, the Interim Groundwater Limitation should be used to assess facility compliance, as was the case for all the remaining parameters, provided the facility is implementing best practicable treatment and control measures for the constituent of potential concern. It should be noted however, that the WDR Interim Groundwater Limitations for boron and chloride are inconsistent with agricultural water quality goals and were revised accordingly. Table 6 presents the recommended site specific groundwater limitations for the facility.



Background Groundwater Quality Summary January 23, 2022

Table 6 2021 Recommended Site-Specific Groundwater Limitations

| COPC                       | Site Specific COPC Groundwater Basis for Limitation Limitation |                                                        | Compliance<br>Assessment<br>Methodology |
|----------------------------|----------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------|
| TDS (mg/l)                 | 450                                                            | Agricultural Water Quality Goal                        | 99% LCL                                 |
| Nitrate as N (mg/l)        | 10                                                             | Primary Maximum Contaminant Level                      | Not to exceed                           |
| Ammonia as N (mg/l)        | Ammonia as N (mg/l) 1.5                                        |                                                        | 99% LCL                                 |
| рН                         | <b>5.7</b> – 8.4                                               | STAT Parametric UPL/Agricultural<br>Water Quality Goal | Pass 1 of 3/<br>99% LCL                 |
| Total Coliform (MPN/100ml) | 2200                                                           | STAT Non-Parametric UPL                                | Not to exceed                           |
| Boron (mg/l)               | 0.7                                                            | Agricultural Water Quality Goal                        | 99% LCL                                 |
| Chloride (mg/l)            | 106                                                            | Agricultural Water Quality Goal                        | 99% LCL                                 |
| Iron (mg/l)                | 16                                                             | STAT Non-Parametric UPL                                | Not to exceed                           |
| Sodium (mg/l)              | 69                                                             | Agricultural Water Quality Goal                        | 99% LCL                                 |
| Manganese (mg/l)           | 0.22                                                           | STAT Non-Parametric UPL                                | Not to exceed                           |

Bold data indicate an exceedance of the Regional Board's Interim Groundwater Limitations

#### 5.5 ANTI-DEGRADATION ASSESSMENT

In evaluating facility compliance, the UPL methodology is not appropriate for statistically assessing compliance with water quality goals based on MCLs or agricultural limitations (such as those used in determining Interim Groundwater Limitations) because many of these goals are based on long term averages of water quality. Accordingly, the 99% lower confidence interval (LCL) about the mean is recommended (99% LCL for two-tailed test for pH) and is appropriate for assessing compliance with the parameters TDS, ammonia, upper pH, boron, chloride, and sodium, which were based on unrestricted agricultural use or taste and odor thresholds. The most recent 6 observations (two years) were used in assessing the LCL. However, where a parametric 99% UPL serves as the site specific groundwater limitation, the pass 1 of 3 resampling should be used to assess compliance (that is if one sample of the past three is less than the limitation, no statistically significant impact is noted). Alternatively, for non-parametric tests, a simple exceedance of the site specific groundwater limitation may indicate a statistically significant impact. Table 7 summarizes the results of the compliance assessment.



Background Groundwater Quality Summary January 23, 2022

Table 7 2021 Groundwater Monitoring Compliance Summary

| СОРС                       | Site Specific<br>Groundwater<br>Limitation | Compliance<br>Assessment<br>Methodology | 2021 Statistically<br>Significant<br>Exceedance |
|----------------------------|--------------------------------------------|-----------------------------------------|-------------------------------------------------|
| TDS (mg/l)                 | 450                                        | 99% LCL                                 | None                                            |
| Nitrate as N (mg/l)        | 10                                         | Not to Exceed                           | None                                            |
| Ammonia as N (mg/l)        | 1.5                                        | 99% LCL                                 | None                                            |
| рН                         | <b>5.7</b> – 8.4                           | Pass 1 of 3/ 99% LCL                    | None                                            |
| Total Coliform (MPN/100ml) | 2200                                       | Not to Exceed                           | None                                            |
| Boron (mg/l)               | 0.7                                        | 99% LCL                                 | None                                            |
| Chloride (mg/l)            | 106                                        | 99% LCL                                 | None                                            |
| Iron (mg/l)                | 16                                         | Not to Exceed                           | MW-1 and MW-6                                   |
| Sodium (mg/l)              | 69                                         | 99% LCL                                 | None                                            |
| Manganese (mg/l)           | 0.22                                       | Not to Exceed                           | MW-1 and MW-6                                   |

Of the parameters assessed, only iron and manganese were detected in groundwater at levels that statistically exceed site specific groundwater limitations during 2021. The exceedances occurred at monitoring wells MW-1 and MW-6. Both iron and manganese are elements that forms pH and redox sensitive minerals in the subsurface, which can become mobile under reducing conditions and in groundwater with low pH, both of which are not uncommon in alpine groundwater environments. For instance, the dilute nature and lack of buffering capacity of alpine groundwater (primarily snowmelt) and presences of acidic surface soils bode well for low pH groundwater, a condition that naturally favors manganese mobilization. Coliform another parameter that is sometimes detected is ubiquitous on the surface of the earth and can be present in groundwater where a conduit, such as a fracture connected to the surface, exists. Furthermore, coliform, a parameter that is ambiguous in the surface environment, can be introduced during sampling from contaminated equipment, introduced water, or windblown sediment/bacteria colonies. Therefore, the presence of iron, manganese, or coliform in groundwater should not in of themselves be considered irrefutable proof of wastewater impacts.

Caution should also be exercised when evaluating computed "background" groundwater values to that of down gradient monitoring locations as the computed background statistics only consider one datum (MW-2) and thus, does not account for natural spatial variations in groundwater quality in the area. Spatial variability of the quality of shallow groundwater is more the norm than the exception and can be attributed to a host of issues including, but not limited to, soil column thickness, soil composition, bedrock composition, grain size distribution, organic matter content, groundwater elevation, acidity/alkalinity, land use, and redox potential. As such quantitative interpretation or comparison of groundwater data collected at "down gradient" monitoring locations to only one background location for the purpose of assessing facility compliance is not recommended. The computed background statistics and site specific



Background Groundwater Quality Summary January 23, 2022

groundwater goals should thus be used only to identify areas which *may have* been impacted with current or historic wastewater disposal practices. If improved background statistics are required, additional monitoring wells should be installed at locations up and cross gradient of the waste discharge.

All of the parameters assessed, with the potential exception of iron and manganese, were in compliance with the site-specific groundwater limitations, indicating further compliance with regards to the State's Anti-Degradation Policy.



Summary and Conclusions January 23, 2022

### 6.0 Summary and Conclusions

Groundwater was assessed during the third tri-annual monitoring event, pursuant to the District's WDRs and MRP, issued by the Regional Board. During the third tri-annual monitoring event, reported water quality values for the following constituents exceeded water quality goals for agricultural and/or potable use at the locations indicated, including:

• pH (below the lower limit): MW-3;

• Iron: MW-1, MW-3, and MW-6;

• Manganese: MW-1 and MW-6;

• Ammonia-N: MW-6; and,

• Total Coliform: MW-6.

Note that MW-2 and MW-5 did not contain a sufficient volume of water to allow sampling during the third quarter 2021 monitoring event.

A revised 2021 annual statistical analysis indicates statistically significant exceedances of site-specific groundwater limitations occurred for only iron and manganese and at MW-1 and MW-6. Dissolved iron and manganese are both commonly spatially transient and can be influenced by variables other than the disposal of effluent. It should be noted that the current groundwater monitoring network contains only one background monitoring well (MW-2) making it impossible to incorporate potential spatial variations into the background statistics. Accordingly, a statistically significant impact should not be considered irrefutable proof that the impact originated as a result of the discharge. Regardless, a revised statistical assessment will be conducted as part of the Third Tri-Annual 2022 Groundwater Monitoring Report, which will also include a revised assessment of background groundwater quality.



Professional Seals and Certifications January 23, 2022

### 7.0 Professional Seals and Certifications

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment.



Thomas W. Butler, PG, CHG, CEG Senior Hydrogeologist/Geochemist



Appendix A Groundwater Monitoring Protocol January 23, 2022

### Appendix A Groundwater Monitoring Protocol

### Bear Valley Water District Groundwater Monitoring Well Sampling Procedures

- 1) The covers of the monitoring wells were opened and loose material cleared from the edged. A propane torch was used to briefly burn the frame of the cover and any debris inside the box and around the well casing (i.e., eliminating potential contamination of samples from ants). The wells are 2-in PVC approximately 13.5 to 23.5 feet deep with the lower 10 to 15 feet screened. The compression cap was removed and placed top down on the well cover.
- 2) Water surface depth was measured to within 0.01 feet by lowering an electronic tape into the well while passing it through a cloth soaked in hypochlorite solution (the tape was cleaned and disinfected in the lab prior to bringing it to the field). The water depth was measured relative the top of the north quadrant of the PVC well casing. More than three well volumes were purged from the wells until pH, EC and temperature stabilized. The volume to purge was calculated based on the well casing diameter (area) times the water column height (well depth from well logs minus depth to water surface times three. no annular space estimate was included).
- 3) Dedicated 12V submersible plastic pumps (ES 60) with a vinyl discharge hose were used for purging and sampling the wells. The pump, hose and cord were decontaminated prior to transport to the field in deionized (D.I.) water plus detergent, and then rinsed three times in D.I. water (running the pump during each to flush water through the impeller and hose) and finally the pump and appurtenances were placed in a dilute hypochlorite solution (running the pump to flush the solution through the impeller and hose). The pump and hose were removed from sealed bins and lowered into the well, avoiding pump or hose touching the cover frame, ground etc. The technician used rubber gloves during sampling and changed them each time anything "dirty" was touched. New gloves were rinsed in chlorine solution prior to handling equipment.
- 4) After priming and pumping a small amount of water through the hose (to remove and remaining liquid in the hose), the discharge rate was measured, by measuring the time to fill a one-gallon container. This time was them multiplied by the well purge volume as calculated in step 2) above. The time to purge three volumes was rounded up by approximately 5 minutes.
- 5) The pump was started and time recorded while it discharged. Approximately every three minutes a roughly 200 ml sample was collected in a glass container from the discharge pump hose and pH, EC and Temperature were measured with a multimeter. All wells stabilized with regards to pH EC, and Temperature.
- 6) Prelabled sample bottles, were introduced into the discharge stream of the pump after pumping 3-well volumes and stabilized pH, EC and Temperature. These were sealed and placed in an ice chest on ice for shipment to the lab.

- 7) The pump was shut off and all equipment was removed, the well cap was rinsed with dilute chlorine solution and replaced and the well cover replaced on the well.
- 8) After measurement, the measuring tape was rolled onto the reel while it was wiped.

Appendix B Third Tri-Annual 2021 Analytical Results and Field Logs January 23, 2022

### Appendix B Third Tri-Annual 2021 Analytical Results and Field Logs

| Date: /0-21-21 Well No: 1                             |                           |                     |             |         |               | Tech. Na                             | ame:                                  | Vest below (                           | Grassy Road             |
|-------------------------------------------------------|---------------------------|---------------------|-------------|---------|---------------|--------------------------------------|---------------------------------------|----------------------------------------|-------------------------|
| Total Well Depth ( Depth to Water (W Casing Diameter: | D):                       |                     | 52<br>2     | iı      |               | Well<br>Diameter<br>(In.)            | Conversi<br>Factor<br>(CV) gal        | on Rour<br>Up                          |                         |
| Water Column Hei<br>Purge/Sampling M                  |                           |                     | 77          | ft.     |               | 2"                                   | 0.163                                 | 0.17                                   |                         |
| /3.77 y                                               | X 0.17  Gal per linear F  | = 2.3t. 1 purge vol |             | Purge   | 2.5           | X nearest .5 # of                    | 3 casing volumes                      | = 7. Total Purg                        | <b><u>gals</u></b> gals |
| Time                                                  | Volume<br>Purged<br>(gal) | pH<br>(SU)          | EC<br>(μS/c | m)      | Temp<br>(°C)  | Turbidity                            | Color                                 | Odor                                   | Pumped<br>Dry           |
| 0308                                                  | 0<br>7.5                  | 7.36                | 21          | 16      | 82            | Clear                                | Clear                                 | N                                      | N                       |
| 0817                                                  | 7.5                       | 7.11                | 18          | 7.8     | 6.5           | Clear                                | Cloudy                                | N                                      | N                       |
|                                                       |                           |                     |             |         |               |                                      |                                       |                                        |                         |
| PURGING DAT pH, EC, and temp                          |                           | lons purge just     | enoug       | h water | to record     | Clear, trace, light, moderate, heavy | Clear,<br>cloudy,<br>yellow,<br>brown | None,<br>faint,<br>moderate,<br>strong | Yes/No                  |
| Notes: Jool<br>Ren dry                                | a fter                    | 1.5 g               | 4 h         | ons     | 2nd<br>during | purje<br>Brd                         | as r                                  | `U                                     | , deg:                  |

| Date: 10-20                                                   | 1-21                    |                   |                                       | Tech. N                   | ame:                           | Jest          |          |
|---------------------------------------------------------------|-------------------------|-------------------|---------------------------------------|---------------------------|--------------------------------|---------------|----------|
| Well No: 2                                                    |                         |                   |                                       | Referen                   | ce Point: No                   | orthmost Orvi | s Meadow |
| Total Well Depth (TWD): Depth to Water (WD): Casing Diameter: | 17.90<br>               | ft.<br>ft.<br>in. |                                       | Well<br>Diameter<br>(In.) | Conversi<br>Factor<br>(CV) gal | Up            | led      |
| Water Column Height (TWD                                      | - WD): 6.6              | 9 ft.             |                                       | 2"                        | 0.163                          | 0.17          |          |
| Purge/Sampling Method. Pur                                    |                         |                   |                                       |                           |                                |               |          |
| 6-69 x 0.17                                                   | = 1.13                  | _                 | 1.5                                   | X                         | 3                              | = 4.5         | gals     |
| Water column Gal per linea                                    | r Ft. 1 purge volume    | Purge vol         | , rounded up to                       | nearest .5 # of           | casing volumes                 | Total Purge   | Volume   |
|                                                               |                         |                   |                                       |                           |                                |               | •        |
| Time Volume                                                   | pH EC                   |                   | Temp                                  | Turbidity                 | Color                          | Odor          | Pumped   |
| Purged (gal)                                                  | (SU) (μS/               | /cm)              | (°C)                                  |                           |                                |               | Dry      |
| 00:3 0                                                        | 655 25                  | 84                | 6.8                                   | Clea                      | Clear                          | N             | N        |
| 0811 80.5                                                     |                         |                   |                                       |                           |                                |               | Yes      |
|                                                               |                         |                   |                                       |                           |                                |               |          |
|                                                               |                         |                   |                                       |                           |                                |               |          |
|                                                               |                         |                   |                                       |                           |                                |               |          |
|                                                               |                         |                   |                                       |                           |                                |               |          |
| DUDCING DATA. (For 0 o                                        | rallons numas just anas | wah watan t       |                                       | Class                     | Class                          | N             | V AI     |
| PURGING DATA: (For 0 g pH, EC, and temperature)               | ganons purge just enot  | ugn water to      | o record                              | Clear,<br>trace,          | Clear,                         | None, faint,  | Yes/No   |
| pri, EC, and temperature)                                     |                         |                   |                                       | light,                    | yellow,                        | moderate,     |          |
|                                                               |                         |                   |                                       | moderate,                 | brown                          | strong        |          |
|                                                               |                         |                   |                                       | heavy                     | blowii                         | strong        |          |
|                                                               |                         |                   |                                       | neavy                     |                                |               |          |
|                                                               |                         |                   |                                       |                           |                                |               |          |
| Notoc                                                         |                         |                   |                                       |                           |                                |               |          |
| Notes:                                                        |                         |                   | · · · · · · · · · · · · · · · · · · · |                           |                                |               |          |
|                                                               |                         |                   |                                       |                           |                                |               |          |
|                                                               |                         |                   | 1                                     |                           |                                |               |          |
|                                                               |                         |                   |                                       |                           |                                | 36            | -        |
|                                                               |                         |                   |                                       |                           |                                |               |          |

|                                                                |                         |                 |          |               |                  | O                                           |                |             |        |  |  |
|----------------------------------------------------------------|-------------------------|-----------------|----------|---------------|------------------|---------------------------------------------|----------------|-------------|--------|--|--|
| Date:                                                          | vell No: 10-20-21       |                 |          |               |                  | Tech. Name:                                 |                |             |        |  |  |
| Well No: 3                                                     |                         |                 |          |               |                  | Reference Point: <u>Middle Orvis Meadow</u> |                |             |        |  |  |
| Total Well Depth                                               | Well Conversion Rounded |                 |          |               |                  |                                             |                |             |        |  |  |
| Depth to Water (WD): 7. 17 ft.                                 |                         |                 |          |               |                  | Diameter                                    | Factor         |             |        |  |  |
| Casing Diameter: 2 in.                                         |                         |                 |          |               |                  | (In.)                                       | (CV) gal       |             |        |  |  |
| Water Column Height (TWD – WD):ft.                             |                         |                 |          |               |                  | 2"                                          | 0.163          | 0.17        |        |  |  |
| Casing Volume:                                                 | gal :                   | = Water Colum   | n Heig   | ht x CV       |                  |                                             |                |             |        |  |  |
| Purge Volume:                                                  | gal                     | = Casing Volun  | ne x 3 ( | volumes       | required)        |                                             |                |             |        |  |  |
| Purge Rate:                                                    | gal/                    | min             |          |               |                  | Purge/Samplin                               | ng Method: (   | Pump / Grab |        |  |  |
| 6.39                                                           | x 0.17                  | = _ / . 0 8     | 2        |               | 1.5              | X                                           | 3              | = 4.        | Sgals  |  |  |
|                                                                |                         |                 |          | Purge vo      |                  | o nearest .5 # of                           |                |             | 8      |  |  |
| Water column                                                   | Gal per linear          | rt. I puige voi | ume      | ruige vo      | i, rounded up to | J Hedrest .J # 01                           | casing volunes | Total Turge | Volume |  |  |
| Time                                                           | Volume                  | рН              | EC       |               | Temp             | Turbidity                                   | Color          | Odor        | Pumped |  |  |
|                                                                | Purged                  | (SU)            | (μS/c    | rm)           | (°C)             |                                             |                |             | Dry    |  |  |
|                                                                | (gal)                   | (30)            | (μολ     | J111 <i>)</i> |                  |                                             |                |             |        |  |  |
| 0245                                                           | 0                       | 6.53            | 413      |               | 7.4              | (led)                                       | Clear          | N           | N      |  |  |
| 0749                                                           | 4.5                     | 6.43            | 32.3     |               | 8:1              | Clear                                       | Cles           | N           | N      |  |  |
| 0752                                                           | 4.5                     | 6.35            | 81.0     |               | 7.9              |                                             | Cleur          | N           | N      |  |  |
| 0755                                                           | .4.5                    | 6.28            | 8        | 2,1           | 7.3              | Clear                                       | Clear          | N           | N      |  |  |
|                                                                |                         |                 |          |               |                  |                                             |                |             |        |  |  |
|                                                                |                         |                 |          |               |                  |                                             |                |             |        |  |  |
| PURGING DATA: (For 0 gallons purge just enough water to record |                         |                 |          |               |                  | Clear,                                      | Clear,         | None,       | Yes/No |  |  |
| pH, EC, and temperature)                                       |                         |                 |          |               | trace,           | cloudy,                                     | faint,         |             |        |  |  |
| ×                                                              |                         |                 |          |               |                  | light,                                      | yellow,        | moderate,   |        |  |  |
|                                                                |                         |                 |          |               |                  | moderate,                                   | brown          | strong      |        |  |  |
|                                                                | ,                       |                 |          |               |                  | heavy                                       |                |             |        |  |  |
|                                                                |                         |                 |          |               |                  |                                             |                |             |        |  |  |
|                                                                |                         |                 |          |               |                  |                                             |                |             |        |  |  |
| Notes:                                                         |                         |                 |          |               |                  |                                             |                |             |        |  |  |
| 110105                                                         |                         |                 |          |               |                  |                                             |                |             |        |  |  |
|                                                                |                         |                 |          |               |                  |                                             |                |             |        |  |  |
|                                                                |                         |                 |          |               |                  |                                             |                |             |        |  |  |

| Well No: Total Well Depth                                              | Date: 10-20 |                  |                                         |         |                 | Tech. Name:  |                 |             |            |          |
|------------------------------------------------------------------------|-------------|------------------|-----------------------------------------|---------|-----------------|--------------|-----------------|-------------|------------|----------|
| Total Well Depth                                                       | 4           | •                |                                         |         |                 | Refer        | ence Point:     | Orvis N     | 1eadow     | Below EH |
| Total Well Depth (TWD): 17.10 ft.                                      |             |                  |                                         |         |                 |              | Conve           | rsion       | Roune      | ded      |
| Depth to Water (WD): 4.92 ft.                                          |             |                  |                                         |         |                 |              | er Factor       |             |            |          |
| Casing Diameter: in.                                                   |             |                  |                                         |         |                 |              | (CV) g          | (CV) gal/ft |            | V        |
| Water Column Height (TWD – WD):ft.                                     |             |                  |                                         |         |                 | 2"           | 0.163           |             | 0.17       |          |
| Casing Volume:                                                         |             | gal = Water Colu | mn Heigl                                | nt x CV |                 |              |                 |             |            |          |
| Purge Volume:                                                          |             | gal = Casing Vol | ıme x 3 (                               | volumes | required)       |              |                 |             |            |          |
| Purge Rate:                                                            | §           | gal/min          |                                         |         | 1               | Purge/Samp   | oling Method    | : Pum       | )/ Grab    |          |
| $ 2-16  \times 0.17 = 107 = 2.5$                                       |             |                  |                                         |         | X 3 = 75 gals   |              |                 |             |            |          |
| Water column Gal per linear Ft. 1 purge volume Purge vol, rounded up t |             |                  |                                         |         | , rounded up to | nearest .5 # | of casing volum | nes T       | otal Purge | Volume   |
|                                                                        |             |                  |                                         |         |                 |              |                 |             |            |          |
| Time                                                                   | Volume      | рН               | EC                                      |         | Temp            | Turbidity    | Color           | Od          | or         | Pumped   |
|                                                                        | Purged      | (SU)             | (μS/cm                                  | )       | (°C)            |              |                 |             | Dry        | Dry      |
|                                                                        | (gal)       | ()               | (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ,       |                 | 8            |                 |             |            |          |
| 07/17                                                                  | 0           | 6,39             | 942                                     |         | 31              | Clar         | Cleir           | N           | 1          | N        |
| 0721                                                                   | 7.5         | 6,50             | 213                                     |         | 8.0             | Clew         | *               | 1           | U          | N        |
| 0725                                                                   | 2.5         | 648              | 19                                      | j       | 7.9             | Clar         | dev             | 1           | ,          | 1        |
| 0727                                                                   | 7.5         | 6.64             | 201                                     |         | 72              | Cles         | , Clex          | . 1         |            | n)       |
|                                                                        |             |                  |                                         |         |                 |              |                 |             |            |          |
|                                                                        |             |                  |                                         |         |                 |              |                 |             |            |          |
| PURGING DATA: (For 0 gallons purge just enough water to record         |             |                  |                                         |         |                 | Clear,       | Clear,          | Nor         | ne,        | Yes/No   |
| pH, EC, and temperature)                                               |             |                  |                                         |         |                 | trace,       | cloudy,         | fain        | t,         |          |
|                                                                        |             |                  |                                         |         |                 | light,       | yellow,         | mod         | derate,    |          |
|                                                                        |             |                  |                                         |         |                 | moderate,    | brown           | stro        | ng         |          |
|                                                                        |             |                  |                                         |         |                 | heavy        |                 |             |            |          |

## BVWD District Groundwater Monitoring Field Data Sheet

|                         | 10           | 21-21                       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | T 1 1            |                            | 11.           |           |
|-------------------------|--------------|-----------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------|----------------------------|---------------|-----------|
| Date:<br><b>Well No</b> |              | 21-21<br>5                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | Tech. N          |                            | West          |           |
|                         | •            |                             | 10        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           | Referei          | ice Point: <u>FS</u>       | land below G  | reen Mach |
| otal Well De            |              |                             | 0.19      | ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           | Well             | Conver                     | sion Roun     | ded       |
| Depth to Wate           |              |                             | 4.37      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | Diamete          | a la company de la company | Up            |           |
| Casing Diame            |              |                             | 2         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | (In.)            | (CV) ga                    |               |           |
| Vater Colum             | n Height (T  | WD – WD):                   | 5.82      | ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           | 2"               | 0.163                      | 0.17          |           |
| asing Volun             | ne:          | _ gal = Water Col           | ımn Heig  | ht x CV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |                  |                            |               |           |
| urge Volume             | e:           | _ gal = Casing Vo           | lume x 3  | (volumes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | required) |                  |                            | <u></u>       |           |
| urge Rate:              |              | _ gal/min                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | Purge/Sampl      | ing Method:(               | Pump Grab     | !         |
| 5.82                    | x (          | 0.17 =                      | 98        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1         | ,00 X            | 3                          | = 3           | gals      |
| Water column            | —<br>Gal per |                             | volume    | Purge vo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           | o nearest .5 # c |                            | es Total Purg | e Volume  |
|                         | ·            |                             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                  |                            |               |           |
| Time                    | Volume       | рН                          | EC        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Temp      | Turbidity        | Color                      | Odor          | Pumpeo    |
|                         | Purged       | (SU)                        | (μS/cm    | 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (°C)      |                  |                            |               | Dry       |
|                         | (gal)        |                             | (µS/CII   | •)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                  |                            |               |           |
| 827                     | 0            | 6.71                        | 28        | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.5       | Clear            | Clear                      | N             | N         |
| 827<br>0828             | 10.25        |                             |           | The state of the s |           |                  |                            |               | Y         |
|                         |              |                             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                  |                            |               |           |
|                         |              |                             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                  |                            |               |           |
|                         |              |                             | -         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                  |                            |               | -         |
|                         |              |                             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                  |                            |               |           |
|                         |              |                             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                  |                            |               |           |
| PURGING                 | DATA: (Fo    | or <b>0</b> gallons purge j | ust enoug | gh water t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | o record  | Clear,           | Clear,                     | None,         | Yes/No    |
| pH, EC, and             | temperatur   | e)                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | trace,           | cloudy,                    | faint,        |           |
|                         |              |                             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | light,           | yellow,                    | moderate,     |           |
|                         |              |                             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | moderate.        | brown                      | strong        |           |
|                         |              |                             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | heavy            |                            |               |           |
|                         |              |                             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -         | , meanly         |                            |               |           |
|                         |              |                             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                  |                            |               |           |
|                         |              |                             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                  |                            |               |           |
| lotes: Ba               | 5221/9       | pupil                       | dex       | inn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Let le    | Ptil             | initio                     | 1 proces      | ·         |
|                         |              | 1 - 0                       |           | - Maria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 170.9     | 6                |                            | 13            |           |
|                         |              |                             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                  |                            |               |           |
|                         |              |                             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 7                |                            |               |           |
|                         |              |                             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                  |                            |               |           |

## BVWD District Groundwater Monitoring Field Data Sheet

| Date:        | 10-          | -21-21<br>6               |               |                         | Tech. N           | lame:             | Wist            |          |
|--------------|--------------|---------------------------|---------------|-------------------------|-------------------|-------------------|-----------------|----------|
| Well N       | 0:           | 6                         |               |                         | Referen           | ice Point: B      | elow South d    | am of PR |
| Total Well I |              |                           | 22.59<br>7.34 | ft.<br>ft.              | Well<br>Diameter  | Convers<br>Factor | sion Roun<br>Up | ded      |
| Casing Dian  | neter:       |                           | 2             | in.                     | (In.)             | (CV) ga           |                 |          |
| Water Colu   | nn Height (  | TWD – WD):                | 15.25         | ft.                     | 2"                | 0.163             | 0.17            |          |
| Casing Volu  | ıme:         | gal = Water C             | olumn Heigh   | nt x CV                 |                   |                   |                 |          |
| Purge Volum  | ne:          | gal = Casing V            | Volume x 3 (  | volumes required)       |                   |                   |                 |          |
| Purge Rate:  | -            | gal/min                   |               |                         | Purge/Sampli      | ng Method:        | Pump / Grab     | <u>)</u> |
| 15.2         | 5 X          | 0.17 =                    | 2,59          | 3.0                     | X                 | 3                 | = _ 9           | gals     |
| Water column | n Gal p      | er linear Ft. 1 pu        | rge volume    | Purge vol, rounded up t | to nearest .5 # o | f casing volume   | es Total Purg   | e Volume |
|              |              |                           |               | >                       | *                 |                   |                 |          |
| Time         | Volume       | рН                        | EC            | Temp                    | Turbidity         | Color             | Odor            | Pumped   |
| 4.           | Purged       | (SU)                      | (μS/cm)       | (°C)                    |                   | A                 |                 | Dry      |
| -            | (gal)        |                           |               |                         |                   |                   |                 |          |
| 0740         | 0            | 6.67                      | 79.0          | 8.6                     | Ctew              | Clear             | N               | u        |
| 0745         | 9            | 0.91                      | 524           | 7.6                     | Mod               | Coul              | N               | N        |
| 2750         | 9            | 6.83                      | 523           | 7.3                     | henny             | brown             | N,              | N        |
| 0755         | a            | 6-89                      | 520           | 7.4                     | Mal               | Hovely            | N               | N        |
| 34           |              | 311                       |               |                         |                   | 1                 |                 |          |
|              |              |                           | 1             |                         |                   |                   | u u             |          |
| PURGINO      | G DATA: (F   | For <b>0</b> gallons purg | e just enough | n water to record       | Clear,            | Clear,            | None,           | Yes/No   |
| pH, EC, ar   | ıd temperatu | ire)                      |               |                         | trace,            | cloudy,           | faint,          |          |
|              |              |                           |               |                         | light,            | yellow,           | moderate,       |          |
|              |              |                           |               |                         | moderate,         | brown             | strong          |          |
|              |              |                           |               | 7"                      | heavy             | *                 |                 |          |
| Notes:       |              |                           |               | 7                       | •                 |                   | 20              |          |
|              |              | 209                       |               | 8                       |                   |                   |                 | -        |
|              |              |                           |               |                         |                   |                   |                 |          |
|              |              |                           |               |                         | 251               |                   |                 |          |



email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

09 November 2021

Bear Valley Water District

Attn: Guy West

PO Box 5027

Bear Valley, CA 95223

RE: Water Quality

Work Order: 21J2803

Enclosed are the results of analyses for samples received by the laboratory on 10/20/21 22:00. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jeanette L. Poplin For Karen L. Lantz

Jeanette Popli

Project Manager



email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Bear Valley Water District

Project Manager: Guy West

P O Box 5027

Project: Water Quality

Bear Valley, CA 95223

Project Number: MW I

Reported:

11/09/21 14:01

Bay Area: 262 Rickenbacker Circle | Livermore, CA 94551 | T: 925-828-6226 | F: 925-828-6309 | ELAP# 2728 Central Valley: 9090 Union Park Way Suite 113 | Elk Grove, CA 95624 | T: 916-686-5190 | F: 916-686-5192 | ELAP# 2922 North Bay: 110 Liberty Street | Petaluma, CA 94952 | T: 707-769-3128 | F: 707-769-8093 | ELAP# 2303 San Diego: 2722 Loker Avenue West Suite A | Carlsbad, CA 92010 | T: 760-930-2555 | F: 760-930-2510 | ELAP# 3055

#### ANALYTICAL REPORT FOR SAMPLES

| Sample ID | Laboratory ID | Matrix | Date Sampled   | Date Received  |
|-----------|---------------|--------|----------------|----------------|
| Well #3   | 21J2803-01    | Water  | 10/20/21 07:55 | 10/20/21 22:00 |
| Well #4   | 21J2803-02    | Water  | 10/20/21 07:29 | 10/20/21 22:00 |



email: clientservices@alpha-labs.com

Reported:

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Bear Valley Water District Project Manager: Guy West

P O Box 5027 Project: Water Quality

Bear Valley, CA 95223 Project Number: MW I 11/09/21 14:01

|                                               | Result Units | Reporting Limit | Dilution | Batch   | Prepared       | Analyzed         | ELAP#  | # Method     | Note |
|-----------------------------------------------|--------------|-----------------|----------|---------|----------------|------------------|--------|--------------|------|
| Well #3 (21J2803-01)                          |              | Sample Type: \  | Water    |         | Sampled        | l: 10/20/21 07:5 | 55     |              |      |
| Conventional Chemistry Parameters by APHA/E   | PA Methods   |                 |          |         |                |                  |        |              |      |
| Ammonia as N                                  | ND mg/L      | 0.20            | 1        | AK13254 | 11/03/21 09:30 | 11/03/21 15:1    | 5 1551 | SM4500NH3B,C |      |
| <b>Total Dissolved Solids</b>                 | 73 mg/L      | 10              | 1        | AJ15118 | 10/27/21 15:25 | 10/30/21 08:1    | 9 2922 | SM2540C      |      |
| Total Kjeldahl Nitrogen                       | ND mg/L      | 1.0             | 1        | AJ14446 | 10/25/21 05:00 | 10/26/21 11:4    | 5 1551 | SM4500-NH3 C |      |
| Anions by EPA Method 300.0                    |              |                 |          |         |                |                  |        |              |      |
| Nitrate as N                                  | ND mg/L      | 0.20            | 1        | AJ14586 | 10/20/21 19:09 | 10/20/21 19:0    | 9 2922 | EPA 300.0    |      |
| Microbiological Parameters by APHA Standard M | Methods      |                 |          |         |                |                  |        |              |      |
| Total Coliforms                               | ND MPN/100mL | 1.8             | 1        | AJ14605 | 10/20/21 14:55 | 10/24/21 12:1    | 7 2922 | SM9221B,C    |      |
| Well #4 (21J2803-02)                          |              | Sample Type: V  | Water    |         | Sampled        | l: 10/20/21 07:2 | 29     |              |      |
| Conventional Chemistry Parameters by APHA/E   | PA Methods   |                 |          |         |                |                  |        |              |      |
| Ammonia as N                                  | ND mg/L      | 0.20            | 1        | AK13254 | 11/03/21 09:30 | 11/03/21 15:1    | 5 1551 | SM4500NH3B,C |      |
| <b>Total Dissolved Solids</b>                 | 130 mg/L     | 10              | 1        | AJ15118 | 10/27/21 15:25 | 10/30/21 08:1    | 9 2922 | SM2540C      |      |
| Total Kjeldahl Nitrogen                       | ND mg/L      | 1.0             | 1        | AJ14446 | 10/25/21 05:00 | 10/26/21 11:4    | 5 1551 | SM4500-NH3 C |      |
| Anions by EPA Method 300.0                    |              |                 |          |         |                |                  |        |              |      |
| Nitrate as N                                  | ND mg/L      | 0.20            | 1        | AJ14586 | 10/20/21 19:28 | 10/20/21 19:2    | 8 2922 | EPA 300.0    |      |
| Microbiological Parameters by APHA Standard M | Methods      |                 |          |         |                |                  |        |              |      |
| Total Coliforms                               | ND MPN/100mL | 1.8             | 1        | AJ14605 | 10/20/21 14:55 | 10/22/21 13:0    | 0 2922 | SM9221B,C    |      |



email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Bear Valley Water District

Project Manager: Guy West

P O Box 5027

Project: Water Quality

Reported: 11/09/21 14:01

Bear Valley, CA 95223

Project Number: MW I

#### **Notes and Definitions**

ND Analyte NOT DETECTED at or above the reporting limit

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

Non-accredited analytes are reported only when ELAP accreditation for a requested analyte is not available. For a list of accredited analytes, view our certificates at the Company link on our website at www.alpha-labs.com or contact your Project Manager directly.



Corporate Laboratory

208 Mason Street, Ukiah CA 95482 707-468-0401 F) 707-468-5267 email: clientservices@alpha-labs.com

#### **ELAP Certifications**

Bay Area Laboratory

262 Rickenbacker Circle, Livermore, CA 94551 925-828-6226 F) 925-828-6309

Central Valley Laboratory 9090 Union Park Way #113, Elk Grove CA 95624 916-686-5190 F) 916-686-5192

### **Chain of Custody - Work Order**

Reports and Invoices delivered by email in PDF format

| WATERS, SEDIMENTS, SOLIDS             | Ukiah 1551 /                                     | Dublin 2728 / | Elk Gr   | rove     | 2922    |               |     |              |          |          |                                              |                  | 3, EIK<br>-5192 | Grove          | OA!          | <del>3</del> 3624 | •          | ı     | ab No          | 2        | <u>.17</u> | 2       | <u>80</u> | 3        | Pg             | g        | of                                           |        |
|---------------------------------------|--------------------------------------------------|---------------|----------|----------|---------|---------------|-----|--------------|----------|----------|----------------------------------------------|------------------|-----------------|----------------|--------------|-------------------|------------|-------|----------------|----------|------------|---------|-----------|----------|----------------|----------|----------------------------------------------|--------|
| Report to                             | lr.                                              | voice to (if  | differ   | rent     | :)      |               | Ī   | Pi           | oje      | ct In    | forn                                         | atio             | on              | Т              |              |                   | S          | ignat | re bel         | ow at    | ıthoriz    | es wor  | k unde    | er terms | stated or      | n reve   | erse side.                                   |        |
| Сотрапу:                              | Contact:                                         |               |          |          |         |               | Pr  | ojec         | ID:      |          |                                              |                  |                 |                | 1            |                   |            | Λ.,   | alvai          | . D.     |            | 4       |           |          | TAT            |          | T                                            |        |
| Bear Valley Water District            |                                                  |               |          |          |         |               |     |              |          | ΜV       | A ( )                                        |                  |                 | 7              | 1            |                   |            | An    | alysi          | s Re     | ques       | εt      |           | 1        | TAT            |          | Temp                                         | •      |
| Attn:                                 | Email address                                    | :             |          |          |         |               | L   |              |          | IVIV     | ı V                                          |                  |                 |                | Γ            |                   |            |       |                |          | T          |         |           |          | Standard       | 1        | Recei                                        | pt °C  |
|                                       |                                                  |               |          |          |         |               | Pr  | ojec         | : No     | :        |                                              |                  |                 | ٦,             |              |                   |            |       |                |          | -          |         |           |          | 10 days        | ſ        | Ukiah                                        | lemp:  |
| Address:                              | Address:                                         |               |          |          |         |               |     |              |          |          |                                              |                  |                 | Ol olomeS year | 3            |                   | - 1        | 1     |                |          |            |         |           |          |                |          | ->                                           | 7      |
| O Box 5027                            |                                                  |               |          |          |         |               | L_  |              |          |          |                                              |                  |                 | _              |              |                   | _          |       | li             |          |            |         |           |          |                |          | 3.                                           | 5      |
| Bear Valley, CA 95223                 |                                                  |               |          |          |         |               | PC  | ) Nu         | mbe      | )r:      |                                              |                  |                 | ő              | 5            | }                 | 3          |       |                | - 1      |            |         | 1         | Sta      | ndard          | D.       |                                              |        |
| hone/Fax:                             | Phone/Fax:                                       |               |          |          |         |               |     |              |          |          |                                              |                  |                 | į              | Ę            | 5                 | <u>⊇</u>   | -     | 1 1            | i        |            | i       | Ì         | 5        | days           | required | Dublin                                       | temp:  |
| 09-753-2112                           |                                                  |               |          |          |         |               |     |              |          |          |                                              |                  |                 |                | 2            | 2                 |            |       |                |          |            |         |           | ı        | X              | ē        |                                              |        |
| mail Address:                         |                                                  |               |          |          |         |               | Int | terna        | l La     |          |                                              |                  |                 | 9              |              |                   | 9          |       |                |          | Ì          |         |           | 48       | hours          | <u>=</u> |                                              |        |
|                                       |                                                  |               |          |          |         |               |     |              |          | 56       |                                              |                  |                 | Contain        | §   _        | ي ا ي             | 2          |       |                |          |            |         |           |          |                | ě        |                                              |        |
| ield Sampler - Printed Name & Signatu | re:                                              |               | <u> </u> | Co       | ntain   | er            |     | Pres         | erva     | ative    | <u>.                                    </u> | M                | atrix           | :              |              |                   | 4          |       |                |          |            |         |           | 0        | ther:          | ргеарр   | Elk Grov                                     | e temp |
| by West 1=                            | ) W                                              | 7             | Viat     |          |         |               |     |              |          | Na2S2O3  |                                              | ۸۸۸۸             |                 | Nimber         | TO 15 MAN    | 2                 | NH3-N TKN  |       |                |          |            |         |           |          | days           | Lab pre  | 49                                           | · c    |
| Sample Identification                 | √ Sam                                            | npling        | J⋛l      | اح       | SS      | ĕ   ĕ         | I_  | 03           | Š        | SS       | <u>a</u>                                     | ਙੁ ੂ             | _   }           | 2   <u>5</u>   | <b>.</b>     | ١,                | '၂ဗု       | 2     |                |          |            |         |           |          | San            | nple     | Notes or                                     |        |
| Sample identification                 | Date                                             | Time          | 40ml     | 8        | Ö       | Sleeve        | 모   | ₹            | 걸        | Naž      | ဍ ု                                          | water            |                 |                | <b>∄</b>   ≥ | 3   3             | 5   支      | ፤     |                |          |            |         |           |          | S HADC         | Sour     | e Numb                                       | ers:   |
| Well #1                               | <b></b>                                          |               | П        | ×        |         |               |     |              |          | ×        | × I                                          | χĹ.              | ┇               |                | 3 .          | v .               | , J        |       |                | 1-       |            |         |           |          | -              |          |                                              |        |
|                                       |                                                  | +             | ╁┤       | _        | +       | +             | ╂╌  | $\vdash$     |          | $\dashv$ | $\dashv$                                     | +                | +               | +              | +            |                   |            |       | <del>   </del> | +        | +          | + +     | -+        | +        |                |          |                                              |        |
| Well #2                               | 103011                                           |               |          | ×        |         |               |     |              | ×        | ×        | ×                                            | **               |                 |                | 7            | <u> </u>          | X X        |       |                |          |            |         |           | <u> </u> |                |          |                                              |        |
| Well #3                               | 10200                                            | 0788          |          | х        |         |               | l   |              | x        | ×        | х                                            | x                |                 | 3              | 3 ;          | x   ;             | x   x      |       |                | Ì        |            |         |           |          |                |          |                                              |        |
| Vell #4                               | 1020-11                                          | 6724          |          | х        |         |               | Ì   |              | х        | х        | ×                                            | ×                |                 | 3              | 3 7          | x ;               | x x        |       |                |          |            |         |           | SAN      | IPLE 3         | 3 TIN    | 1ES YEA                                      | RLY    |
| Nell #5                               | <del>                                     </del> | <del> </del>  | 1-       | ×        | -+      | +             | ╁   | H            | X        | X        | х                                            | <del>x  </del> - | -               | -              | ,            | x-                | x x        | -     |                |          |            |         |           | JUN      | IE, AUG        | G. S     | EPT                                          |        |
| <del>Vell #6</del>                    |                                                  | <u> </u>      |          |          |         |               | t   | $oxed{oxed}$ |          | 士        |                                              |                  |                 | +              |              |                   |            |       |                | $\dashv$ | +          | +       | $\dashv$  | +        | <del>_</del>   |          | <u>.                                    </u> |        |
| Weii #0                               |                                                  |               | H        |          |         | $\Box$        | 1   | $\perp$      | ^        | ^        | ^                                            | ^                |                 | ľ              | T            | `                 | $\Box$ ^   | 1     |                |          |            | $\perp$ |           | 4        |                |          |                                              |        |
|                                       |                                                  |               | 1 1      |          |         |               |     |              |          |          | -1                                           |                  |                 | 1              |              |                   |            |       |                |          |            |         |           | 1        |                |          |                                              |        |
|                                       |                                                  |               |          |          |         |               |     |              |          |          | Т                                            | Т                |                 |                |              |                   |            |       |                |          |            |         | - /       |          | P 64           | £ 6      | is ?genge.                                   |        |
|                                       |                                                  | 1             | ╂╌┼      | $\dashv$ |         | +             | ╁   | $\vdash$     | $\dashv$ | $\dashv$ | $\dashv$                                     | +                | +               | ╅              | ╅            | +                 | +          | +     | $\vdash$       |          | +-         | + +     |           |          | <del>- 1</del> | A        | W.D                                          |        |
|                                       |                                                  | ļ             | $\sqcup$ | _        | $\perp$ | $\bot$        | ↓_  |              | _        | _        | $\perp$                                      | $\perp$          |                 | ┸              | _            | Ц.                | -          | 4_    | $\sqcup$       | _        |            | 1       |           |          |                | . 62     |                                              |        |
|                                       | 1                                                |               |          |          |         |               |     |              |          |          | 1                                            |                  |                 |                | 1            |                   |            |       |                |          |            |         |           |          |                |          |                                              |        |
| Relinquished by                       | _                                                |               |          |          | Re      | ceive         | d b | y            |          |          |                                              |                  | 十               | Da             | te           | T                 | Tin        | ne    | CDB            | LI 16/   | rito O     | » EDI   | T Trai    | nsmiss   | ian?           |          | Yes                                          | No     |
| / / / /                               |                                                  |               |          |          |         |               | -   |              |          |          |                                              |                  |                 |                |              | 1                 |            |       | CDF            | 11 VV    | ine O      | וו בט   | ı ıraı    | ารทารร   | ion?           |          |                                              |        |
| GWist 1                               |                                                  |               |          |          |         |               |     |              |          | _        |                                              |                  |                 |                |              |                   |            |       | State          | Syst     | em Nu      | ımber:  | _         |          |                |          |                                              |        |
| [ALP]                                 | neer                                             |               |          |          | 1       | LA            |     | Λ            |          |          |                                              |                  | 11              | 200.           | 21           | ,                 | <b>0</b> > | ~     | l:             | f "Y" p  | olease     | enter t | the So    | urce Nu  | mber(s) i      | in the   | column al                                    | oove   |
| yrt CP                                | Chr Ch                                           | +             |          |          | # /     | 1             |     | 1            |          |          |                                              |                  | ١               |                |              |                   |            |       |                |          | -          |         |           | _        |                |          | Yes                                          |        |
| $\mathcal{L}_{\mathbf{i}}$            | 1 1                                              | /             |          | 1        | 八       | $\mathcal{N}$ |     | •            |          |          |                                              |                  | IC.             | )De            | +/           | 1                 | 41         | O     | Mail           | Hard     | tcopy      | to D    | DW- 1     | ?        |                |          | 168                                          | No     |
|                                       |                                                  |               | 7        | 4        | 1       | 7             |     |              |          |          |                                              |                  |                 | 10/21          | -            | _                 | 62         |       | Hard           | qoot     | y to L     | עטט     | attn:     |          |                |          |                                              |        |
|                                       | K. P.                                            |               | -6       |          | 1       |               |     |              |          |          |                                              |                  | ١,              | 7              | Ψ            | 4                 |            |       |                |          |            |         | Mileage:  |          | Misc           | Supplie  | s                                            |        |
| /                                     | KIE                                              | 1             |          | /        | (       |               |     |              |          |          |                                              |                  | -16             | וכונ           | ńΩ           | r I               | 1 🔞        | አለ    |                |          |            | 100     |           |          |                | ~~bbuc   | -                                            |        |



email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

09 November 2021

Bear Valley Water District

Attn: Guy West

PO Box 5027

Bear Valley, CA 95223

RE: Water Quality

Work Order: 21J3260

Enclosed are the results of analyses for samples received by the laboratory on 10/25/21 23:50. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jeanette L. Poplin For Karen L. Lantz

Jeanette Popli

Project Manager



email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Bear Valley Water District

Project Manager: Guy West

P O Box 5027

Project: Water Quality

Bear Valley, CA 95223

Project Number: MW I

Reported:

11/09/21 15:37

Bay Area: 262 Rickenbacker Circle | Livermore, CA 94551 | T: 925-828-6226 | F: 925-828-6309 | ELAP# 2728 Central Valley: 9090 Union Park Way Suite 113 | Elk Grove, CA 95624 | T: 916-686-5190 | F: 916-686-5192 | ELAP# 2922 North Bay: 110 Liberty Street | Petaluma, CA 94952 | T: 707-769-3128 | F: 707-769-8093 | ELAP# 2303 San Diego: 2722 Loker Avenue West Suite A | Carlsbad, CA 92010 | T: 760-930-2555 | F: 760-930-2510 | ELAP# 3055

#### ANALYTICAL REPORT FOR SAMPLES

| Sample ID | Laboratory ID | Matrix | Date Sampled   | Date Received  |
|-----------|---------------|--------|----------------|----------------|
| Well #1   | 21J3260-01    | Water  | 10/21/21 07:55 | 10/25/21 23:50 |
| Well #6   | 21J3260-02    | Water  | 10/21/21 08:17 | 10/25/21 23:50 |



email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Bear Valley Water District Project Manager: Guy West

P O Box 5027 Project: Water Quality

Bear Valley, CA 95223 Project Number: MW I

Reported: 11/09/21 15:37

|                                                  | Result         | Units     | Reporting Limit | Dilution | Batch   | Prepared       | Analyzed        | ELAP#  | # Method     | Note |
|--------------------------------------------------|----------------|-----------|-----------------|----------|---------|----------------|-----------------|--------|--------------|------|
| Well #1 (21J3260-01)                             |                |           | Sample Type:    | Water    |         | Sampled        | : 10/21/21 07:5 | 5      |              |      |
| Conventional Chemistry Parameters by APHA/EPA M  | <b>1ethods</b> |           |                 |          |         |                |                 |        |              |      |
| Ammonia as N                                     | ND n           | ng/L      | 0.20            | 1        | AK13478 | 11/05/21 08:30 | 11/08/21 16:30  | 1551   | SM4500NH3B,C |      |
| <b>Total Dissolved Solids</b>                    | 160 r          | ng/L      | 10              | 1        | AJ15118 | 10/27/21 15:25 | 10/30/21 08:19  | 9 2922 | SM2540C      |      |
| Total Kjeldahl Nitrogen                          | ND n           | ng/L      | 1.0             | 1        | AJ14856 | 10/28/21 06:46 | 10/29/21 12:19  | 1551   | SM4500-NH3 C |      |
| Anions by EPA Method 300.0                       |                |           |                 |          |         |                |                 |        |              |      |
| Nitrate as N                                     | ND n           | ng/L      | 0.20            | 1        | AJ14745 | 10/22/21 11:23 | 10/22/21 11:23  | 3 2922 | EPA 300.0    |      |
| Microbiological Parameters by APHA Standard Meth | ods            |           |                 |          |         |                |                 |        |              |      |
| Total Coliforms                                  | ND N           | MPN/100mL | 1.8             | 1        | AJ14911 | 10/21/21 14:45 | 10/25/21 12:00  | 5 2922 | SM9221B,C    |      |
| Well #6 (21J3260-02)                             |                |           | Sample Type:    | Water    |         | Sampled        | : 10/21/21 08:1 | 7      |              |      |
| Conventional Chemistry Parameters by APHA/EPA M  | <b>1ethods</b> |           |                 |          |         |                |                 |        |              |      |
| Ammonia as N                                     | 13 r           | ng/L      | 0.20            | 1        | AK13478 | 11/05/21 08:30 | 11/08/21 16:30  | 1551   | SM4500NH3B,C |      |
| <b>Total Dissolved Solids</b>                    | 320 r          | ng/L      | 10              | 1        | AJ15118 | 10/27/21 15:25 | 10/30/21 08:19  | 9 2922 | SM2540C      |      |
| Total Kjeldahl Nitrogen                          | ND n           | ng/L      | 1.0             | 1        | AJ14856 | 10/28/21 06:46 | 10/29/21 12:19  | 1551   | SM4500-NH3 C |      |
| Anions by EPA Method 300.0                       |                |           |                 |          |         |                |                 |        |              |      |
| Nitrate as N                                     | ND n           | ng/L      | 0.20            | 1        | AJ14745 | 10/22/21 11:42 | 10/22/21 11:42  | 2 2922 | EPA 300.0    |      |
| Microbiological Parameters by APHA Standard Meth | ods            |           |                 |          |         |                |                 |        |              |      |
| Total Coliforms                                  | 49 N           | MPN/100mL | 1.8             | 1        | AJ14911 | 10/21/21 14:45 | 10/25/21 12:00  | 5 2922 | SM9221B,C    |      |



email: clientservices@alpha-labs.com

Reported:

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Bear Valley Water District

Project Manager: Guy West

P O Box 5027

Project: Water Quality

Bear Valley, CA 95223

Project Number: MW I 11/09/21 15:37

#### **Notes and Definitions**

ND Analyte NOT DETECTED at or above the reporting limit

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

Non-accredited analytes are reported only when ELAP accreditation for a requested analyte is not available. For a list of accredited analytes, view our certificates at the Company link on our website at www.alpha-labs.com or contact your Project Manager directly.

Analytical Laboratories Inc WATERS, SEDIMENTS, SOLIDS www. alpha-labe cente

Corporate Laboratory

208 Mason Street, Ukiah CA 95482 707-468-0401 F) 707-468-5267

email: clientservices@alpha-labs.com

ELAP Certifications Ukiah 1551 / Dublin 2728 / Elk Grove 2922

Bay Area Laboratory 262 Rickenbacker Circle, Livermore, CA 94551 925-828-6226 F) 925-828-6309

Chain of Custody - Work Order

Reports and Invoices delivered by email in PDF format

2153240

Central Valley Laboratory 9090 Union Park Way#113. Elk Grove CA 95624 916-686-5190 F) 916-686-5192

Elk Grove temp: SAMPLE 3 TIMES YEARLY Temp upon Receipt °C ٥ ŝ Dublin temp: If "Y" please enter the Source Number(s) in the column above CDPH Source Numbers: Ukiah temp: Sample Notes or Signature below authorizes work under terms stated on reverse side. 6 JUNE, AUG, SEPT Yes Misc. Supplies Lab preapproval required Standard 10 days days TAT CDPH Write On EDT Transmission? Standard 5 days 48 hours Other: × Mail Hardcopy to DDW-? Hardcopy to DUVV attn: State System Number: **Analysis Request** ravel and She Time: ab No 1130 1800 Time × ИНЗ-И, ТКИ × 'N-E0N × TDS TC 15 WW CΛ × × シメスの Date ო ന Total Number of Containers per Sample ID Other Matrix Project Information lioS Water WW × \_ **M** × Internal Lab Use: **AnoM** Preservative Va2S2O3 PO Number Project No: × Project ID: × **⊅**0SZ⊢ HNO3 Received by HCI Other Sleeve Container Glass Invoice to (if different) × Роју × IsiV Im0# Time SSCO SS Sampling Email address: 10 21-U Date 1110 hone/Fax: Field Sampler - Printed Name & Signature: K R R Sample Identification Relinquished by Report to Bear Valley Water District Bear Valley, CA 95223  $\frac{7}{2}$ (cac) 209-753-2112 PO Box 5027 mail Address: **\$**₹0= AFE # C# Hara Well#6 Well #6 Well #1 Address



email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

04 November 2021

Bear Valley Water District

Attn: Guy West

PO Box 5027

Bear Valley, CA 95223

RE: Water Quality

Work Order: 21J2805

Enclosed are the results of analyses for samples received by the laboratory on 10/20/21 22:00. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jeanette L. Poplin For Karen L. Lantz

Jeanette Popli

Project Manager



email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Bear Valley Water District

Project Manager: Guy West

P O Box 5027

Project: Water Quality

Bear Valley, CA 95223

Project Number: MW II

Reported:

11/04/21 13:42

Bay Area: 262 Rickenbacker Circle | Livermore, CA 94551 | T: 925-828-6226 | F: 925-828-6309 | ELAP# 2728 Central Valley: 9090 Union Park Way Suite 113 | Elk Grove, CA 95624 | T: 916-686-5190 | F: 916-686-5192 | ELAP# 2922 North Bay: 110 Liberty Street | Petaluma, CA 94952 | T: 707-769-3128 | F: 707-769-8093 | ELAP# 2303 San Diego: 2722 Loker Avenue West Suite A | Carlsbad, CA 92010 | T: 760-930-2555 | F: 760-930-2510 | ELAP# 3055

#### ANALYTICAL REPORT FOR SAMPLES

| Sample ID | Laboratory ID | Matrix | Date Sampled   | Date Received  |
|-----------|---------------|--------|----------------|----------------|
| Well # 3  | 21J2805-01    | Water  | 10/20/21 07:55 | 10/20/21 22:00 |
| Well # 4  | 21J2805-02    | Water  | 10/20/21 07:29 | 10/20/21 22:00 |



email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Bear Valley Water District Project Manager: Guy West P O Box 5027

Project: Water Quality

Bear Valley, CA 95223 Project Number: MW II

Reported: 11/04/21 13:42

|                                  | Result Units | Reporting Limit | Dilution | Batch   | Prepared       | Analyzed         | ELAP#  | Method    | Note |
|----------------------------------|--------------|-----------------|----------|---------|----------------|------------------|--------|-----------|------|
| Well # 3 (21J2805-01)            |              | Sample Type:    | Water    |         | Sampled        | l: 10/20/21 07:  | 55     |           |      |
| Metals by EPA 200 Series Methods |              |                 |          |         |                |                  |        |           |      |
| Boron                            | ND mg/L      | 0.20            | 1        | AJ14472 | 10/25/21 14:10 | 10/26/21 13:4    | 0 1551 | EPA 200.7 |      |
| Iron                             | 0.79 mg/L    | 0.10            | 1        | AJ14472 | 10/25/21 14:10 | 10/26/21 13:4    | 0 1551 | EPA 200.7 |      |
| Manganese                        | ND mg/L      | 0.020           | 1        | AJ14472 | 10/25/21 14:10 | 10/26/21 13:4    | 0 1551 | EPA 200.7 |      |
| Sodium                           | 5.6 mg/L     | 1.0             | 1        | AJ14472 | 10/25/21 14:10 | 10/26/21 13:4    | 0 1551 | EPA 200.7 |      |
| Anions by EPA Method 300.0       |              |                 |          |         |                |                  |        |           |      |
| Chloride                         | 6.3 mg/L     | 0.50            | 1        | AJ15065 | 10/26/21 12:34 | 10/26/21 12:3    | 4 2922 | EPA 300.0 |      |
| Well # 4 (21J2805-02)            |              | Sample Type:    | Water    |         | Sampled        | l: 10/20/21 07:2 | 29     |           |      |
| Metals by EPA 200 Series Methods |              |                 |          |         |                |                  |        |           |      |
| Boron                            | ND mg/L      | 0.20            | 1        | AJ14472 | 10/25/21 14:10 | 10/26/21 16:0    | 9 1551 | EPA 200.7 |      |
| Iron                             | ND mg/L      | 0.10            | 1        | AJ14472 | 10/25/21 14:10 | 10/26/21 13:5    | 1 1551 | EPA 200.7 |      |
| Manganese                        | ND mg/L      | 0.020           | 1        | AJ14472 | 10/25/21 14:10 | 10/26/21 13:5    | 1 1551 | EPA 200.7 |      |
| Sodium                           | 7.9 mg/L     | 1.0             | 1        | AJ14472 | 10/25/21 14:10 | 10/26/21 13:5    | 1 1551 | EPA 200.7 |      |
| Anions by EPA Method 300.0       |              |                 |          |         |                |                  |        |           |      |
| Chloride                         | 6.4 mg/L     | 0.50            | 1        | AJ15065 | 10/26/21 12:54 | 10/26/21 12:5    | 4 2922 | EPA 300.0 |      |



email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Bear Valley Water District

Project Manager: Guy West

Project Number: MW II

P O Box 5027

Project: Water Quality

Bear Valley, CA 95223

Reported: 11/04/21 13:42

#### **Notes and Definitions**

ND Analyte NOT DETECTED at or above the reporting limit

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

Non-accredited analytes are reported only when ELAP accreditation for a requested analyte is not available. For a list of accredited analytes, view our certificates at the Company link on our website at www.alpha-labs.com or contact your Project Manager directly.



WATERS, SEDIMENTS, SOLIDS

Corporate Laboratory

208 Mason Street, Ukiah CA 95482 707-468-0401 F) 707-468-5267 email: clientservices@alpha-labs.com

**ELAP Certifications** 

Bay Area Laboratory

262 Rickenbacker Circle, Livermore, CA 94551 925-828-6226 F) 925-828-6309

Central Valley Laboratory

9090 Union Park Way #113, Elk Grove CA 95624 916-686-5190 F) 916-686-5192

## **Chain of Custody - Work Order**

Reports and Invoices delivered by email in PDF format

| WATERS, SEDIMENTS, SOLIDS                |                | Dublin 2728 / | Elk G      | rove         | 292       | 2         |     |      |          | 90 F     |                 |                  |          |             | orove        | CA 95          | <b>624</b>              |          | Lab I    | ر<br>2_ ما | 21       | <u> </u>                               | 28      | 30     | Spg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | of              |
|------------------------------------------|----------------|---------------|------------|--------------|-----------|-----------|-----|------|----------|----------|-----------------|------------------|----------|-------------|--------------|----------------|-------------------------|----------|----------|------------|----------|----------------------------------------|---------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Report to                                | ln ln          | voice to (if  | diffe      | rent         | t)        |           | Τ   | F    | •гој€    | ect li   | nfoi            | rma              | tion     | 1           | Т            |                |                         |          | _        |            |          |                                        |         |        | erms stated on rev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | erse side       |
| Company:                                 | Contact:       | •             |            |              |           |           | Р   | roje | ct ID    | ):       | _               |                  |          |             |              | Т              | _                       |          |          |            |          |                                        |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |
| Bear Valley Water District               | ļ              | ·             |            |              |           |           | ℐ   |      |          | A/I      | WΠ              |                  |          |             | 1            |                |                         | A        | nalys    | sis R      | equ      | est                                    |         | - 1    | TAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Temp upon       |
| Attn:                                    | Email address: | 1             |            |              |           |           | L   |      |          |          | Y Y 1           | <u> </u>         |          |             |              | Г              |                         | Ţ        |          |            | Ī        |                                        | ĺ       | $\neg$ | Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Receipt °C      |
| Address:                                 | Address:       | <del></del>   |            |              |           |           | - P | гоје | ct N     | o:       |                 |                  |          | _           | ٦,           |                | ĺ                       |          |          |            | İ        | ļ                                      | ]       |        | 10 days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ukiah temp:     |
| PO Box 5027                              | Addicas.       |               |            |              |           |           |     |      |          |          |                 |                  |          |             | 6 □          | ı              |                         |          |          | 1 1        |          | 1                                      |         | ŀ      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |
| Bear Valley, CA 95223                    |                |               |            |              |           |           | -   | O Ni | umb      |          |                 |                  |          |             | mple         | Ī              | l                       |          | ļ        |            | - 1      |                                        |         | Į      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.3             |
| Phone/Fax:                               | Phone/Fax:     | - <u>-</u>    |            |              |           |           | վՐ` | O NI | uriių    | er.      |                 |                  |          |             | Sai          | l              |                         |          | 1        |            |          | -                                      | 1 1     | I      | Standard 😁                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |
| 209-753-2112                             |                |               |            |              |           |           | 1   |      |          |          |                 |                  |          |             | per          | ŀ              |                         |          |          | iΙ         |          |                                        |         |        | 5 days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Dublin temp:    |
| Email Address:                           | <del></del>    |               |            |              | _         |           | In  | tern | al L     | ab U     | lse.            |                  |          |             | <u>ا</u> ۾   |                | 18                      |          |          |            |          |                                        | ] [     | ı      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |
|                                          |                |               |            |              |           |           | ••• |      |          |          | 70              |                  |          |             | Containers   |                | R                       | [        |          |            |          |                                        |         | -      | 48 hours 😿                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |
| Field Sampler - Printed Name & Signature | 9:             |               |            | Co           | ntaiı     | ner       | T   | Pre  | serv     | ativ     | e               | 1                | Mati     | rix         | ខ្ល          | l_             |                         | 1        | ŀ        |            |          |                                        |         | - 1    | Other:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Elk Grove temp: |
|                                          | 10             | . )           |            |              |           |           | Τ   |      |          | П        |                 |                  |          |             | 1 ៦          | Mn Na          | 9                       |          |          |            |          |                                        |         | ŀ      | 48 hours le condition of ther: days de le condition of the condition | Lik Grove temp. |
| GuyWit 12                                | つりじ            | /             |            | İ            |           |           | ı   |      |          |          |                 | _                |          |             | Total Number | ٤              |                         | i I      |          | ı          |          |                                        |         |        | Lab p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | パが              |
|                                          |                |               | -<br>Sial  |              |           | n)        | ı   | 1    |          | ဗြ       |                 | Š                |          |             | Į            | 2              | J                       |          |          |            |          | 1                                      |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |
| Sample Identification                    |                | pling         | Ē          | 쵯            | ass       | Sleeve    | 5   | Įĝ   | 804      | 282      | ne              | ater             | Soil     | Other       | Ē            | Fe,            |                         |          |          |            | İ        |                                        | 1 1     | Γ      | Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Notes or        |
|                                          | Date           | Time          | Ą          | <u>~</u>     | ত         | ळ ठ       | Ĭ   | ĮΈ   | Ŧ        | g        | ž               | Š                | So       | ō           | Lº           | m,             | $\overline{\mathbf{c}}$ |          |          |            |          |                                        |         | - 1    | CDPH Source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e Numbers:      |
| Well #1                                  | 1              | <del> </del>  | ╂┤         | ×            |           | +-        | ╂   | -{×  | ╀        | $\vdash$ | <del>-X</del> - | <del>- X</del> - |          | _           | 2            | <del>  ×</del> | ×-                      |          |          |            |          |                                        |         | 寸      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |
| Well #2                                  | 42041          |               |            | $\mathbf{x}$ | _         |           | F   | Ţ,   | L        |          | ×               | ×                |          |             | 2            | ×              | -*-                     |          | †        |            | $\top$   |                                        |         | +      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <del>-</del>    |
| Well #3                                  | 102041         | 2755          |            | ×            |           | $\top$    | T   | ×    |          |          | ×               | х                |          |             | 2            | ×              | х                       | _   -    | +        | $\vdash$   | +        | +-                                     | + +     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |
| Well #4                                  | 10-10-21       | 0,21          | Ħ          | х            |           | +         | T   | ×    |          | П        | х               | х                |          |             | 2            | ×              | х                       | -        | $\vdash$ |            |          | +                                      | +       | +      | DUE ANNUALI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Y IN            |
| Well #5                                  |                | ļ             | H          | ×            | _         | 4         | ‡   | -×-  |          | $\Box$   | ×               |                  |          |             | 2            | ļ,             | <del></del>             | $\dashv$ | +        | $\vdash$   | $\dashv$ | +                                      | ╀┯┪     | -      | SEPTEMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| Wall#6                                   |                |               |            | V            | 十         | 十         | 1   | ╁    | Ħ        |          | Ţ               | Ţ                | $\dashv$ | _           | 2            |                | <u> </u>                |          | +-       | $\vdash$   | +        | +                                      | ╁┼      | -      | OLI TEMBLIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |
| ***************************************  |                |               | H          | $\exists$    | $\exists$ | $\exists$ | F   | -    |          | П        | $\exists$       |                  | $\Box$   | _           |              |                | <del>-</del>            |          |          | _          | _        | —                                      |         | 4      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |
|                                          |                |               | Ш          |              | _         | $\bot$    | 1.  | _    | <u> </u> | Ц        | _               |                  |          |             |              |                |                         |          |          |            |          |                                        |         | - 1    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |
|                                          |                |               | Ш          |              |           |           |     | İ    |          |          |                 |                  |          |             |              |                |                         |          |          |            |          |                                        | IT      |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |
|                                          |                |               |            |              | T         |           |     |      |          |          |                 |                  |          |             |              |                |                         |          |          |            |          | $\top$                                 | 1-1     | 十      | - Landina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>        |
|                                          |                |               |            | $\exists$    | 寸         | $\top$    | T   | T    |          | H        | 1               |                  |          | -           |              |                | _                       |          | ┪┈       |            | +        | +-                                     | +       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |
| Relinguished by                          | <u> </u>       | <u> </u>      |            |              | R         | ceive     | d b |      |          | Щ        |                 |                  | -        |             | Date         | Щ              | [                       | Time     | ╁        |            |          | ــــــــــــــــــــــــــــــــــــــ |         | Ц.     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |
| 7' 1 1 \                                 |                |               |            |              |           | ,00170    |     | ,    |          |          |                 |                  | ┥        |             | Date         |                |                         | Fime     | CDI      | PH W       | rite (   | On EC                                  | )T Tra  | nsm    | nission?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | es No           |
|                                          |                |               |            |              | 1         |           |     |      |          |          |                 |                  |          |             |              |                |                         |          | State    | ≘ Syst     | em N     | lumbei                                 | r:      |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |
| LAGP-R                                   | oger           |               | 1          | 1            | 1         | 1         |     |      |          |          |                 |                  |          | N           | 00           | , T            | 103                     | 7        | 1        |            |          |                                        | _       | ource  | Number(s) in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | column above    |
|                                          | 4              |               | ス          | 大            | 术         | 7         |     |      |          | _        |                 |                  |          | <del></del> | D.S1         |                |                         | 10       | ╂─       |            |          |                                        | DW-     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | es No           |
|                                          |                | +             | 1          | <u> </u>     |           | 1         |     |      |          |          |                 |                  | $\dashv$ |             | Ť            |                | 11                      |          | -        |            | асор     | , 10 L                                 | ,D14-   | •      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |
|                                          | )              |               | <i>V</i> ` | y            | <u>/</u>  |           |     |      |          | ···      |                 | -                | _        | 10          | hol          | 21             |                         | 25       |          |            |          |                                        | attn:   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |
| l ————————————————————————————————————   | hB             |               | _          | J.           | 2         |           |     |      |          |          |                 |                  | ĺ        | 10          | lzď          | ایر۲           | 10                      | 250      | Travel   | and Site   | Time:    |                                        | Mileage | 1      | Misc. Supplies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |



email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

03 November 2021

Bear Valley Water District

Attn: Guy West

PO Box 5027

Bear Valley, CA 95223

RE: Water Quality

Work Order: 21J3274

Enclosed are the results of analyses for samples received by the laboratory on 10/25/21 23:50. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jeanette L. Poplin For Karen L. Lantz

Jeanette Popli

Project Manager



email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Bear Valley Water District

Project Manager: Guy West

P O Box 5027

Project: Water Quality

Bear Valley, CA 95223

Project Number: MW II

Reported: 11/03/21 11:59

Bay Area: 262 Rickenbacker Circle | Livermore, CA 94551 | T: 925-828-6226 | F: 925-828-6309 | ELAP# 2728 Central Valley: 9090 Union Park Way Suite 113 | Elk Grove, CA 95624 | T: 916-686-5190 | F: 916-686-5192 | ELAP# 2922 North Bay: 110 Liberty Street | Petaluma, CA 94952 | T: 707-769-3128 | F: 707-769-8093 | ELAP# 2303 San Diego: 2722 Loker Avenue West Suite A | Carlsbad, CA 92010 | T: 760-930-2555 | F: 760-930-2510 | ELAP# 3055

#### ANALYTICAL REPORT FOR SAMPLES

| Sample ID | Laboratory ID | Matrix | Date Sampled   | Date Received  |
|-----------|---------------|--------|----------------|----------------|
| Well #1   | 21J3274-01    | Water  | 10/21/21 07:55 | 10/25/21 23:50 |
| Well #6   | 21J3274-02    | Water  | 10/21/21 08:17 | 10/25/21 23:50 |



email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Bear Valley Water District Project Manager: Guy West

P O Box 5027 Project: Water Quality

Bear Valley, CA 95223 Project Number: MW II

Reported: 11/03/21 11:59

|                                  | Result Units | Reporting Limit | Dilution | Batch   | Prepared       | Analyzed        | ELAP#   | Method    | Note |
|----------------------------------|--------------|-----------------|----------|---------|----------------|-----------------|---------|-----------|------|
| Well #1 (21J3274-01)             |              | Sample Type: '  | Water    |         | Sampled        | l: 10/21/21 07: | 55      |           |      |
| Metals by EPA 200 Series Methods |              |                 |          |         |                |                 |         |           |      |
| Boron                            | ND mg/L      | 0.20            | 1        | AJ14767 | 10/27/21 13:28 | 10/29/21 12:2   | 5 1551  | EPA 200.7 |      |
| Iron                             | 18 mg/L      | 0.10            | 1        | AJ14767 | 10/27/21 13:28 | 10/28/21 23:2   | 1 1551  | EPA 200.7 |      |
| Manganese                        | 1.5 mg/L     | 0.020           | 1        | AJ14767 | 10/27/21 13:28 | 10/28/21 23:2   | 1 1551  | EPA 200.7 |      |
| Sodium                           | 11 mg/L      | 1.0             | 1        | AJ14767 | 10/27/21 13:28 | 10/28/21 23:2   | 1 1551  | EPA 200.7 |      |
| Anions by EPA Method 300.0       |              |                 |          |         |                |                 |         |           |      |
| Chloride                         | 0.79 mg/L    | 0.50            | 1        | AJ15065 | 10/26/21 12:15 | 10/26/21 12:1   | 5 2922  | EPA 300.0 |      |
| Well #6 (21J3274-02)             |              | Sample Type:    | Water    |         | Sampled        | l: 10/21/21 08: | 17      |           |      |
| Metals by EPA 200 Series Methods |              |                 |          |         |                |                 |         |           |      |
| Boron                            | ND mg/L      | 0.20            | 1        | AJ14767 | 10/27/21 13:28 | 10/29/21 12:2   | 8 1551  | EPA 200.7 |      |
| Iron                             | 18 mg/L      | 0.10            | 1        | AJ14767 | 10/27/21 13:28 | 10/28/21 23:2   | 25 1551 | EPA 200.7 |      |
| Manganese                        | 3.4 mg/L     | 0.020           | 1        | AJ14767 | 10/27/21 13:28 | 10/28/21 23:2   | 25 1551 | EPA 200.7 |      |
| Sodium                           | 18 mg/L      | 1.0             | 1        | AJ14767 | 10/27/21 13:28 | 10/28/21 23:2   | 25 1551 | EPA 200.7 |      |
| Anions by EPA Method 300.0       |              |                 |          |         |                |                 |         |           |      |
| Chloride                         | 6.1 mg/L     | 0.50            | 1        | AJ15065 | 10/26/21 13:13 | 10/26/21 13:1   | 3 2922  | EPA 300.0 |      |



email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Bear Valley Water District

Project Manager: Guy West

Project Number: MW II

P O Box 5027

Project: Water Quality

Bear Valley, CA 95223

Reported: 11/03/21 11:59

#### **Notes and Definitions**

ND Analyte NOT DETECTED at or above the reporting limit

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

Non-accredited analytes are reported only when ELAP accreditation for a requested analyte is not available. For a list of accredited analytes, view our certificates at the Company link on our website at www.alpha-labs.com or contact your Project Manager directly.



208 Mason Street, Ukiah CA 95482 707-468-0401 F) 707-468-5267 Corporate Laboratory

email: clientservices@alpha-labs.com

ELAP Certifications Ukiah 1551 / Dublin 2728 / Elk Grove 2922

WATERS, SEDIMENTS, SOLIDS

Bay Area Laboratory

262 Rickenbacker Circle, Livermore, CA 94551 925-828-6226 F) 925-828-6309

Central Valley Laboratory 9090 Union Park Way #113, Elk Grove CA 95624 916-686-5190 F) 916-686-5192

Chain of Custody - Work Order

Reports and Invoices delivered by email in PDF format

2153274

Elk Grove temp: Temp upon Receipt °C ŝ Dublin temp: Ukiah temp: If "Y" please enter the Source Number(s) in the column above CDPH Source Numbers: Sample Notes or Signature below authorizes work under terms stated on reverse side. ö **DUE ANNUALLY IN** Yes SEPTEMBER Lab preapproval required Pg Standard 10 days days TAT Standard 48 hours CDPH Write On EDT Transmission? 5 days Other: Mail Hardcopy to DDW-? State System Number: **Analysis Request** 3 SYS Time CI × Fe, 'Β ΒN 10-21-21 Date 1001.21 Total Number of Containers per Sample ID 2 Other Matrix Project Information lioS Water WW × = MM Internal Lab Use: 570 Mone × Preservative Na2S2O3 PO Number: Project No: Project ID: #0SZH HNO3 Received by HCI Other Sleeve Container Class Invoice to (if different) Poly × IsiV Im04 0817 Time 6754 Sampling 12-1201 10-11-01 mail address Date Field Sampler - Printed Name & Signature: Sample Identification Relinquished by Report to Bear Valley Water District Bear Valley, CA 95223 209-753-2112 PO Box 5027 Email Address: P# #34 **4**#±3**×** Nell #4 **Vel** #3 Well #6 Well #1 Phone/Fax: Address

Misc Supplies

Hardcopy to DUVV attn:

(que

ravel and Sita Time:

5. J.

15-52

## BEAR VALLEY WATER DISTRICT – THIRD TRI-ANNUAL 2021 GROUNDWATER MONITORING REPORT

Appendix C Historical Groundwater Elevations and Quality January 23, 2022

## Appendix C Historical Groundwater Elevations and Quality

| Well  | Date       | Depth<br>To GW<br>(ft) | GW Elev.<br>(ft,<br>NAVD88) | Field pH | Field EC<br>(μS/cm) | Temp.<br>(C) | NO3-N<br>(mg/L) | TKN<br>(mg/L) | Ammo<br>nia as<br>N | TDS<br>(mg/L) | Total Coliform<br>(MPN/100ml) | B (mg/L) | Fe<br>(mg/L) | Mn<br>(mg/L) | Na<br>(mg/L) | CI<br>(mg/L) | ORP<br>(mV) | Dissolved<br>Oxygen<br>(mg/L) | Lab SC<br>(μS/cm) | Ca<br>(mg/L) | Mg<br>(mg/L) |
|-------|------------|------------------------|-----------------------------|----------|---------------------|--------------|-----------------|---------------|---------------------|---------------|-------------------------------|----------|--------------|--------------|--------------|--------------|-------------|-------------------------------|-------------------|--------------|--------------|
| MW-1  | 9/1/2004   | 10.29                  | 7103.79                     | 6.7      | 221                 | 4.8          | < 0.050         | <1.0          |                     | 166           | 28                            | $NR^3$   | 0.940        | 0.370        | $NR^3$       | $NR^3$       |             |                               |                   |              |              |
| MW-1  | 10/13/2004 | 12.73                  | 7101.35                     | 6.9      | 180                 | 6.2          | <0.1            | 1             | <1                  | 150           | <2                            | 0.05     | < 0.02       | 0.350        | 7.0          | 3.4          |             |                               |                   |              |              |
| MVV-1 | 8/11/2005  | 9.32                   | 7104.76                     | 6.5      | 150                 | 6.4          | <0.1            | 2             | <1                  | 200           | <2                            | < 0.03   | 0.210        | 0.280        | 6.0          | 1.2          | 71          | 5.5                           | 160               | 19.0         | 5.2          |
| MVV-1 | 9/15/2005  | 9.54                   | 7104.54                     | 7.0      | 150                 | 6.4          | <0.1            | <1            | <1                  | 150           | <2                            | < 0.03   | 0.730        | 0.300        | 6.0          | 3.6          | 56          | 7.9                           | 160               | 20.0         | 5.3          |
| MVV-1 | 10/13/2005 | 9.50                   | 7104.58                     | 6.6      | 1482                | 7.1          | <0.1            | <1            | <1                  | 120           | 2                             | 0.03     | 0.150        | 0.260        | 6.0          | 2.2          | 138         | 7.5                           | 170               | 18.0         | 4.8          |
| MVV-1 | 6/29/2006  | 9.60                   | 7104.48                     | 6.9      | 125                 | 5.1          | <0.1            | <1            | <1                  | 110           | <2                            | < 0.03   | 0.060        | 0.140        | 5.0          | 1.6          | 103         | 1.7                           | 140               | 14.0         | 3.9          |
| MVV-1 | 8/2/2006   | 8.25                   | 7105.83                     | 7.7      | 156                 | 6.9          | <0.1            | <1            | <1                  | 150           | 21                            | < 0.03   | < 0.02       | 0.280        | 7.0          | 1.4          | 65          | 4.3                           | 170               | 20.0         | 5.0          |
| MVV-1 | 10/10/2006 | 8.08                   | 7106.00                     | 6.8      | 171                 | 5.9          | <0.1            | <1            | <1                  | 160           | <2                            | < 0.03   | 0.130        | 0.360        | 7.0          | 1.5          | 70          | 2.7                           | 180               | 22.0         | 5.7          |
| MW-1  | 7/12/2007  | 10.10                  | 7103.98                     | 7.0      | 173                 | 7.0          | <0.1            | <1            | <1                  | 220           | 2                             | < 0.03   | 0.130        | 0.370        | 6.0          | 1.2          | 110         | 6.7                           | 180               | 23.0         | 5.8          |
| MVV-1 | 8/29/2007  | 9.00                   | 7105.08                     | 7.1      | 180                 | 7.7          | <0.1            | <1            | <1                  | 170           | 14                            | 0.037    | 0.340        | 0.430        | 6.0          | 1.5          | -2          | 4.9                           | 200               | 25.0         | 5.8          |
| MVV-1 | 9/26/2007  | 12.30                  | 7101.78                     | 7.2      | 189                 | 7.4          | <0.1            | <1            | <1                  | 170           | <2                            | < 0.03   | 0.140        | 0.380        | 6.7          | 1.0          | -121        | 4.7                           | 200               | 23.0         | 6.0          |
| MW-1  | 7/8/2008   | 10.25                  | 7103.83                     | 7.2      | 168                 | 7.4          | <0.1            | <1            | <1                  | 170           | 4                             | < 0.03   | 0.060        | 0.270        | 6.0          | 1.1          | 141         | 1.9                           | 180               | 21.0         | 6.0          |
| MW-1  | 9/18/2008  | 9.70                   | 7104.38                     | 7.3      | 189                 | 6.9          | <0.1            | <1            | <1                  | 180           | 230                           | < 0.03   | 0.060        | 0.330        | 7.0          | <1.0         | 156         | 7.4                           | 200               | 22.0         | 5.1          |
| MW-1  | 1/16/2008  | 12.30                  | 7101.78                     | 7.6      | 180                 | 6.4          | <0.1            | <0.1          | <1                  | 150           | 11                            | < 0.03   | 0.180        | 0.360        | 11.0         | 1.2          | 78          | 7.1                           | 190               | 26.0         | 7.7          |
| MW-1  | 7/7/2009   | 8.95                   | 7105.13                     | 7.2      | 168                 | 6.8          | <0.1            | <1            | <1                  | 220           | 2                             | < 0.03   | 0.140        | 0.260        | 7.0          | 8.0          | 469         | 6.2                           | 180               | 23.0         | 5.8          |
| MW-1  | 9/30/2009  | 9.00                   | 7105.08                     | 6.2      | 194                 | 6.8          | <0.1            | <1            | <1                  | 170           | 8                             | < 0.03   | 0.120        | 0.420        | 7.0          | 0.6          | 52          | 1.9                           | 190               | 25.0         | 5.5          |
| MW-1  | 10/26/2009 | 10.30                  | 7103.78                     | 2.7      | 142                 | 6.3          | 0.3             | 1             | <1                  | 160           | 80                            | < 0.03   | 0.110        | 0.280        | 9.0          | 1.1          | 281         | 1.0                           | 190               | 23.0         | 6.2          |
| MW-1  | 7/13/2010  | 8.80                   | 7105.28                     | 6.4      | 150                 | 6.0          | <0.1            | <1            | <1                  | 140           | <2                            | < 0.03   | 0.040        | 0.220        | 6.0          | 1.9          | 402         | 1.7                           | 150               | 19.0         | 4.7          |
| MW-1  | 8/24/2010  | 9.03                   | 7105.05                     | 7.0      | 185                 | 6.1          | <0.1            | <1            | <1                  | 170           | 2                             | < 0.03   | < 0.02       | 0.300        | 7.0          | 0.9          | 43          | 0.9                           | 190               | 20.0         | 5.4          |
| MW-1  | 11/4/2010  | 8.80                   | 7105.28                     | 5.9      | 173                 | 6.3          | <0.1            | 6             | <1                  | 140           | 17                            | < 0.03   | < 0.02       | 0.310        | 6.0          | 2.2          | 132         | 2.0                           | 170               | 18.0         | 4.3          |
| MW-1  | 7/21/2011  | 8.10                   | 7105.98                     | 5.6      | 148                 | 5.7          | <0.1            | <1            | <1                  | 130           | <2                            | < 0.03   | 0.017        | 0.200        | 4.6          | 1.6          | 101         | 1.1                           | 150               | 14.7         | 4.1          |
| MW-1  | 9/8/2011   | 9.54                   | 7104.54                     | 7.0      | 177                 | 6.2          | <0.1            | 2             | <1                  | 140           | <2                            | < 0.03   | 0.040        | 0.272        | 5.7          | 1.1          | 38          | 1.3                           | 180               | 17.2         | 5.1          |
| MW-1  | 10/20/2011 | 9.44                   | 7104.64                     | 6.6      | 167                 | 5.7          | <0.1            | 2             | <1                  | 140           | 4.5                           | <0.03    | 0.060        | 0.280        | 5.4          | 1.6          | 61          | 1.5                           | 170               | 17.3         | 4.3          |
| MW-1  | 6/26/2012  | 9.00                   | 7105.08                     | 6.7      | 93                  | 5.4          | 0.2             | <1            | <1                  | 110           | <1.8                          | <0.03    | <0.02        | 0.190        | 5.6          | 1.7          | 63          | 2.1                           | 93                | 15.9         | 4.1          |
| MW-1  | 7/31/2012  | 10.30                  | 7103.78                     | 7.0      | 197                 | 8.5          | <0.1            | 1             | <1                  | 150           | 2                             | <0.03    | 0.081        | 0.263        | 6.6          | 0.7          | 103         | 0.1                           | 200               | 23.9         | 5.8          |
| MW-1  | 10/9/2012  | 12.40                  | 7101.68                     | 6.5      | 184                 | 5.8          | <0.2            | 2             | <1                  | 140           | <1.8                          | <0.03    | 0.105        | 0.322        | 6.5          | 1.6          | 87          | 1.5                           | 180               | 20.4         | 5.0          |
| MW-1  | 5/30/2013  | 11.00                  | 7103.08                     | 6.4      | 153                 | 6.1          | <0.2            | <1            | <1                  | 120           | <1.8                          | <0.03    | <0.02        | 0.143        | 5.3          | 1.7          | 198         |                               | 150               | 16.7         | 4.5          |
| MW-1  | 8/21/2013  | 12.39                  | 7101.69                     | 6.6      | 177                 | 8.1          | <0.1            | <1            | <1                  | 150           | <1.8                          | < 0.03   | 0.080        | 0.280        | 5.3          | 1.5          | 276         | 2.3                           | 180               | 18.6         | 4.6          |
| MW-1  | 10/15/2013 | 12.95                  | 7101.13                     | 6.4      | 193                 | 7.1          | <0.2            | <1            | <1                  | 150           | <1.8                          | < 0.03   | 0.093        | 0.300        | 6.8          | 1.5          | 514         | 1.3                           | 190               | 25.7         | 5.9          |
| MW-1  | 6/12/2014  | 11.04                  | 7103.04                     | 6.2      | 130                 | 6.4          | <0.2            | <1            | <1                  | 120           | <1.8                          | < 0.03   | <0.02        | 0.052        | 5.0          | 2.6          | 266         | 2.9                           | 130               | 14.4         | 4.1          |
| MW-1  | 8/12/2014  | 10.67                  | 7103.41                     | 7.4      | 157                 | 6.7          | <0.2            | <1            | <1                  | 140           | <1.8                          | < 0.03   | <0.02        | 0.206        | 5.6          | 2.4          | 258         | 2.3                           | 160               | 18.9         | 4.6          |
| MW-1  | 10/14/2014 |                        | 7101.69                     | 7.2      | 189                 | 6.7          | <0.2            | <1            | <1                  | 170           | <1.8                          | < 0.03   | < 0.02       | 0.299        | 6.2          | 1.0          | 264         | 0.3                           | 190               | 21.8         | 5.6          |
| MW-1  | 6/17/2015  | 10.72                  | 7103.36                     | 7.2      | 138                 | 6.8          | <0.2            | <1            | <1                  | 110           | <1.8                          | < 0.03   | <0.02        | 0.046        | 4.6          | 5.2          | 306         | 1.8                           | 140               | 12.5         | 3.7          |
| MW-1  | 9/9/2015   | 10.19                  | 7103.89                     | 6.6      | 165                 | 6.7          | <0.2            | <1            | <1                  | 150           | <1.8                          | 0.034    | < 0.03       | 0.203        | 5.9          | 2.2          | 241         | 2.7                           | 170               | 19.4         | 5.0          |
| MW-1  | 11/12/2015 | 11.00                  | 7103.08                     | 6.5      | 161                 | 8.3          | <0.2            | <1            | <1                  | 160           | 17                            | < 0.03   | < 0.03       | 0.205        | 5.1          | 3.7          | 270         |                               | 160               | 17.3         | 4.6          |
| MW-1  | 7/7/2016   | 8.89                   | 7105.19                     | 6.1      | 154                 | 8.6          | <0.2            | <1            | <1                  | 110           | <1.8                          | < 0.03   | < 0.03       | 0.108        | 5.4          | 2.0          |             |                               | 150               | 17.7         | 4.6          |
| MW-1  | 9/8/2016   | 11.11                  | 7102.97                     | 6.4      | 168                 | 6.9          | <0.1            | 0.62          | <0.1                | 170           | <1.8                          | <0.03    | < 0.03       | 0.196        | 5.5          | 1.9          |             |                               |                   | 19.1         | 4.8          |
| MW-1  | 10/20/2016 | 9.48                   | 7104.60                     | 6.4      | 172                 | 6.5          | <0.1            | 0.31          | 0.19                | 140           | 230                           | < 0.03   | 0.043        | 0.236        | 5.8          | 2.1          |             |                               |                   | 20.5         | 5.1          |
| MW-1  | 7/13/2017  | 10.09                  | 7103.99                     | 7.6      | 88                  | 7.3          | <0.4            | <1            | <1                  | 92            | 5400                          | < 0.03   | < 0.03       | 0.016        | 4.5          | 1.9          |             |                               | 88                | 8.9          | 2.7          |
| MW-1  | 8/24/2017  | 9.85                   | 7104.23                     | 6.1      | 154                 | 6.5          | <0.4            | <1            | <1                  | 130           | 490                           | < 0.03   | < 0.03       | 0.128        | 5.5          | 1.3          |             |                               | 150               | 15.0         | 4.6          |
| MW-1  | 9/28/2017  | 10.45                  | 7103.63                     | 6.1      | 152                 | 5.8          | <0.4            | <1            | <1                  | 130           | 1.8                           | <0.03    | <0.03        | 0.148        | 5.7          | 1.6          |             |                               | 150               | 16.5         | 4.3          |
| MW-1  | 6/29/2018  | 8.70                   | 7105.38                     | 6.7      | 233                 | 5.6          | <0.2            | <1            | <0.2                | 161           | <1.8                          |          |              |              |              |              |             |                               |                   |              |              |
| MW-1  | 8/23/2018  | 10.81                  | 7103.27                     | 6.8      | 185                 | 5.5          | <0.2            | <1            | <0.2                | 140           | <1.8                          | .0.0     |              | 4 400        | 0.0          | 4 -          |             |                               |                   |              |              |
| MW-1  | 10/10/2018 | 13.11                  | 7100.97                     | 6.7      | 198                 | 5.1          | 2.8             | <1            | <0.2                | 160           | <1.8                          | <0.2     | 14           | 1.400        | 9.3          | 1.7          |             |                               |                   |              |              |
| MW-1  | 7/18/2019  | 9.35                   | 7104.73                     | 6.0      | 90                  | 7.1          | <0.2            | <1            | <0.2                | 90            | <1.8                          |          |              |              |              |              |             |                               |                   |              |              |
| MW-1  | 8/29/2019  | 9.41                   | 7104.67                     | 6.6      | 173                 | 6.4          | <0.2            | <1            | <0.2                | 130           | <1.8                          | .0.0     |              | 0.655        | 0.4          | 4.5          |             |                               |                   |              |              |
| MW-1  | 10/3/2019  | 10.33                  | 7103.75                     | 6.9      | 175                 | 4.9          | <0.2            | <1            | <0.2                | 130           | <1.8                          | <0.2     | 0.39         | 0.220        | 6.1          | 1.0          |             |                               |                   |              |              |

| Well         | Date                    | To GW<br>(ft) | (ft,<br>NAVD88)    | Field pH   | Field EC<br>(μS/cm) | Temp.<br>(C) | NO3-N<br>(mg/L) | TKN<br>(mg/L)   | Ammo<br>nia as<br>N | TDS<br>(mg/L) | Total Coliform<br>(MPN/100ml) | B (mg/L)           | Fe<br>(mg/L)            | Mn<br>(mg/L)      | Na<br>(mg/L)             | CI<br>(mg/L)    | ORP<br>(mV) | Dissolved<br>Oxygen<br>(mg/L) | Lab SC<br>(μS/cm) | Ca<br>(mg/L) | ) (r |
|--------------|-------------------------|---------------|--------------------|------------|---------------------|--------------|-----------------|-----------------|---------------------|---------------|-------------------------------|--------------------|-------------------------|-------------------|--------------------------|-----------------|-------------|-------------------------------|-------------------|--------------|------|
| MW-1         | 6/11/2020               | 8.30          | 7105.78            | 6.5        | 109                 | 5.9          | <0.2            | <1              | <0.2                | 110           | <1.8                          |                    |                         |                   |                          |                 |             |                               |                   |              |      |
| MW-1         | 8/13/2020               | 8.78          | 7105.30            | 6.6        | 173                 | 5.8          | <0.2            | <1              | <0.2                | 140           | <1.8                          | <b>-0.</b> 2       | C E                     | 0.070             | 7.2                      | 0.0             |             |                               |                   |              |      |
| MW-1<br>MW-1 | 10/15/2020<br>6/10/2021 | 12.16<br>9.07 | 7101.92<br>7105.01 | 6.7<br>6.6 | 193<br>170          | 6.0<br>3.9   | <0.2<br><0.2    | <1<br><1        | <0.2<br><0.2        | 130<br>130    | <1.8<br><1.8                  | <0.2               | 6.5                     | 0.870             | 7.3                      | 8.0             |             |                               |                   |              |      |
| MW-1         | 8/12/2021               | 9.86          | 7103.01            | 6.7        | 203                 | 7.7          | <0.2            | <1              | <0.2                | 150           | 2                             |                    |                         |                   |                          |                 |             |                               |                   |              |      |
| MW-1         | 10/21/2021              | 13.52         | 7100.56            | 7.1        | 190                 | 6.5          | <0.2            | <1              | <0.2                | 160           | <1.8                          | <0.2               | 18                      | 1.500             | 11.0                     | 0.8             |             |                               |                   |              |      |
| MW-2         | 10/30/2002              | 12.25         | 7055.28            | 6.7        |                     |              | <0.050          | NR <sup>1</sup> | <0.4                | 186           | >2400                         | <0.10 <sup>T</sup> | 79 <sup>T</sup>         | 1.13 <sup>T</sup> | 19.8 <sup>T</sup>        | 58.0            |             |                               |                   |              | _    |
| MW-2         | 7/29/2003               |               |                    | 7.1        | 112                 | 9.2          | <0.1            | 1               | <0.2                | 80            | 6                             | NR <sup>3</sup>    | $NR_{\underline{}}^{3}$ | NR <sup>3</sup>   | $NR_{\underline{t}}^{3}$ | $NR^3$          |             |                               |                   |              |      |
| MW-2         | 11/13/2003              | 10.95         | 7056.58            | 7.7        |                     |              | <0.050*         | NR <sup>1</sup> | <0.4                |               | 2                             | <0.10 <sup>1</sup> | 37 <sup>T</sup>         | $0.82^{T}$        | 5.7 <sup>T</sup>         | <1.0            |             |                               |                   |              |      |
| MW-2         | 6/22/2004               | 3.76          | 7063.77            | 6.7        | 70                  | 4.8          | <0.050          | 2               | <0.4                | 82            | 2                             | NR <sup>3</sup>    | 0.920                   | <0.02             | NR <sup>3</sup>          | NR <sup>3</sup> |             |                               |                   |              |      |
| MW-2         | 9/1/2004                | 8.86          | 7058.67            | 6.9        | 68                  | 7.2          | <0.050          | 1               | <0.4                | 90            | <2                            | NR <sup>3</sup>    | 0.590                   | <0.02             | $NR^3$                   | NR <sup>3</sup> |             |                               |                   |              |      |
| MW-2         | 10/13/2004              | 17.80         | 7049.73            | 6.5        | 63                  | 11.4         | <0.1            | 10              | <1                  | 96            | 4                             | 0.03               | 0.020                   | 0.110             | 3.0                      | 2.2             |             |                               |                   |              |      |
| MW-2         | 8/11/2005               | 3.82          | 7063.71            | 6.2        | 50                  | 11.9         | <0.1            | 2               | <1                  | 140           | <2                            | <0.03              | 0.310                   | 0.040             | 2.0                      | <1              | 11          | 1.1                           | 54                | 5.5          |      |
| MW-2         | 9/15/2005               | 8.00          | 7059.53            | 7.1        | 51                  | 12.3         | 0.1             | 2               | 0.5                 | 130           | <2                            | <0.03              | 0.680                   | 0.010             | 3.0                      | <1              | 99          | NS                            | 56                | 6.1          |      |
| MW-2         | 10/13/2005              | 8.35          | 7059.18            | 6.8        | 59                  | 10.0         | <0.1            | <1              | <1                  | 110           | 30                            | <0.03              | 0.280                   | 0.010             | 3.0                      | <1              | 1           | 9.4                           | 67                | 6.4          |      |
| MW-2         | 6/29/2006               | 0.50          | 7067.03            | 7.9        | 45                  | 12.5         | <0.1            | <1              | <1                  | 93            | <2                            | <0.03              | 0.100                   | <0.01             | 2.0                      | <1              | 133         | 0.6                           | 48                | 4.6          |      |
| MW-2         | 8/2/2006                | 7.24          | 7060.29            | 7.8        | 45                  | 13.1         | <0.1            | <1              | <1                  | 100           | <2                            | <0.03              | 0.070                   | 0.060             | 4.0                      | <1              | 37          | 1.8                           | 53                | 5.0          |      |
| MW-2         | 10/10/2006              | 7.30          | 7060.23            | 6.8        | 66                  | 7.9          | <0.1            | <1              | <1                  | 130           | <2                            | <0.03              | 0.440                   | 0.020             | 4.0                      | 2.3             | 160         | 7.6                           | 75                | 8.0          |      |
| MW-2         | 7/12/2007               | 8.10          | 7059.43            | 6.8        | 41                  | 15.9         | <0.1            | 0.7             | <1                  | 43            | 2                             | < 0.03             | 1.200                   | 0.049             | 3.0                      | 1.1             | 229         | 8.5                           | 49                | 5.5          |      |
| MW-2         | 8/29/2007               | 8.70          | 7058.83            | 7.3        | 67                  | 16.0         | 0.1             | <1              | <1                  | 100           | <2                            | < 0.03             | 0.970                   | 0.100             | 3.0                      | 1.9             | 150         | 6.4                           | 75                | 7.8          |      |
| MW-2         | 9/26/2007               | 10.30         | 7057.23            | 6.7        | 54                  | 11.0         | 0.1             | <1              | <1                  | 130           | 2                             | < 0.03             | 0.023                   | 0.015             | 3.0                      | 2.0             | -121        | 12.0                          | 65                | 5.2          |      |
| MW-2         | 7/8/2008                | 2.90          | 7064.63            | 6.6        | 45                  | 13.8         | <0.1            | <1              | <1                  | 130           | 220                           | < 0.03             | 0.450                   | 0.020             | 2.0                      | <1              | 137         | 4.1                           | 49                | 5.0          |      |
| MW-2         | 9/18/2008               | 7.95          | 7059.58            | 6.7        | 115                 | 13.1         | 0.2             | 3               | <1                  | 86            | <2                            | < 0.03             | 0.510                   | 0.010             | 7.0                      | 6.8             | 764         | 13.1                          | 99                | 5.2          |      |
| MW-2         | 10/16/2008              | 8.78          | 7058.75            | 7.5        | 52                  | 18.3         | 0.2             | <0.1            | <1                  | 97            | 2                             | < 0.03             | 0.220                   | 0.010             | 3.0                      | 1.6             | 214         | 7.6                           | 56                | 5.7          |      |
| MW-2         | 7/7/2009                | 6.30          | 7061.23            | 6.9        | 44                  | 9.4          | <0.1            | <1              | <1                  | 330           | 2                             | < 0.03             | 0.910                   | 0.020             | 3.0                      | <0.2            | 363         | 8.5                           | 48                | 6.1          |      |
| MW-2         | 9/30/2009               | 8.70          | 7058.83            | 6.0        | 59                  | 8.4          | <0.1            | <1              | <1                  | 47            | 8                             | < 0.03             | 0.620                   | 0.020             | 3.0                      | 0.9             | 85          | 0.0                           | 61                | 6.9          |      |
| MW-2         | 10/26/2009              | 7.85          | 7059.68            | 6.1        | 47                  | 9.0          | 0.5             | <1              | <1                  | 54            | 2200                          | < 0.03             | 0.520                   | 0.040             | 3.0                      | 1.8             | 480         | 4.2                           | 61                | 6.8          |      |
| MW-2         | 7/13/2010               | 0.80          | 7066.73            | 6.1        | 43                  | 9.3          | <0.1            | <1              | <1                  | 61            | 11                            | < 0.03             | 0.200                   | <0.01             | 2.0                      | 1.4             | 134         | 0.3                           | 43                | 4.7          |      |
| MW-2         | 8/24/2010               | 8.34          | 7059.19            | 6.3        | 47                  | 9.8          | <0.1            | <1              | <1                  | 90            | 23                            | < 0.03             | <0.02                   | < 0.01            | 2.0                      | 0.5             | 136         | 7.9                           | 47                | 4.7          |      |
| MW-2         | 11/4/2010               | 0.70          | 7066.83            | 5.8        | 57                  | 9.5          | <0.1            | 3               | <1                  | 49            | 500                           | < 0.03             | 0.080                   | 0.010             | 3.0                      | 1.9             | 201         | 4.0                           | 57                | 6.4          |      |
| MW-2         | 7/21/2011               | 0.40          | 7067.13            | 6.2        | 42                  | 7.2          | <0.1            | <1              | <1                  | 59            | 13                            | < 0.03             | 0.116                   | 0.200             | 1.8                      | <0.2            | 179         | 0.4                           | 42                | 4.5          |      |
| MW-2         | 9/8/2011                | 4.40          | 7063.13            | 6.4        | 56                  | 10.2         | <0.1            | 2               | <1                  | 70            | 2                             | < 0.03             | 1.540                   | 0.014             | 2.6                      | 0.6             | 77          | 1.7                           | 56                | 5.3          |      |
| MW-2         | 10/20/2011              | 3.30          | 7064.23            | 6.1        | 67                  | 10.8         | <0.1            | 1               | <1                  | 60            | 79                            | < 0.03             | 0.034                   | <0.01             | 2.5                      | 1.0             | 121         | 2.1                           | 67                | 6.5          |      |
| MW-2         | 6/26/2012               | 2.95          | 7064.58            | 6.2        | 40                  | 9.9          | <0.1            | 2               | <1                  | 53            | <1.8                          | <0.03              | <0.02                   | <0.01             | 2.5                      | 0.3             | 70          | 0.7                           | 40                | 6.0          |      |
| MW-2         | 7/31/2012               | 4.75          | 7062.78            | 6.3        | 74                  | 9.7          | <0.2            | <1              | <1                  | 67            | 23                            | <0.03              | 0.054                   | <0.01             | 3.7                      | 0.8             | 139         | 0.9                           | 74                | 8.4          |      |
| MW-2         | 10/9/2012               | 11.24         | 7056.29            | 5.9        | 100                 | 9.0          | <0.2            | <1              | <1                  | 81            | <1.8                          | < 0.03             | 0.029                   | 0.220             | 8.6                      | 8.7             | 691         | 2.6                           | 100               | 7.0          |      |
| MW-2         | 5/30/2013               | 1.00          | 7066.53            | 6.1        | 43                  | 8.3          | <0.2            | <1              | <1                  | 53            | 4.5                           | <0.03              | <0.02                   | < 0.01            | 2.1                      | 0.4             | 150         |                               | 43                | 4.3          |      |
| MW-2         | 8/21/2013               | 7.00          | 7060.53            | 5.2        | 50                  | 11.8         | <0.2            | <1              | <1                  | 160           | 4.5                           | <0.03              | 0.197                   | 0.168             | 3.0                      | 0.4             | 231         | 2.2                           | 50                | 5.8          |      |
| MW-2         | 10/15/2013              | 12.41         | 7055.12            | 5.6        | 56                  | 9.6          | <0.2            | <1              | <1                  | 87            | 4.0<br>1                      | <0.03              | 0.197                   | 0.023             | 3.2                      | 0.7             | 571         | 3.1                           | 56                | 4.9          |      |
| IVI V V -Z   | 6/12/2014               | 1.54          | 7055.12            | 5.0<br>5.9 | 47                  | 9.0<br>7.7   | <0.2            | <1              | <1                  | 65            | 4<br>4.5                      | <0.03              | < 0.044                 | < 0.023           | 2.3                      | 0.7             | 83          | 3. i<br>4.1                   | 47                | 4.9<br>4.5   |      |

|              |                       | Depth        | GW Elev.           |            |          |            |             |                 | Ammo        |           |                 |                    |                 |                   |                   |                                         |           | Dissolved  |          |            |            |
|--------------|-----------------------|--------------|--------------------|------------|----------|------------|-------------|-----------------|-------------|-----------|-----------------|--------------------|-----------------|-------------------|-------------------|-----------------------------------------|-----------|------------|----------|------------|------------|
|              |                       | To GW        | (ft,               |            | Field EC | Temp.      | NO3-N       | TKN             | nia as      | TDS       | Total Coliform  | 5 ( ")             | Fe              | Mn                | Na                | CI                                      | ORP       | Oxygen     | Lab SC   | Ca         | Mg         |
| Well         | Date                  | (ft)         | NAVD88)            | -          | (μS/cm)  | (C)        | (mg/L)      | (mg/L)          | N 1         | (mg/L)    | (MPN/100ml)     | B (mg/L)           | · · ·           | (mg/L)            | (mg/L)            | (mg/L)                                  | (mV)      | (mg/L)     | (μS/cm)  | (mg/L)     | (mg/L)     |
| MW-2         | 8/12/2014             | 7.94         | 7059.59            | 6.7        | 54<br>55 | 11.4       | <0.2        | <1              | <1          | 85        | 21              | < 0.03             | < 0.02          | 0.023             | 2.6               | 0.3                                     | 155       | 4.1        | 54<br>55 | 5.5        | 1.7        |
| MW-2         | 10/14/2014            | 10.28        | 7057.25            | 5.9        | 55       | 10.1       | <0.2        | <1              | <1          | 120       | <1.8            | <0.03              | 0.101           | 0.115             | 3.2               | 0.7                                     | 616       | 2.6        | 55       | 7.1        | 2.1        |
| MW-2         | 6/17/2015             | 1.94         | 7065.59            | 7.7        | 47       | 9.2        | <0.2        | <1              | <1          | 45        | <1.8            | <0.03              | <0.02           | <0.01             | 2.4               | 0.3                                     | 78        | 0.4        | 47       | 4.8        | 1.5        |
| MW-2         | 9/9/2015              | 10.31        | 7057.22            | 6.9        | 50       | 11.6       | <0.2        | <1              | <1          | 70        | <1.8            | <0.03              | <0.03           | 0.042             | 2.8               | 0.6                                     | 201       | 2.7        | 50       | 5.1        | 1.6        |
| MW-2         | 11/13/2015            | 8.81         | 7058.72            | 6.1        | 60       | 12.1       | <0.2        | <1              | <1          | 90        | 6.8             | <0.03              | <0.03           | 0.023             | 2.4               | 0.9                                     | 349       |            | 60       | 5.9        | 1.9        |
| MW-2         | 7/7/2016              | 2.29         | 7065.24            | 5.7        | 49       | 11.2       | <0.2        | <1              | <1          | 54        | <1.8            | < 0.03             | <0.03           | <0.01             | 2.3               | 0.3                                     |           |            | 49       | 5.9        | 1.5        |
| MW-2         | 9/8/2016              | 7.63         | 7059.90            | 6.3        | 70       | 10.6       | <0.1        | 0.40            | <0.1        | 180       | <1.8            | < 0.03             | < 0.03          | <0.01             | 2.7               | 1.3                                     |           |            |          | 7.1        | 2.2        |
| MW-2         | 10/20/2016            | 2.04         | 7065.49            | 5.8        | 64.5     | 10.3       | 0.2         | 0.35            | 0.14        | 54        | 170             | < 0.03             | < 0.03          | <0.01             | 3.2               | 2.2                                     |           |            |          | 6.9        | 2.1        |
| MW-2         | 7/13/2017             | 1.83         | 7065.70            | 7.2        | 46       | 10.7       | <0.4        | <1              | <1          | 54        | <1.8            | < 0.03             | 0.077           | 0.160             | 3.0               | 0.3                                     |           |            | 46       | 7.1        | 2.0        |
| MW-2         | 8/24/2017             | 6.57         | 7060.96            | 6.0        | 57       | 12.9       | <0.4        | <1              | <1          | 55        | 1300            | < 0.03             | < 0.03          | 0.022             | 2.9               | 0.6                                     |           |            | 57       | 5.2        | 1.8        |
| MW-2         | 9/28/2017             | 8.45         | 7059.08            | 5.8        | 57       | 12.6       | <0.4        | 1               | <1          | 67        | 2               | < 0.03             | < 0.03          | 0.041             | 2.8               | 0.7                                     |           |            | 57       | 6.1        | 1.8        |
| MW-2         | 6/28/2018             | 3.60         | 7063.93            | 6.5        | 77       | 8.9        | <0.2        | <1              | <0.2        | 54        | -<br><1.8       | 0.00               | 0.00            | 0.0               |                   | • • • • • • • • • • • • • • • • • • • • |           |            | •        | • • •      |            |
| MW-2         | 8/22/2018             | 8.80         | 7058.73            | 5.3        | 64.7     | 8.7        | <0.2        | 2.50            | <0.2        | 65        | 79              |                    |                 |                   |                   |                                         |           |            |          |            |            |
| MW-2         | 10/10/2018            | 10.57        | 7056.96            | IVS        | 04.7     | 0.7        | ٧٠.٧        | 2.00            | ٦٥.٧        | 00        | 7.5             |                    |                 |                   |                   |                                         |           |            |          |            |            |
|              |                       |              |                    |            | 40.4     | 44.0       | <b>40.0</b> | -1              | <b>-0.0</b> | <b>50</b> | 0               |                    |                 |                   |                   |                                         |           |            |          |            |            |
| MW-2         | 7/17/2019             | 0.60         | 7066.93            | 6.3        | 48.1     | 11.0       | <0.2        | <1              | <0.2        | 50        | 2               |                    |                 |                   |                   |                                         |           |            |          |            |            |
| MW-2         | 8/28/2019             | 6.22         | 7061.31            | 6.3        | 56.1     | 11.0       | <0.2        | <1              | <0.2        | 56        | <1.8            |                    |                 |                   |                   |                                         |           |            |          |            |            |
| MW-2         | 10/2/2019             | 6.63         | 7060.90            | 6.3        | 68.8     | 11.1       | <0.2        | <1              | <0.02       | 66        | <1.8            | <0.2               | 16              | 0.170             | 4.7               | 1.2                                     |           |            |          |            |            |
| MW-2         | 6/10/2020             | 1.50         | 7066.03            | 6.3        | 44       | 6.3        | <0.2        | <1              | <0.2        | 43        | 6.1             |                    |                 |                   |                   |                                         |           |            |          |            |            |
| MW-2         | 8/12/2020             | 5.18         | 7062.35            | 6.6        | 68.6     | 10.8       | <0.2        | <1              | <0.2        | 12        | <1.8            |                    |                 |                   |                   |                                         |           |            |          |            |            |
| MW-2         | 10/14/2020            | 9.68         | 7057.85            | 7.0        | 75.4     | 7.7        | IVS         |                 |             |           |                 |                    |                 |                   |                   |                                         |           |            |          |            |            |
| MW-2         | 6/9/2021              | 0.91         | 7066.62            | 6.6        | 49.3     | 6.3        | <0.2        | <1              | <0.2        | 45        | 22              |                    |                 |                   |                   |                                         |           |            |          |            |            |
| MW-2         | 8/11/2021             | 8.08         | 7059.45            | 6.4        | 60.5     | 11.7       | <0.2        | <1              | < 0.2       | 61        | 2               |                    |                 |                   |                   |                                         |           |            |          |            |            |
| MW-2         | 10/20/2021            | 11.21        | 7056.32            | 6.6        | 284      | 6.8        | IVS         |                 |             |           |                 |                    |                 |                   |                   |                                         |           |            |          |            |            |
|              |                       |              |                    |            |          |            |             | 1               |             |           |                 | - · -T             | T               | T                 | T                 |                                         |           |            |          |            |            |
| MW-3         | 10/30/2002            | 6.38         | 7049.99            | 6.3        |          |            | <0.050      | NR <sup>1</sup> |             | 256       | >2400           | <0.10 <sup>1</sup> | 63 <sup>1</sup> | 0.92 <sup>T</sup> | 32 <sup>T</sup>   | 74.0                                    |           |            |          |            |            |
| MW-3         | 7/29/2003             |              |                    | 6.4        | 98       | 6.9        | 0.3         | 1               |             | 60        | 1600            | NR <sup>3</sup>    | NR <sup>3</sup> | NR <sup>3</sup>   | NR <sup>3</sup>   | NR <sup>3</sup>                         |           |            |          |            |            |
| MW-3         | 11/13/2003            |              |                    | 6.3        |          |            | 0.06*       | NR <sup>1</sup> |             |           | 9               | <0.10 <sup>T</sup> | 46 <sup>T</sup> | 0.73 <sup>T</sup> | 10.7 <sup>T</sup> | 8.6                                     |           |            |          |            |            |
| MW-3         | 6/22/2004             | 2.45         | 7053.92            | 6.1        | 94       | 4.2        | 0.52        | 2               |             | 122       | 9               | NR <sup>3</sup>    | 0.650           | <0.02             | NR <sup>3</sup>   | NR <sup>3</sup>                         |           |            |          |            |            |
| MW-3         | 9/1/2004              | 4.75         | 7051.62            | 6.6        | 100      | 7.2        | 0.63        | <1.0            |             | 124       | <2              | NR <sup>3</sup>    | 0.380           | <0.02             | NR <sup>3</sup>   | $NR^3$                                  |           |            |          |            |            |
| MW-3         | 10/13/2004            | 6.59         | 7049.78            | 6.1        | 85       | 8.9        | 0.3         | <1              | <1          | 100       | <2              | 0.04               | <0.02           | <0.01             | 7.0               | 6.5                                     |           |            |          |            |            |
| MW-3         | 8/11/2005             | 3.12         | 7053.25            | 6.3        | 70       | 7.5        | 0.5         | <1              | <1          | 88        | 2               | <0.03              | 0.040           | <0.01             | 6.0               | 5.0                                     | 59        | 4.4        | 75       | 6.2        | 1.7        |
| MW-3         | 9/15/2005             | 2.97         | 7053.40            | 6.1        | 78       | 10.8       | <0.1        | <1              | <1          | 82        | 30              | < 0.03             | 0.070           | < 0.02            | 6.0               | 7.7                                     | 100       | 9.1        | 70       | 5.9        | 1.5        |
| MW-3         | 10/13/2005            | 3.48         | 7052.89            | 6.8        | NM       | 10.1       | 0.4         | 2               | <1          | 80        | 9               | < 0.03             | 0.030           | 0.040             | 7.0               | 11                                      | 84        | 4.4        | 92<br>56 | 7.3        | 2.2        |
| MW-3<br>MW-3 | 6/29/2006<br>8/2/2006 | 2.02<br>2.75 | 7054.35<br>7053.62 | 7.6<br>7.7 | 50       | 6.3<br>7.9 | <0.1        | <1<br>~1        | <1<br>~1    | 49<br>72  | 2               | <0.03<br><0.03     | 0.030<br><0.02  | <0.01<br><0.01    | 4.0<br>6.0        | 3<br>5                                  | 180<br>70 | 2.7<br>3.6 | 56       | 4.3<br>5.4 | 1.2        |
| MW-3         | 10/10/2006            | 3.15         | 7053.02            | 6.4        | 88<br>76 | 7.9<br>8.7 | 0.2<br><0.1 | <1<br>2         | <1<br><1    | 72<br>82  | <2<br><b>13</b> | <0.03              | <0.02           | <0.01             | 6.0<br>6.0        | 5<br>7.4                                | 70<br>169 | 2.6        | 68<br>82 | 5.4<br>6.6 | 1.5<br>2.0 |
| MW-3         | 7/12/2007             | 3.13         | 7053.22            | 6.2        | 59       | 10.4       | 0.1         | <1              | <1          | 91        | <2              | <0.03              | 0.053           | <0.01             | 8.0               | 4.3                                     | 249       | 4.2        | 66       | 5.9        | 1.6        |
| MW-3         | 8/29/2007             | 3.40         | 7052.97            | 6.4        | 89       | 13.6       | <0.1        | <1              | <1          | 71        | 800             | < 0.03             | 0.033           | <0.01             | 6.0               | 11.0                                    | 176       | 4.5        | 97       | 7.5        | 1.8        |
| MW-3         | 9/26/2007             | 5.00         | 7051.37            | 5.8        | 89       | 10.9       | 0.1         | <1              | <1          | 90        | 80              | < 0.03             | <0.02           | <0.01             | 7.0               | 11.0                                    | -109      | 7.8        | 96       | 7.5        | 2.1        |
| MW-3         | 7/8/2008              | 2.50         | 7053.87            | 6.4        | 47       | 8.8        | 0.1         | <1              | <1          | 72        | 2               | < 0.03             | 0.210           | < 0.01            | 6.0               | 5.3                                     | 218       | 2.5        | 66       | 5.0        | 2.0        |
| MW-3         | 9/18/2008             | 3.85         | 7052.52            | 6.0        | 93       | 12.8       | <0.1        | <1              | <1          | 94        | <2              | <0.03              | <0.02           | <0.01             | 7.0               | 13.0                                    | 681       | 3.9        | 97       | 6.8        | 1.9        |
| MW-3         | 10/16/2008            | 5.54         | 7050.83            | 7.0        | 101      | 11.6       | <0.1        | 0.15            | <1          | 94        | 2               | < 0.03             | <0.02           | <0.01             | 7.0               | 16.0                                    | 109       | 5.1        | 110      | 10.0       | 2.7        |

| Well | Date       | Depth<br>To GW<br>(ft) | GW Elev.<br>(ft,<br>NAVD88) | Field pH | Field EC (μS/cm) | Temp.<br>(C) | NO3-N<br>(mg/L) | TKN<br>(mg/L)   | Ammo<br>nia as<br>N | TDS<br>(mg/L) | Total Coliform (MPN/100ml) | B (mg/L)           | Fe<br>(mg/L)    | Mn<br>(mg/L)      | Na<br>(mg/L)    | CI<br>(mg/L)    | ORP<br>(mV) | Dissolved<br>Oxygen<br>(mg/L) | Lab SC<br>(μS/cm) | Ca<br>(mg/L) | Mg<br>(mg/L) |
|------|------------|------------------------|-----------------------------|----------|------------------|--------------|-----------------|-----------------|---------------------|---------------|----------------------------|--------------------|-----------------|-------------------|-----------------|-----------------|-------------|-------------------------------|-------------------|--------------|--------------|
| MW-3 | 7/7/2009   | 2.40                   | 7053.97                     | 6.1      | 77               | 6.0          | 0.5             | <1              | <1                  | 100           | 4                          | <0.03              | 0.060           | <0.01             | 6.0             | 11.0            | 680         | 1.4                           | 81                | 7.1          | 1.9          |
| MW-3 | 9/30/2009  | 3.65                   | 7052.72                     | 5.5      | 106              | 12.4         | <0.1            | <1              | <1                  | 100           | 4                          | < 0.03             | 0.060           | <0.01             | 8.0             | 12.0            | 211         | 1.7                           | 110               | 9.3          | 2.0          |
| MW-3 | 10/26/2009 | 4.10                   | 7052.27                     | 5.7      | 61               | 10.5         | 0.9             | <1              | <1                  | 70            | 22                         | < 0.03             | 0.100           | <0.01             | 6.0             | 8.6             | 239         | 6.1                           | 77                | 4.9          | 1.4          |
| MW-3 | 7/13/2010  | 2.10                   | 7054.27                     | 6.1      | 58               | 3.8          | <0.1            | <1              | <1                  | 60            | 8                          | < 0.03             | 0.030           | <0.01             | 5.0             | 3.6             | 116         | 1.8                           | 58                | 3.8          | 0.6          |
| MW-3 | 8/24/2010  | 2.65                   | 7053.72                     | 5.8      | 79               | 11.8         | <0.1            | <1              | <1                  | 87            | 2                          | < 0.03             | < 0.02          | <0.01             | 7.0             | 6.1             | 153         | 8.0                           | 79                | 6.3          | 1.8          |
| MW-3 | 11/4/2010  | 2.10                   | 7054.27                     | 5.6      | 105              | 9.8          | <0.1            | 3.00            | <1                  | 92            | 800                        | < 0.03             | 0.020           | <0.01             | 8.0             | 12.0            | 157         | 0.7                           | 110               | 8.5          | 2.2          |
| MW-3 | 7/21/2011  | 0.90                   | 7055.47                     | 6.2      | 52               | 3.6          | <0.1            | <1              | <1                  | 56            | 34                         | < 0.03             | < 0.02          | <0.01             | 3.8             | 2.4             | 113         | 2.3                           | 52                | 3.9          | 1.0          |
| MW-3 | 9/8/2011   | 2.45                   | 7053.92                     | 6.1      | 71               | 9.5          | <0.1            | 2.00            | <1                  | 62            | 2                          | < 0.03             | < 0.02          | <0.01             | 5.3             | 3.1             | 122         | 0.5                           | 71                | 5.1          | 1.6          |
| MW-3 | 10/20/2011 | 2.14                   | 7054.23                     | 6.1      | 76               | 8.2          | <0.1            | 1.00            | <1                  | 68            | 130                        | < 0.03             | 0.032           | <0.01             | 5.5             | 3.7             | 123         | 0.9                           | 76                | 5.7          | 1.5          |
| MW-3 | 6/26/2012  | 2.35                   | 7054.02                     | 6.0      | 48               | 6.3          | <0.1            | <1              | <1                  | 64            | <1.8                       | < 0.03             | < 0.02          | <0.01             | 6.4             | 3.8             | 84          | 0.4                           | 48                | 6.1          | 1.7          |
| MW-3 | 7/31/2012  | 2.86                   | 7053.51                     | 6.0      | 89               | 12.1         | <0.2            | <1              | <1                  | 69            | <1.8                       | < 0.03             | 0.330           | 0.029             | 6.1             | 6.3             | 157         | 0.0                           | 89                | 7.7          | 2.0          |
| MW-3 | 10/9/2012  | 5.98                   | 7050.39                     | 5.7      | 85               | 9.4          | <0.2            | <1              | <1                  | 72            | <1.8                       | < 0.03             | 0.067           | 0.017             | 6.2             | 5.3             | 436         | 1.2                           | 85                | 6.5          | 1.8          |
| MW-3 | 5/30/2013  | 2.20                   | 7054.17                     | 5.9      | 54               | 7.0          | <0.2            | <1              | <1                  | 60            | 6.8                        | < 0.03             | 0.039           | 0.031             | 4.7             | 3.4             | 147         |                               | 54                | 4.3          | 1.2          |
| MW-3 | 8/21/2013  | 4.90                   | 7051.47                     | 4.2      | 73               | 9.3          | <0.2            | <1              | <1                  | 68            | <1.8                       | < 0.03             | 0.042           | 0.017             | 5.3             | 5.0             | 359         | 1.6                           | 73                | 5.2          | 1.4          |
| MW-3 | 10/15/2013 | 6.11                   | 7050.26                     | 5.4      | 76               | 9.4          | <0.2            | <1              | <1                  | 79            | <1.8                       | < 0.03             | < 0.02          | <0.01             | 6.1             | 4.8             | 588         | 2.2                           | 76                | 6.2          | 1.5          |
| MW-3 | 6/12/2014  | 2.33                   | 7054.04                     | 5.7      | 61               | 5.2          | <0.2            | <1              | <1                  | 65            | 6.8                        | < 0.03             | < 0.02          | <0.01             | 5.3             | 3.9             | 66          | 0.6                           | 61                | 4.5          | 1.0          |
| MW-3 | 8/12/2014  | 4.62                   | 7051.75                     | 5.6      | 62               | 10.5         | 0.3             | <1              | <1                  | 69            | 9.3                        | < 0.03             | 0.072           | 0.033             | 5.8             | 7.3             | 224         | 2.8                           | 62                | 5.5          | 1.4          |
| MW-3 | 10/14/2014 | 7.12                   | 7049.25                     | 5.5      | 70               | 9.1          | <0.2            | <1              | <1                  | 64            | <1.8                       | < 0.03             | 0.052           | 0.011             | 6.4             | 4.5             | 187         | 0.1                           | 70                | 5.7          | 1.5          |
| MW-3 | 6/17/2015  | 1.98                   | 7054.39                     | 7.8      | 68               | 6.7          | 0.3             | <1              | <1                  | 63            | <1.8                       | < 0.03             | < 0.02          | <0.01             | 5.2             | 4.1             | 197         | 4.6                           | 68                | 5.5          | 1.4          |
| MW-3 | 9/9/2015   | 4.87                   | 7051.50                     | 7.4      | 67               | 9.0          | <0.2            | <1              | <1                  | 75            | 7.8                        | < 0.03             | < 0.03          | <0.01             | 5.5             | 3.8             | 164         | 3.3                           | 67                | 5.1          | 1.4          |
| MW-3 | 11/13/2015 | 5.78                   | 7050.59                     | 6.0      | 68               | 10.6         | <0.2            | <1              | <1                  | 67            | <1.8                       | < 0.03             | < 0.03          | <0.01             | 5.1             | 4.1             | 243         |                               | 68                | 5.3          | 1.5          |
| MW-3 | 7/7/2016   | 2.08                   | 7054.29                     | 5.7      | 68               | 5.7          | <0.2            | <1              | <1                  | 69            | <1.8                       | < 0.03             | < 0.03          | 0.022             | 4.9             | 5.3             |             |                               | 68                | 6.1          | 1.5          |
| MW-3 | 9/8/2016   | 4.62                   | 7051.75                     | 5.5      | 87               | 12.7         | <0.1            | 0.35            | <0.1                | 66            | 230                        | < 0.03             | < 0.03          | 0.041             | 5.4             | 9.6             |             |                               |                   | 7.4          | 1.9          |
| MW-3 | 10/20/2016 | 2.37                   | 7054.00                     | 5.8      | 88               | 9.1          | <0.1            | 0.35            | <0.1                | 71            | <1.8                       | < 0.03             | < 0.03          | <0.01             | 6.1             | 9.9             |             |                               |                   | 7.4          | 2.0          |
| MW-3 | 7/13/2017  | 2.19                   | 7054.18                     | 7.6      | 68               | 4.6          | <0.4            | <1              | <1                  | 60            | 2                          | < 0.03             | < 0.03          | <0.01             | 4.9             | 4.5             |             |                               | 68                | 5.3          | 1.4          |
| MW-3 | 8/24/2017  | 2.82                   | 7053.55                     | 6.0      | 79               | 11.7         | <0.4            | <1              | <1                  | 67            | 330                        | < 0.03             | < 0.03          | <0.01             | 5.3             | 4.3             |             |                               | 79                | 6.0          | 1.8          |
| MW-3 | 9/28/2017  | 3.53                   | 7052.84                     | 5.5      | 79               | 12.0         | <0.4            | 2               | <1                  | 71            | 7.8                        | < 0.03             | < 0.03          | <0.01             | 5.0             | 3.1             |             |                               | 79                | 6.8          | 1.8          |
| MW-3 | 6/28/2018  | 2.20                   | 7054.17                     | 6.1      | 117              | 5.4          | <0.2            | <1              | <0.2                | 82            | <1.8                       |                    |                 |                   |                 |                 |             |                               |                   |              |              |
| MW-3 | 8/22/2018  | 4.30                   | 7052.07                     | 6.2      | 74               | 10.2         | <0.2            | <1              | <0.2                | 59            | 4.5                        |                    |                 |                   |                 |                 |             |                               |                   |              |              |
| MW-3 | 10/10/2018 | 6.54                   | 7049.83                     | 6.1      | 81.4             | 7.2          | <0.2            | <1              | <0.2                | 73            | <1.8                       | <0.2               | 0.96            | 0.021             | 6.2             | 4.5             |             |                               |                   |              |              |
| MW-3 | 7/17/2019  | 1.80                   | 7054.57                     | 6.2      | 80.5             | 5.5          | <0.2            | <1              | <0.2                | 56            | 7.8                        |                    |                 |                   |                 |                 |             |                               |                   |              |              |
| MW-3 | 8/28/2019  | 2.91                   | 7053.46                     | 6.1      | 84.1             | 8.5          | <0.2            | <1              | <0.2                | 60            | 2                          |                    |                 |                   |                 |                 |             |                               |                   |              |              |
| MW-3 | 10/2/2019  | 4.01                   | 7052.36                     | 5.9      | 84               | 10.9         | <0.2            | <1              | <0.2                | 61            | <1.8                       | <0.2               | 1.3             | 0.025             | 6.0             | 4.8             |             |                               |                   |              |              |
| MW-3 | 6/10/2020  | 0.20                   | 7056.17                     | 6.2      | 64.1             | 6.4          | <0.2            | <1              | <0.2                | 48            | <1.8                       |                    |                 |                   |                 |                 |             |                               |                   |              |              |
| MW-3 | 8/12/2020  | 3.11                   | 7053.26                     | 6.2      | 87.5             | 10.7         | <0.2            | <1              | <0.2                | 63            | <1.8                       |                    |                 |                   |                 |                 |             |                               |                   |              |              |
| MW-3 | 10/14/2020 | 5.90                   | 7050.47                     | 6.6      | 80.3             | 9            | <0.2            | <1              | <0.2                | 81            | <1.8                       | <0.2               | <0.1            | <0.02             | 5.4             | 5.8             |             |                               |                   |              |              |
| MW-3 | 6/9/2021   | 1.80                   | 7054.57                     | 6.3      | 73.9             | 6.2          | <0.2            | <1              | <0.2                | 52            | 13                         |                    |                 |                   |                 |                 |             |                               |                   |              |              |
| MW-3 | 8/11/2021  | 4.72                   | 7051.65                     | 6.2      | 80.5             | 9.2          | <0.2            | <1              | <0.2                | 65            | 2                          |                    |                 |                   |                 |                 |             |                               |                   |              |              |
| MW-3 | 10/20/2021 | 7.17                   | 7049.2                      | 6.3      | 82.1             | 7.3          | <0.2            | <1              | <0.2                | 73            | <1.8                       | <0.2               | 0.79            | <0.02             | 5.6             | 6.3             |             |                               |                   |              |              |
|      |            |                        |                             |          |                  |              |                 | 1               |                     |               |                            | т                  |                 |                   | . т             |                 |             |                               |                   |              |              |
| MW-4 | 10/30/2002 | 4.30                   | 7050.49                     | 7.0      |                  |              | <0.050          | NR <sup>1</sup> |                     | 294           | 900                        | <0.10 <sup>1</sup> | 370'            | 14.8              | 42 <sup>1</sup> | 44.0            |             |                               |                   |              |              |
| MW-4 | 7/29/2003  |                        | 7050 55                     | 7.2      | 231              | 6.0          | <0.1            | <0.5            |                     | 170           | 240                        | NR <sup>3</sup>    | NR <sup>3</sup> | NR <sup>3</sup>   | $NR^3$          | NR <sup>3</sup> |             |                               |                   |              |              |
| MW-4 | 11/13/2003 | 3.96                   | 7050.83                     | 7.2      |                  |              | 0.05*           | NR <sup>1</sup> |                     |               | <2                         | <0.10 <sup>1</sup> | 49 <sup>T</sup> | 2.06 <sup>T</sup> | 10.5            | 5.5             |             |                               |                   |              |              |
| MW-4 | 6/22/2004  | 2.88                   | 7051.91                     | 6.8      | 254              | 4.7          | 0.05            | <1.0            |                     | 172           | <2                         | NR <sup>3</sup>    | 0.110           | 0.080             | $NR^3$          | $NR^3$          |             |                               |                   |              |              |
| MW-4 | 9/1/2004   | 12.95                  | 7041.84                     | 6.4      | 278              | 7.3          | < 0.050         | <1.0            |                     | 167           | <2                         | $NR^3$             | 0.170           | 0.190             | $NR^3$          | $NR^3$          |             |                               |                   |              |              |
| MW-4 | 10/13/2004 | 4.38                   | 7050.41                     | 6.8      | 230              | 8.8          | <0.1            | <1              | <1                  | 150           | <2                         | 0.03               | <0.02           | 0.580             | 9.0             | 6.9             |             |                               |                   |              |              |

|            |          | •                   | GW Elev.               |                 |                        |                   |                |              | Ammo        |               |                |                       | _               |                 |                   |                       |               | Dissolved             |                     |                |                       |
|------------|----------|---------------------|------------------------|-----------------|------------------------|-------------------|----------------|--------------|-------------|---------------|----------------|-----------------------|-----------------|-----------------|-------------------|-----------------------|---------------|-----------------------|---------------------|----------------|-----------------------|
| Well D     |          | GW                  | (ft,                   | Field all       | Field EC               | Temp.             | NO3-N          | TKN          | nia as      | TDS           | Total Coliform | D (*** **/  )         | Fe              | Mn              | Na<br>(*** **/! ) | CI<br>(******(! )     | ORP           | Oxygen                | Lab SC              | Ca             | Mg                    |
|            |          | <b>(ft)</b><br>3.22 | <b>NAVD88)</b> 7051.57 | Field pH<br>6.7 | (μ <b>S/cm)</b><br>210 | <b>(C)</b><br>7.0 | (mg/L)<br><0.1 | (mg/L)<br><1 | <b>N</b> <1 | (mg/L)<br>170 | (MPN/100ml)    | <b>B (mg/L)</b> <0.03 | (mg/L)<br>0.110 | (mg/L)<br>0.050 | (mg/L)<br>9.0     | ( <b>mg/L)</b><br>6.1 | ( <b>mV</b> ) | ( <b>mg/L)</b><br>1.3 | (μ <b>S/cm)</b> 220 | (mg/L)<br>25.0 | ( <b>mg/L)</b><br>8.6 |
|            |          | 3.22<br>3.10        | 7051.57                | 6.7             | 230                    | 7.0<br>7.0        | 0.1            | <1           | <1          | 180           | <2<br><2       | <0.03                 | <0.02           | <b>0.030</b>    | 9.0<br>10.0       | 7.5                   | 112           | 1.3                   | 240                 | 26.0           | 8.8                   |
|            |          | 3.20                | 7051.59                | 7.3             | 25                     | 7.5               | 0.1            | 1            | <1          | 160           | <2             | < 0.03                | 0.760           | 1.300           | 10.0              | 8.4                   | 8             | 9.6                   | 260                 | 28.0           | 9.2                   |
|            |          | 2.65                | 7052.14                | 7.2             | 193                    | 5.0               | 0.1            | -<br><1      | <1          | 130           | <2             | < 0.03                | 0.020           | 0.030           | 8.0               | 4.8                   | 165           | 1.5                   | 200                 | 22.0           | 7.4                   |
|            |          | 3.08                | 7051.71                | 8.3             | 186                    | 8.2               | <0.1           | <1           | <1          | 150           | <2             | < 0.03                | <0.02           | 0.030           | 9.0               | 5.9                   | 94            | 0.7                   | 200                 | 22.0           | 7.4<br>7.4            |
|            |          | 3.00                | 7051.79                | 6.9             | 205                    | 6.9               | <0.1           | 1            | <1          | 160           | 2              | < 0.03                | < 0.02          | 0.050           | 10.0              | 6.1                   | 101           | 1.5                   | 210                 | 24.0           | 7.9                   |
|            |          | 3.70                | 7051.09                | 7.2             | 180                    | 10.0              | <0.1           | 0.1          | <1          | 180           | -<br><2        | <0.03                 | 0.031           | 0.059           | 10.0              | 6.3                   | 213           | 1.6                   | 200                 | 24.0           | 7.5                   |
|            |          | 3.30                | 7051.49                | 7.0             | 187                    | 10.1              | <0.1           | <1           | <1          | 140           | <2             | < 0.03                | 0.160           | 0.073           | 8.0               | 6.7                   | 127           | 6.6                   | 200                 | 22.0           | 7.3                   |
|            |          | 3.60                | 7051.19                | 6.8             | 191                    | 9.5               | <0.1           | <1           | <1          | 140           | <2             | < 0.03                | 0.067           | 0.067           | 9.0               | 6.4                   | -106          | 9.4                   | 210                 | 21.0           | 7.0                   |
|            |          | 3.00                | 7051.79                | 6.9             | 203                    | 8.2               | <0.1           | <1           | <1          | 180           | <2             | < 0.03                | 0.060           | 0.030           | 8.0               | 6.6                   | 216           | 1.1                   | 220                 | 24.0           | 8.0                   |
| MW-4 9/18  | /2008 3  | 3.49                | 7051.30                | 7.0             | 196                    | 9.5               | <0.1           | <1           | <1          | 160           | <2             | < 0.03                | < 0.02          | < 0.01          | 9.0               | 6.3                   | 476           | 2.4                   | 210                 | 20.0           | 6.5                   |
| MW-4 10/16 | 6/2008 3 | 3.75                | 7051.04                | 7.7             | 191                    | 9.5               | <0.1           | <0.1         | <1          | 170           | 2              | < 0.03                | 0.020           | < 0.01          | 9.0               | 6.3                   | 133           | 6.2                   | 210                 | 22.0           | 7.2                   |
| MW-4 7/7/  | 2009 3   | 3.35                | 7051.44                | 7.0             | 207                    | 7.3               | 0.4            | 2            | <1          | 210           | <2             | < 0.03                | 0.040           | 0.040           | 9.0               | 6.6                   | 476           | 5.6                   | 220                 | 25.0           | 8.2                   |
| MW-4 9/30  | /2009 3  | 3.30                | 7051.49                | 4.5             | 199                    | 8.1               | <0.1           | <1           | <1          | 160           | <2             | < 0.03                | 0.080           | <0.01           | 9.0               | 7.2                   | 243           | 3.9                   | 200                 | 23.0           | 7.0                   |
| MW-4 10/26 | 6/2009 3 | 3.35                | 7051.44                | 6.2             | 188                    | 8.6               | 0.3            | <1           | <1          | 220           | 1300           | < 0.03                | 0.030           | 0.260           | 9.0               | 8.2                   | 300           | 4.7                   | 240                 | 25.0           | 7.5                   |
| MW-4 7/13  | /2010 2  | 2.50                | 7052.29                | 6.6             | 227                    | 5.5               | <0.1           | <1           | <1          | 150           | 2              | < 0.03                | 0.030           | <0.01           | 9.0               | 6.9                   | 105           | 0.6                   | 230                 | 25.0           | 8.3                   |
|            |          | 3.03                | 7051.76                | 6.4             | 228                    | 6.9               | <0.1           | <1           | <1          | 180           | <2             | < 0.03                | <0.02           | 0.040           | 9.0               | 7.1                   | 83            | 0.2                   | 230                 | 23.0           | 7.6                   |
|            |          | 2.15                | 7052.64                | 6.5             | 194                    | 7.8               | <0.1           | <1           | <1          | 140           | 50             | <0.03                 | <0.02           | 0.040           | 8.0               | 6.9                   | 172           | 0.1                   | 190                 | 21.0           | 6.5                   |
|            |          | 1.60                | 7053.19                | 6.9             | 208                    | 5.3               | <0.1           | <1           | <1          | 160           | <2             | < 0.03                | <0.02           | <0.01           | 7.4               | 4.8                   | 104           | 0.4                   | 210                 | 21.0           | 7.1                   |
|            |          | 2.85                | 7051.94                | 6.9             | 215                    | 6.6               | <0.1           | 1            | <1          | 150           | <2             | <0.03                 | <0.02           | 0.019           | 7.8               | 6.2                   | 84            | 0.2                   | 220                 | 18.4           | 7.2                   |
|            |          | 2.30                | 7052.49                | 7.0             | 191                    | 7.3               | <0.1           | <1           | <1          | 140           | 2              | < 0.03                | <0.02           | 0.079           | 7.4               | 6.1                   | 88            | 0.2                   | 190                 | 17.4           | 5.8                   |
|            |          | 2.55                | 7052.24                | 8.0             | 125                    | 6.4               | <0.1           | <1           | <1          | 130           | <1.8           | < 0.03                | <0.02           | 0.022           | 9.5               | 20.0                  | 94            | 0.4                   | 130                 | 22.2           | 7.5                   |
|            |          | 3.00                | 7051.79                | 6.6             | 204                    | 6.9               | <0.2           | 2            | <1          | 150           | 6.8            | < 0.03                | < 0.02          | 0.012           | 8.6               | 6.4                   | 86            | 0.1                   | 200                 | 22.4           | 7.0                   |
|            |          | 4.30                | 7050.49                | 5.8             | 191                    | 8.1               | <0.2           | <1           | <1          | 140           | <1.8           | < 0.03                | 0.020           | 0.046           | 8.3               | 6.4                   | 357           | 1.0                   | 190                 | 18.2           | 5.9                   |
|            |          | 2.30                | 7052.49                | 6.4             | 210                    | 6.1               | <0.2           | <1           | <1          | 150           | <1.8           | < 0.03                | <0.02           | 0.027           | 7.7               | 6.9                   | 109           |                       | 210                 | 20.8           | 7.2                   |
|            |          | 3.30                | 7051.49                | 6.5             | 200                    | 8.2               | <0.2           | <1           | <1<br>-1    | 140           | <1.8           | < 0.03                | <0.02           | 0.030           | 7.5               | 6.8                   | 448<br>552    | 0.4                   | 200                 | 18.8           | 6.3                   |
|            |          | 4.31<br>2.66        | 7050.48<br>7052.13     | 6.6<br>5.6      | 200<br>227             | 8.9<br>6.1        | <0.2<br><0.2   | <1<br><1     | <1<br><1    | 150<br>160    | <1.8           | <0.03<br><0.03        | <0.02<br><0.02  | 0.014<br><0.01  | 8.2               | 6.8<br>7.3            | 553<br>129    | 0.5<br>0.3            | 200                 | 21.8<br>23.1   | 6.5<br>8.2            |
|            |          | 2.00<br>3.57        | 7052.13                | 6.9             | 208                    | 6.1               | <0.2           | <1           | <1          | 160<br>160    | <1.8<br><1.8   | <0.03                 | 0.026           | <b>0.068</b>    | 8.5<br>8.5        | 7.3<br>6.8            | 213           | 0.3                   | 230<br>210          | 21.8           | 6.2<br>6.9            |
|            |          | 4.69                | 7051.22                | 6.7             | 200                    | 7.9<br>9.0        | <0.2           | <1           | <1          | 130           | <1.8           | <0.03                 | <0.020          | 0.009           | 7.7               | 6.8                   | 574           | 0.1                   | 200                 | 18.9           | 6.8                   |
|            |          | 4.09<br>2.41        | 7052.38                | 7.1             | 217                    | 7.1               | <0.2           | <1           | <1          | 140           | <1.8           | <0.03                 | <0.02           | < 0.009         | 7.7               | 6.9                   | -7            | 0.1                   | 220                 | 20.7           | 7.0                   |
|            |          | 3.72                | 7052.00                | 6.7             | 203                    | 9.1               | <0.2           | <1           | <1          | 160           | 2              | 0.034                 | < 0.02          | 0.024           | 8.2               | 6.8                   | 109           | 0.2                   | 200                 | 20.1           | 6.6                   |
|            |          | 3.16                | 7051.63                | 6.8             | 189                    | 8.9               | <0.2           | <1           | <1          | 130           | <1.8           | < 0.03                | < 0.03          | <0.01           | 8.2               | 7.7                   | 253           |                       | 190                 | 18.4           | 5.7                   |
|            |          | 2.82                | 7051.97                | 6.1             | 215                    | 9.0               | <0.2           | <1           | <1          | 150           | <1.8           | <0.03                 | < 0.03          | 0.014           | 8.1               | 6.2                   |               |                       | 220                 | 22.6           | 7.2                   |
|            |          | 3.58                | 7051.21                | 5.4             | 201                    | 8.8               | <0.1           | 0.66         | <0.1        | 180           | <1.8           | < 0.03                | < 0.03          | 0.037           | 8.2               | 6.7                   |               |                       |                     | 20.9           | 6.7                   |
|            |          | 2.29                | 7052.50                | 6.1             | 169                    | 8.5               | 0.17           | 0.31         | <0.1        | 120           | 230            | <0.03                 | < 0.03          | <0.01           | 7.3               | 5.5                   |               |                       |                     | 18.4           | 5.9                   |
|            |          | 2.36                | 7052.43                | 7.8             | 197                    | 6.3               | <0.4           | <1           | <1          | 140           | <1.8           | < 0.03                | < 0.03          | < 0.01          | 7.9               | 4.0                   |               |                       | 200                 | 19.4           | 6.5                   |
|            |          | 2.82                | 7051.97                | 7.3             | 199                    | 7.9               | < 0.4          | <1           | <1          | 140           | 490            | < 0.03                | < 0.03          | < 0.01          | 8.0               | 5.2                   |               |                       | 200                 | 17.2           | 6.5                   |
|            |          | 3.02                | 7051.77                | 6.0             | 201                    | 9.4               | < 0.4          | <1           | <1          | 140           | 13             | < 0.03                | < 0.03          | 0.288           | 8.0               | 5.9                   |               |                       | 200                 | 20.6           | 6.3                   |
|            |          | 2.60                | 7052.19                | 6.9             | 289                    | 6.0               | < 0.2          | <1           | <0.2        | 206           | <1.8           |                       |                 |                 |                   |                       |               |                       |                     |                |                       |
| MW-4 8/22  | /2018 3  | 3.45                | 7051.34                | 7.2             | 407                    | 7.3               | < 0.2          | <1           | <0.2        | 140           | <1.8           |                       |                 |                 |                   |                       |               |                       |                     |                |                       |
| MW-4 10/10 | 0/2018 4 | 4.41                | 7050.38                | 6.8             | 205                    | 6.9               | 3              | <1           | <0.2        | 150           | <1.8           | <0.2                  | 1.4             | 0.086           | 8.2               | 7.0                   |               |                       |                     |                |                       |
| MW-4 7/17  | /2019 2  | 2.50                | 7052.29                | 6.7             | 227                    | 6.0               | <0.2           | <1           | <0.2        | 140           | <1.8           |                       |                 |                 |                   |                       |               |                       |                     |                |                       |
|            |          | 3.15                | 7051.64                | 6.7             | 211                    | 8.0               | <0.2           | <1           | <0.2        | 140           | <1.8           |                       |                 |                 |                   |                       |               |                       |                     |                |                       |
|            |          | 3.15                | 7051.64                | 6.7             | 232                    | 7.1               | <0.2           | <1           | <0.02       | 130           | <1.8           | <0.2                  | 0.21            | < 0.02          | 8.3               | 7.1                   |               |                       |                     |                |                       |
|            |          | 1.80                | 7052.99                | 7.1             | 224                    | 6.2               | <0.2           | <1           | <0.2        | 130           | <1.8           |                       |                 |                 |                   |                       |               |                       |                     |                |                       |
| MW-4 8/12  | /2020 3  | 3.13                | 7051.66                | 6.8             | 223                    | 8.3               | <0.2           | <1           | <0.2        | 100           | <1.8           |                       |                 |                 |                   |                       |               |                       |                     |                |                       |

|         |            | •             | GW Elev.        |             |                         |           |                                         |                        | Ammo         |               |                            |                 |              |                   |                 |                 |             | Dissolved        |                   |              |              |
|---------|------------|---------------|-----------------|-------------|-------------------------|-----------|-----------------------------------------|------------------------|--------------|---------------|----------------------------|-----------------|--------------|-------------------|-----------------|-----------------|-------------|------------------|-------------------|--------------|--------------|
| Well    | Date       | To GW<br>(ft) | (ft,<br>NAVD88) | Field pH    | Field EC<br>(μS/cm)     | Temp. (C) | NO3-N<br>(mg/L)                         | TKN<br>(mg/L)          | nia as<br>N  | TDS<br>(mg/L) | Total Coliform (MPN/100ml) | B (mg/L)        | Fe<br>(mg/L) | Mn<br>(mg/L)      | Na<br>(mg/L)    | CI<br>(mg/L)    | ORP<br>(mV) | Oxygen<br>(mg/L) | Lab SC<br>(μS/cm) | Ca<br>(mg/L) | Mg<br>(mg/L) |
| MW-4    | 10/14/2020 | 4.07          | 7050.72         | 6.9         | <u>(μο/ciii)</u><br>215 | 7.9       | <0.2                                    | (111 <b>9/L)</b><br><1 | <0.2         | 140           | <1.8                       | <0.2            | 3.1          | 0.120             | 9.0             | 6.3             | (1114)      | (mg/L)           | (долсии)          | (IIIg/L)     | (mg/L)       |
| MW-4    | 6/9/2021   | 2.42          | 7052.37         | 6.9         | 231                     | 5.4       | <0.2                                    | <1                     | <0.2         | 140           | <1.8                       | .0.2            | 0.1          | 0.120             | 0.0             | 0.0             |             |                  |                   |              |              |
| MW-4    | 8/11/2021  | 3.68          | 7051.11         | 6.7         | 206                     | 7.7       | <0.2                                    | <1                     | <0.2         | 130           | <1.8                       |                 |              |                   |                 |                 |             |                  |                   |              |              |
| MW-4    | 10/20/2021 | 4.92          | 7049.87         | 6.6         | 201                     | 7.2       | <0.2                                    | <1                     | <0.2         | 130           | <1.8                       | <0.2            | <0.1         | <0.02             | 7.9             | 6.4             |             |                  |                   |              |              |
| MW-5    | 9/1/2004   | 12.95         | 7190.83         | 6.6         | 307                     | 6.4       | 0.064                                   | <1.0                   |              | 276           | 80                         | NR <sup>3</sup> | 1.280        | 0.200             | NR <sup>3</sup> | NR <sup>3</sup> |             |                  |                   |              |              |
| MW-5    | 10/13/2004 | 13.74         | 7190.04         | 6.2         | 230                     | 8.9       | <0.1                                    | 2                      | <1           | 340           | 500                        | 0.08            | < 0.02       | 0.230             | 18.0            | 28.0            |             |                  |                   |              |              |
| MW-5    | 8/11/2005  | 11.74         | 7192.04         | 6.3         | 110                     | 15.7      | <0.1                                    | 2                      | <1           | 180           | 2                          | < 0.03          | 0.620        | 0.060             | 6.0             | 5.5             | 51          | 4.2              | 120               | 1.0          | 4.4          |
| MW-5    | 9/15/2005  | 12.50         | 7191.28         | 7.0         | 170                     | 11.2      | 0.1                                     | -<br><1                | <1           | 170           | -<br><2                    | < 0.03          | 0.750        | 0.130             | 7.0             | 5.8             | 41          | NS               | 120               | 12.0         | 4.6          |
| MW-5    | 10/13/2005 | 9.27          | 7194.51         | 6.5         | 103                     | 8.8       | 0.2                                     | <1                     | <1           | 120           | 11                         | < 0.03          | 0.210        | 0.040             | 6.0             | 8.5             | 133         | 8.5              | 110               | 8.9          | 3.9          |
| MW-5    | 6/29/2006  | 12.50         | 7191.28         | 7.6         | 71                      | 14.7      | <0.1                                    | <1                     | <1           | 120           | <2                         | < 0.03          | 0.280        | 0.050             | 4.0             | 4.1             | 159         | 6.5              | 81                | 5.8          | 2.5          |
| MW-5    | 8/2/2006   | 11.49         | 7192.29         | 8.4         | 34                      | 19.8      | <0.1                                    | <1                     | <1           | 120           | -<br><2                    | <0.03           | 0.090        | 0.040             | 8.0             | 8.0             | 98          | 5.0              | 98                | 6.4          | 2.5          |
| MW-5    | 10/11/2006 | 11.89         | 7191.89         | 5.8         | 93                      | 8.4       | <0.1                                    | 1                      | <1           | 170           | 2                          | <0.03           | 0.540        | 0.060             | 6.0             | 3.6             | 186         | 5.7              | 110               | 12.0         | 4.6          |
| MW-5    | 7/12/2007  | 13.10         | 7190.68         | 6.1         | 142                     | 13.9      | • • • • • • • • • • • • • • • • • • • • | •                      | •            |               | _                          | 0.00            | 0.0.0        |                   | 0.0             | 0.0             | 226         | NS               |                   |              |              |
| MW-5    | 8/29/2007  | 13.50         |                 |             | re sampling             | 10.0      |                                         |                        |              |               |                            |                 |              |                   |                 |                 | 220         |                  |                   |              |              |
| MW-5    | 9/26/2007  | 13.70         | 7190.08         | 6.7         | 88                      | 11.6      |                                         |                        |              |               |                            |                 |              |                   |                 |                 | -87         | 8.9              |                   |              |              |
| MW-5    | 7/8/2008   | 13.00         | 7190.78         | 7.3         | 104                     | 15.1      |                                         |                        |              |               |                            |                 |              |                   |                 |                 | 136         | NS               |                   |              |              |
| MW-5    | 9/18/2008  | 13.80         |                 |             | re sampling             |           |                                         |                        |              |               |                            |                 |              |                   |                 |                 |             |                  |                   |              |              |
| MW-5    | 10/16/2008 | 13.95         |                 |             | re sampling             |           |                                         |                        |              |               |                            |                 |              |                   |                 |                 |             |                  |                   |              |              |
| MW-5    | 7/7/2009   | 12.80         | 7190.98         | 6.7         | 214                     | 11.0      | 0.3                                     | <1                     | <1           | 230           | <2                         | < 0.03          | 0.430        | 0.100             | 10.0            | 4.8             | 818         | 8.1              | 130               | 11.0         | 3.8          |
| MW-5    | 9/30/2009  | 13.30         | 7190.48         | 6.3         | 109                     | 8.6       | 0.4                                     | NS                     | NS           | NS            | NS                         | 0.23            | <0.02        | 0.050             | 22.0            | 5.3             | 141         | 4.6              | 130               | 9.9          | 3.4          |
| MW-5    | 10/26/2009 | 13.25         |                 |             | re sampling             | 0.0       | • • • • • • • • • • • • • • • • • • • • |                        |              |               |                            | 0.20            | 0.02         | 0.000             |                 | 0.0             |             |                  |                   | 0.0          | • • •        |
| MW-5    | 7/13/2010  | 11.50         | 7192.28         | 6.0         | 94                      | 8.0       | <0.1                                    | <1                     | <1           | 200           | 2                          | < 0.03          | 0.270        | 0.060             | 5.0             | 5.1             | 158         | 2.5              | 94                | 8.0          | 2.7          |
| MW-5    | 8/24/2010  | 12.52         | 7191.26         | 6.7         | 95                      | 11.0      | <0.1                                    | <1                     | <1           | 170           | 2                          | < 0.03          | <0.02        | 0.020             | 5.0             | 4.8             | 129         | 7.1              | 95                | 7.9          | 3.3          |
| MW-5    | 11/4/2010  | 12.15         | 7191.63         | 6.1         | 98                      | 7.4       | <0.1                                    | <1                     | <1           | 84            | 23                         | 0.06            | <0.02        | 0.020             | 6.0             | 5.5             | 209         | 6.5              | 98                | 7.5          | 3.0          |
| MW-5    | 7/21/2011  | 9.15          | 7194.63         | 4.9         | 74                      | 5.7       | <0.1                                    | <1                     | <1           | 100           | 4                          | < 0.03          | 0.121        | 0.072             | 4.1             | 3.6             | 115         | 4.4              | 74                | 5.9          | 2.3          |
| MW-5    | 9/8/2011   | 12.50         | 7191.28         | 6.5         | 101                     | 8.0       | <0.1                                    | 1                      | <1           | 150           | <2                         | < 0.03          | 2.400        | 0.056             | 5.1             | 4.0             | 102         | 5.7              | 100               | 8.2          | 4.0          |
| MW-5    | 10/20/2011 | 11.58         | 7192.20         | 6.0         | 95                      | 7.0       | <0.1                                    | <1                     | <1           | 150           | 4.5                        | <0.03           | 0.216        | 0.012             | 4.1             | 4.5             | 157         | 4.5              | 95                | 8.1          | 3.0          |
| MW-5    | 6/26/2012  | 12.70         | 7191.08         | 6.9         | 26                      | 7.1       | 0.1                                     | <1                     | <1           | 130           | IVS                        | 0.074           | 0.039        | 0.054             | 6.9             | 8.2             | 58          | 15.3             | 120               | 9.5          | 3.9          |
| MW-5    | 7/31/2012  | 11.87         | 7191.91         | 6.3         | 106                     | 9.7       | <0.2                                    | <1                     | <1           | 120           | <1.8                       | < 0.03          | <0.02        | 0.037             | 4.8             | 4.7             | 231         | 5.3              | 110               | 10.2         | 3.7          |
| MW-5    | 10/9/2012  | 14.64         |                 | ed dry befo |                         | 0         | 0.2                                     | •                      | •            | .20           | 1.0                        | 0.00            | 0.02         | 0.001             | 1.0             | •••             | 20.         | 0.0              |                   | 10.2         | 0            |
| MW-5    | 5/30/2013  | 13.20         | 7190.58         | 6.0         | 85                      | 9.9       | <0.2                                    | <1                     | <1           | 140           | IVS                        | < 0.03          | 0.151        | 0.049             | 4.8             | 4.7             | 390         |                  | 85                | 6.6          | 2.7          |
| MW-5    | 8/21/2013  | 12.99         | 7190.79         | 6.0         | 40                      | 21.8      | <0.2                                    | <1                     | <1           | 110           | <1.8                       | < 0.03          | 0.074        | 0.016             | 3.9             | 5.1             | 702         | 6.2              | 40                | 6.2          | 2.3          |
| MW-5    | 10/15/2013 | 14.06         | 7189.72         | 8.1         | 91                      | 10.2      | <0.2                                    | <1                     | <1           | 160           | <1.8                       | < 0.03          | <0.02        | <0.01             | 10.1            | 11.0            | 694         | 11.6             | 91                | 6.8          | 2.6          |
| MW-5    | 6/12/2014  | 13.11         | 7190.67         | 5.8         | 80                      | 11.3      | <0.2                                    | <1                     | <1           | 240           | <1.8                       | < 0.03          | 0.046        | <0.01             | 4.3             | 5.1             | 692         | 7.8              | 80                | 6.9          | 3.0          |
| MW-5    | 8/12/2014  | 13.01         | 7190.77         | 5.6         | 111                     | 3.3       | <0.2                                    | <1                     | <1           | 120           | 14                         | < 0.03          | 0.284        | 0.063             | 5.4             | 6.0             | 279         | 3.3              | 110               | 10.1         | 3.9          |
| MW-5    | 10/14/2014 | 14.23         |                 |             | re sampling             | 0.0       | 0.2                                     | •                      | •            | 120           |                            | .0.00           | 0.201        | 0.000             | 0.1             | 0.0             | 210         | 0.0              | 110               | 10.1         | 0.0          |
| MW-5    | 6/17/2015  | 13.19         | 7190.59         | 4.5         | 106                     | 11.7      | <0.2                                    | <1                     | <1           | 150           | <1.8                       | 0.041           | <0.02        | 0.137             | 4.8             | 6.4             | 418.2       | 6.9              | 110               | 8.7          | 3.5          |
| MW-5    | 9/9/2015   | 12.44         | 7191.34         | 7.0         | 108                     | 11.8      | <0.2                                    | <1                     | <1           | 220           | IVS                        | < 0.03          | < 0.03       | 0.078             | 5.5             | 6.8             | 675.4       | 5.4              | 110               | 9.6          | 3.9          |
| MW-5    | 11/12/2015 | 13.23         | 7190.55         | 6.6         | 108                     | 7.7       | <0.2                                    | <1                     | <1           | 220           | IVS                        | < 0.03          | < 0.03       | 0.073             | 4.2             | 6.7             | 200.1       | J. <del>-</del>  | 110               | 9.5          | 3.7          |
| MW-5    | 7/7/2016   | 12.05         | 7191.73         | 5.6         | 110                     | 9.3       | <0.2                                    | <1                     | <1           | 130           | <1.8                       | <0.03           | < 0.03       | 0.034             | 6.5             | 6.3             |             |                  | 110               | 15.5         | 5. <i>1</i>  |
| MW-5    | 9/8/2016   | 13.26         | 7191.73         | 7.0         | 121                     | 11.3      | ٧٠.٧                                    | *1                     | 7.1          | 130           | -1.0                       | ٠٥.٥٥           | ٠٥.٥٥        | U.UU <del>T</del> | 0.0             | 0.0             |             |                  | IVS               | 10.0         | J. I         |
| MW-5    | 10/20/2016 | 12.56         |                 | would not   |                         | 11.5      |                                         |                        |              |               |                            |                 |              |                   |                 |                 |             | <del></del>      | 100               |              |              |
| MW-5    | 7/13/2017  | 13.24         | 7190.54         |             |                         |           |                                         |                        |              |               |                            |                 |              |                   |                 |                 |             |                  |                   |              |              |
| MW-5    | 8/24/2017  | 12.83         | 7190.95         | 6.0         | 111                     | 10.4      | <0.4                                    | <2                     | <2           | 120           | 70                         | < 0.03          | 0.1          | 0.074             | 5.4             | 5.3             |             |                  | 110               | 8.0          | 3 /          |
| MW-5    | 9/28/2017  | 13.64         | 7190.93         | 6.9         | 108                     | 6.7       | <0.4                                    | <2<br>2                | <1           | 120           | <b>79</b><br>2             | <0.03           | < 0.03       | 0.074             | 4.9             | 5.2             |             | <b></b>          | 110               | 8.6          | 3.4<br>3.3   |
| MW-5    | 6/29/2018  | 10.70         | 7190.14         | 6.1         | 145                     | 5.6       | <0.4                                    | <1                     | <0.2         | 103           | <1.8                       | ~0.00           | ~0.03        | 0.009             | ਚ.ਹ             | J.Z             |             |                  | 110               | 0.0          | 0.0          |
| 10100-3 | 012312010  | 10.70         | 1 133.00        | 0.1         | 140                     | 5.0       | <b>~</b> ∪.∠                            | >1                     | <b>~</b> 0.∠ | 103           | `1.0                       |                 |              |                   |                 |                 |             |                  |                   |              |              |

|      |            | Depth         |                 |          |                     |            |                 |                 | Ammo        |               |                            |                    |                    |                   |                   |                 |             | Dissolved        |                   |                                              |              |
|------|------------|---------------|-----------------|----------|---------------------|------------|-----------------|-----------------|-------------|---------------|----------------------------|--------------------|--------------------|-------------------|-------------------|-----------------|-------------|------------------|-------------------|----------------------------------------------|--------------|
| Well | Date       | To GW<br>(ft) | (ft,<br>NAVD88) | Field pH | Field EC<br>(μS/cm) | Temp.      | NO3-N<br>(mg/L) | TKN<br>(mg/L)   | nia as<br>N | TDS<br>(mg/L) | Total Coliform (MPN/100ml) | B (ma/L)           | Fe<br>(ma/L)       | Mn<br>(mg/L)      | Na<br>(mg/L)      | CI<br>(mg/L)    | ORP<br>(mV) | Oxygen<br>(mg/L) | Lab SC<br>(μS/cm) | Ca<br>(mg/L)                                 | Mg<br>(mg/L) |
| MW-5 | 8/23/2018  | 13.13         | 7190.65         | 6.4      | 259                 | 6.6        | pumped dry      |                 |             | \ <b>J</b> /  | , , ,                      | ( 3 /              | ( 3 /              | \ \ \ \ \ \       | ( ) /             | \ \ \ \ \ \     | \ /         | ( 3 /            | (pr )             | <u>(                                    </u> | ( ) /        |
| MW-5 | 10/10/2018 | 13.96         | 7189.82         | IVS      |                     |            |                 |                 |             |               |                            |                    |                    |                   |                   |                 |             |                  |                   |                                              |              |
| MW-5 | 7/18/2019  | 12.25         | 7191.53         | 5.9      | 97                  | 7.4        | < 0.2           | <1              | < 0.2       | 95            | <1.8                       |                    |                    |                   |                   |                 |             |                  |                   |                                              |              |
| MW-5 | 8/29/2019  | 12.61         | 7191.17         | 6.2      | 372                 | 7.5        | pumped dry      |                 |             |               |                            |                    |                    |                   |                   |                 |             |                  |                   |                                              |              |
| MW-5 | 10/3/2019  | 13.41         | 7190.37         | IVS      |                     |            |                 |                 |             |               |                            |                    |                    |                   |                   |                 |             |                  |                   |                                              |              |
| MW-5 | 6/11/2020  | 11.68         | 7192.10         | 6.4      | 93                  | 6.4        | pumped dry      |                 |             |               |                            |                    |                    |                   |                   |                 |             |                  |                   |                                              |              |
| MW-5 | 8/13/2020  | 12.63         | 7191.15         | 6.0      | 137                 | 7.0        | pumped dry      |                 |             |               |                            |                    |                    |                   |                   |                 |             |                  |                   |                                              |              |
| MW-5 | 10/15/2020 | 14.11         | 7189.67         | 6.2      | 153                 | 8.3        | IVS             |                 |             |               |                            |                    |                    |                   |                   |                 |             |                  |                   |                                              |              |
| MW-5 | 6/10/2021  | 12.33         | 7191.45         | 6.1      | 3                   | 5.6        | IVS             |                 |             |               |                            |                    |                    |                   |                   |                 |             |                  |                   |                                              |              |
| MW-5 | 8/12/2021  | 13.15         | 7190.63         | 6.1      | 175                 | 8.6        | IVS             |                 |             |               |                            |                    |                    |                   |                   |                 |             |                  |                   |                                              |              |
| MW-5 | 10/21/2021 | 14.37         | 7189.41         | 6.7      | 289                 | 7.5        | IVS             |                 |             |               |                            |                    |                    |                   |                   |                 |             |                  |                   |                                              |              |
| MW-6 | 10/30/2002 | 6.45          | 7053.04         | 6.6      |                     |            | <0.050          | NR <sup>1</sup> |             | 376           | 240                        | <0.10 <sup>T</sup> | 335 <sup>T</sup>   | 6.89 <sup>T</sup> | 36 <sup>T</sup>   | 59.0            |             |                  |                   |                                              |              |
| MW-6 | 7/29/2003  | 0.40          | 7000.04         |          | 457                 | 7.5        | <0.1            | <0.5            |             | 260           |                            | NR <sup>3</sup>    | NR <sup>3</sup>    | NR <sup>3</sup>   | NR <sup>3</sup>   | NR <sup>3</sup> |             |                  |                   |                                              |              |
|      |            | 0.47          | 7050 00         | 7.1      | 457                 | 7.5        |                 |                 |             | 200           | <2                         | -                  | _                  | _                 | _                 |                 |             |                  |                   |                                              |              |
| MW-6 | 11/13/2003 | 6.17          | 7053.32         | 7.0      |                     |            | <0.050*         | NR <sup>1</sup> |             |               | <2                         | <0.10 <sup>1</sup> | 132 <sup>T</sup>   | 4.78 <sup>T</sup> | 18.5 <sup>1</sup> | 6.9             |             |                  |                   |                                              |              |
| MW-6 | 6/22/2004  | 2.14          | 7057.35         | 7.1      | 508                 | 4.5        | <0.05           | <1.0            |             | 280           | <2                         | NR <sup>3</sup>    | 0.210              | 1.760             | NR <sup>3</sup>   | NR <sup>3</sup> |             |                  |                   |                                              |              |
| MW-6 | 9/1/2004   | 5.43          | 7054.06         | 6.8      | 479                 | 6.5        | <0.050          | <1.0            |             | 297           | <2                         | $NR^3$             | 0.390              | 2.190             | $NR^3$            | $NR^3$          |             |                  |                   |                                              |              |
| MW-6 | 10/13/2004 | 6.39          | 7053.10         | 7.1      | 470                 | 7.5        | <0.1            | <1              | <1          | 320           | <2                         | 0.03               | < 0.02             | 2.100             | 16.0              | 6.6             |             |                  |                   |                                              |              |
| MW-6 | 8/11/2005  | 3.21          | 7056.28         | 6.9      | 470                 | 6.9        | <0.1            | <1              | <1          | 300           | <2                         | < 0.03             | 0.650              | 2.400             | 17.0              | 7.0             | 14          | 1.5              | 500               | 71.0                                         | 16.0         |
| MW-6 | 9/15/2005  | 4.71          | 7054.78         | 6.7      | 440                 | 7.0        | 0.2             | 1               | <1          | 290           | <2                         | < 0.03             | 0.340              | 2.200             | 17.0              | 7.1             | 41          | <0.2             | 460               | 66.0                                         | 15.0         |
| MW-6 | 10/13/2005 | 5.15          | 7054.34         | 7.1      | 450                 | 7.3        | 0.2             | <1              | <1          | 290           | 2                          | < 0.03             | 0.530              | 2.200             | 16.0              | 7.0             | 10          | 8.8              | 470               | 62.0                                         | 14.0         |
| MW-6 | 6/29/2006  | 1.11          | 7058.38         | 7.5      | 431                 | 7.6        | <0.1            | <1              | <1          | 270           | <2                         | < 0.03             | 0.290              | 2.100             | 15.0              | 7.4             | 25          | 0.6              | 450               | 62.0                                         | 14.0         |
| MW-6 | 8/2/2006   | 3.63          | 7055.86         | 7.6      | 417                 | 8.6        | <0.1            | <1              | <1          | 280           | <2                         | < 0.03             | 0.300              | 2.100             | 16.0              | 6.7             | -38         | 0.5              | 460               | 62.0                                         | 14.0         |
| MW-6 | 10/10/2006 | 5.60          | 7053.89         | 7.3      | 476                 | 7.1        | <0.1            | <1              | <1          | 300           | <2                         | < 0.03             | 0.310              | 2.400             | 17.0              | 6.7             | -12         | 2.5              | 500               | 70.0                                         | 15.0         |
| MW-6 | 7/12/2007  | 4.40          | 7055.09         | 7.1      | 434                 | 8.0        | <0.1            | <1              | <1          | 370           | <2                         | < 0.03             | 0.300              | 2.400             | 17.0              | 6.3             | 52          | 2.3              | 460               | 68.0                                         | 15.0         |
| MW-6 | 8/29/2007  | 5.90          | 7053.59         | 7.1      | 461                 | 8.8        | <0.1            | <1              | <1          | 280           | 50                         | < 0.03             | 0.430              | 2.600             | 17.0              | 7.4             | 45          | 4.5              | 490               | 69.0                                         | 15.0         |
| MW-6 | 9/26/2007  | 6.70          | 7052.79         | 6.9      | 473                 | 8.4        | <0.1            | <1              | <1          | 280           | 4                          | < 0.03             | 0.520              | 2.500             | 16.0              | 7.2             | -123        | 9.9              | 500               | 65.0                                         | 15.0         |
| MW-6 | 7/8/2008   | 3.00          | 7056.49         | 7.0      | 473                 | 8.1        | <0.1            | <1              | <1          | 330           | <2                         | < 0.03             | 0.450              | 2.300             | 15.0              | 6.9             | 21          | 3.1              | 500               | 67.0                                         | 16.0         |
| MW-6 | 9/18/2008  | 6.13          | 7053.36         | 7.1      | 490                 | 8.1        | <0.1            | <1              | <1          | 390           | <2                         | < 0.03             | 0.220              | 2.400             | 17.0              | 6.7             | 78          | 2.7              | 510               | 69.0                                         | 16.0         |
| MW-6 | 10/16/2008 | 6.85          | 7052.64         | 7.3      | 481                 | 7.1        | <0.1            | <0.1            | <1          | 320           | <2                         | < 0.03             | 0.580              | 2.700             | 16.0              | 7.0             | 18          | 8.3              | 510               | 70.0                                         | 16.0         |
| MW-6 | 7/7/2009   | 2.70          | 7056.79         | 7.2      | 490                 | 7.3        | <0.1            | <1              | <1          | 370           | <2                         | < 0.03             | 0.900              | 2.800             | 16.0              | 7.1             | 232         | 2.0              | 500               | 71.0                                         | 16.0         |
| MW-6 | 9/30/2009  | 6.50          | 7052.99         | 6.8      | 464                 | 7.3        | <0.1            | <1              | <1          | 320           | <2                         | < 0.03             | 0.630              | 2.900             | 16.0              | 7.3             | -32         | 1.8              | 510               | 71.0                                         | 15.0         |
| MW-6 | 10/26/2009 |               | 7054.09         | 6.7      | 389                 | 7.1        | <0.1            | <1              | <1          | 320           | <2                         | < 0.03             | 1.000              | 2.700             | 16.0              | 7.2             | 24          | 0.3              | 520               | 68.0                                         | 15.0         |
| MW-6 | 7/13/2010  | 1.70          | 7057.79         | 6.8      | 485                 | 5.5        | <0.1            | <1              | <1          | 310           | 2                          | < 0.03             | 0.620              | 2.600             | 16.0              | 7.0             | -98         | 0.5              | 490               | 66.0                                         | 15.0         |
| MW-6 | 8/24/2010  | 4.66          | 7054.83         | 6.7      | 497                 | 6.3        | <0.1            | <1              | <1          | 430           | <2                         | < 0.03             | <0.02              | 2.700             | 19.0              | 6.4             | -25         | 0.3              | 500               | 64.0                                         | 15.0         |
| MW-6 | 11/4/2010  | 1.05          | 7058.44         | 6.5      | 479                 | 6.9        | <0.1            | <1              | <1          | 330           | <2                         | < 0.03             | 0.710              | 3.100             | 15.0              | 6.3             | -22         | 0.4              | 480               | 63.0                                         | 14.0         |
| MW-6 | 7/21/2011  | 0.70          | 7058.79         | 7.0      | 492                 | 5.5        | <0.1            | <1              | <1          | 320           | -<br><2                    | < 0.03             | 0.582              | 2.160             | 15.7              | 6.6             | 43          | 0.3              | 490               | 55.1                                         | 14.0         |
| MW-6 | 9/8/2011   | 4.33          | 7055.16         | 7.0      | 507                 | 6.3        | <0.1            | <1              | <1          | 280           | <2                         | < 0.03             | 0.616              | 2.530             | 13.6              | 6.1             | -38         | 0.4              | 510               | 57.3                                         | 15.8         |
| MW-6 | 10/20/2011 | 1.86          | 7057.63         | 6.6      | 416                 | 6.5        | <0.1            | <1              | <1          | 250           | 6.8                        | < 0.03             | 0.793              | 2.380             | 13.5              | 4.0             | 17          | 0.7              | 420               | 43.8                                         | 11.9         |
| MW-6 | 6/26/2012  | 2.60          | 7056.89         | 6.8      | 310                 | 5.2        | <0.1            | <1              | <1          | 300           | <1.8                       | <0.03              | 0.724              | 4.090             | 15.6              | 6.2             | 62          | 1.1              | 310               | 66.8                                         | 16.8         |
| MW-6 | 7/31/2012  | 4.65          | 7054.84         | 6.8      | 516                 | 6.4        | <0.1            | <1              | <1          | 310           | 4.5                        | <0.03              | 0.493              | 2.920             | 15.0              | 6.1             | 29          | 0.1              | 520               | 65.1                                         | 15.2         |
| MW-6 | 10/9/2012  | 7.80          | 7054.64         | 6.7      | 525                 | 6.7        | <0.2            | <1              | <1          | 340           | <b>&lt;</b> 1.8            | <0.03              | 0.493              | 2.280             | 15.1              | 6.4             | 28          | 1.3              | 530               | 60.9                                         | 15.2         |
| MW-6 | 5/30/2013  | 6.48          | 7051.09         | 6.5      | 375                 | 6.2        | <0.2            | <1              | <1          | 250           | <1.8                       | < 0.03             | 0.107              | 2.200             | 12.3              | 4.7             | -3          |                  | 380               | 44.0                                         | 10.6         |
| MW-6 | 8/21/2013  | 5.10          | 7053.01         | 6.5      | 469                 | 8.5        | <0.2            |                 | <1          | 270           |                            | <0.03              | <b>0.107 0.644</b> | 2.700             | 13.9              |                 |             | 0.5              | 470               | 54.2                                         | 13.4         |
|      |            |               |                 |          |                     |            |                 | <1<br><1        |             | 310           | <1.8                       |                    |                    |                   |                   | 6.1             | 18<br>52    |                  |                   |                                              |              |
| MW-6 | 10/15/2013 |               | 7052.78         | 6.3      | 523                 | 7.5<br>5.0 | <0.2            | <1<br>-1        | <1<br>-1    |               | 2                          | < 0.03             | 0.698              | 2.700             | 16.2              | 6.4             | 52<br>7     | 0.8              | 520<br>400        | 76.4                                         | 16.2         |
| MW-6 | 6/12/2014  | 2.60          | 7056.89         | 5.9      | 455                 | 5.9        | <0.2            | <1              | <1          | 310           | <1.8                       | <0.03              | 0.521              | 2.780             | 14.7              | 6.2             | 1           | 0.4              | 490               | 62.1                                         | 15.4         |

| Well  MW-6  MW-6  MW-6  MW-6  MW-6  MW-6  MW-6  MW-6  MW-6  MW-6  MW-6  MW-6  MW-6  MW-6                                                                                                                          | 8/12/2014<br>10/14/2014<br>6/17/2015<br>9/9/2015<br>11/12/2015<br>7/7/2016<br>9/8/2016<br>10/20/2016<br>7/13/2017<br>8/24/2017<br>9/28/2017<br>6/29/2018 | Depth<br>To GW<br>(ft)<br>4.90<br>6.96<br>2.12<br>4.50<br>0.00<br>2.15<br>5.84<br>3.53<br>1.41<br>1.65<br>1.58<br>2.80 | GW Elev.<br>(ft,<br>NAVD88)<br>7054.59<br>7052.53<br>7057.37<br>7054.99<br>7059.49<br>7057.34<br>7053.65<br>7055.96<br>7058.08<br>7057.84<br>7057.91<br>7056.69 | 5.7<br>6.5<br>7.4<br>6.5<br>6.2<br>6.3<br>6.2<br>6.9<br>7.4<br>6.4<br>6.1<br>7.2 | Field EC (μS/cm) 529 549 342 457 209 325 451 362 375 216 167 1100         | Temp.<br>(C)<br>7.4<br>7.5<br>6.6<br>8.4<br>8.1<br>7.1<br>7.8<br>7.3<br>5.9<br>7.8<br>7.9<br>5.7 | NO3-N<br>(mg/L)<br><0.2<br><0.2<br>0.3<br><0.2<br><0.2<br><0.2<br><0.1<br><0.1<br><0.4<br><0.4<br><0.4<br><0.2 | TKN (mg/L)  2 <1 <1 <1 <1 0.31 0.44 <1 <1 <1 <1 <1               | Ammo nia as N <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TDS<br>(mg/L)<br>370<br>370<br>240<br>280<br>120<br>190<br>280<br>230<br>230<br>130<br>110<br>706 | Total Coliform (MPN/100ml)  <1.8 <1.8 <1.8 <1.8 <1.8 <1.8 <1.8 <1.     | 8 (mg/L) <0.03 <0.03 0.045 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03             | Fe (mg/L) 0.747 0.736 <0.02 0.656 0.176 0.800 0.838 0.812 0.823 0.422 0.413                                                                      | Mn<br>(mg/L)<br>2.870<br>2.910<br>1.850<br>2.710<br>0.815<br>1.840<br>2.840<br>2.090<br>2.240<br>1.160<br>0.768 | Na<br>(mg/L)<br>15.7<br>14.9<br>10.5<br>14.2<br>7.5<br>11.0<br>14.5<br>12.3<br>12.4<br>8.3<br>6.5 | CI<br>(mg/L)<br>6.6<br>6.8<br>4.0<br>5.2<br>9.7<br>4.5<br>6.0<br>4.7<br>4.4<br>2.3<br>2.1 | ORP<br>(mV)<br>42<br>48<br>49<br>96<br>93<br><br><br><br> | Dissolved Oxygen (mg/L)  0.1 0.5 0.1 0.8 | Lab SC (μS/cm) 530 550 340 460 210 330 380 220 170                        | Ca<br>(mg/L)<br>72.7<br>67.6<br>39.3<br>57.2<br>23.8<br>40.6<br>59.4<br>48.5<br>45.9<br>22.3<br>18.3 | Mg<br>(mg/L)<br>16.0<br>17.5<br>9.5<br>13.7<br>6.0<br>9.5<br>13.9<br>11.5<br>10.9<br>6.3<br>4.5 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| MW-6<br>MW-6<br>MW-6<br>MW-6<br>MW-6<br>MW-6<br>MW-6<br>MW-6                                                                                                                                                      | 8/23/2018<br>10/10/2018<br>7/18/2019<br>8/29/2019<br>10/3/2019<br>6/11/2020<br>8/13/2020<br>10/15/2020<br>6/10/2021<br>8/12/2021<br>10/21/2021           | 6.00<br>7.43<br>1.35<br>4.75<br>6.01<br>2.56<br>4.67<br>6.88<br>0.57<br>5.09<br>7.34                                   | 7053.49<br>7052.06<br>7058.14<br>7054.74<br>7053.48<br>7056.93<br>7054.82<br>7052.61<br>7058.92<br>7054.40<br>7052.15                                           | 7.0<br>7.0<br>7.0<br>7.0<br>7.1<br>7.0<br>6.9<br>6.9<br>7.0<br>6.9               | 530<br>555<br>558<br>573<br>608<br>434<br>504<br>563<br>416<br>462<br>520 | 6.4<br>5.9<br>6.2<br>6.7<br>5.7<br>5.5<br>6.7<br>6.9<br>4.7<br>7.5<br>7.4                        | <0.2<br><0.2<br>0.98<br><0.2<br><0.2<br><0.2<br><0.2<br><0.2<br><0.2<br><0.2<br><0.2<br><0.2                   | <1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1   | <ul> <li>&lt;0.2</li> <li>&lt;0.2</li> <li>&lt;0.2</li> <li>&lt;0.2</li> <li>&lt;0.2</li> <li>&lt;0.2</li> <li>&lt;0.2</li> <li>&lt;0.2</li> <li>&lt;0.2</li> <li>&lt;1.2</li> <li>&lt;0.2</li> <li>&lt;1.3</li> <li>&lt;1.3</li> <li>&lt;1.3</li> <li>&lt;1.4</li> <li>&lt;1.5</li> <l>&lt;1.5 <li>&lt;1.5</li> <li>&lt;1.5</li> <li>&lt;1.5</li> <li>&lt;1.5</li></l></ul> | 290<br>310<br>310<br>310<br>320<br>220<br>260<br>310<br>230<br>260<br>320                         | <1.8 <1.8 <1.8 <1.8 <1.8 <1.8 <1.8 <1.8                                | <0.2<br><0.2<br><0.2                                                                   | 7.300<br>6.400<br>3.100<br>18.000                                                                                                                | 3.200<br>3.600<br>3.600<br>3.400                                                                                | 16.0<br>17.0<br>15.0<br>18.0                                                                      | 7.2<br>7.8<br>6.3<br>6.1                                                                  |                                                           |                                          |                                                                           |                                                                                                      |                                                                                                 |
| Discharge Pump Discharge Pump Discharge Pump Discharge Pump Discharge Pump Discharge Pump Discharge Pump Discharge Pump Discharge Pump Discharge Pump Discharge Pump Discharge Pump                               | 8/11/2005<br>9/15/2005<br>10/13/2005<br>6/29/2006<br>8/2/2006<br>10/11/2006<br>7/12/2007<br>7/8/2008<br>9/18/2008<br>10/16/2008<br>7/7/2009              |                                                                                                                        |                                                                                                                                                                 | 7.3<br>8.3                                                                       | 225<br>143                                                                | 20.0<br>18.6                                                                                     | <0.1 1.1 1.7 <0.1 0.1 0.7 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1                                                        | 12<br>8<br>13<br>8<br>12<br>12<br>7<br><1<br>41<br>4.97<br>14.00 | 8.5<br>6.4<br>11.0<br>7.0<br>9.0<br>10.0<br>4.3<br><1<br><1<br><1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 120<br>140<br>150<br>100<br>120<br>100<br>210<br>140<br>230<br>250<br>180                         | 23<br>>16000<br>800<br>8<br><2<br>23<br>500<br>22<br>230<br>1300<br>50 | <0.03 0.06 0.06 0.04 0.05 0.06 <0.03 0.05 0.07 0.08 0.05                               | 0.630<br>1.000<br>0.840<br>2.600<br>0.940<br>0.400<br>2.700<br>1.800<br>3.000<br>1.300<br>1.500                                                  | 0.200<br>0.050<br>0.040<br>0.500<br>0.060<br>0.050<br>0.400<br>0.460<br>0.150<br>0.120<br>0.290                 | 14.0<br>23.0<br>24.0<br>13.0<br>18.0<br>23.0<br>17.0<br>18.0<br>25.0<br>34.0<br>23.0              | 13.0<br>17.0<br>20.0<br>13.0<br>17.0<br>16.0<br>12.0<br>15.0<br>22.0<br>21.0<br>19.0      | 98<br>219                                                 | 0.3<br>3.1<br>8.8                        | 190<br>250<br>290<br>180<br>230<br>150<br>170<br>240<br>230<br>320<br>300 | 6.8<br>7.5<br>6.8<br>6.8<br>7.1<br>8.1<br>7.2<br>13.0<br>3.2<br>16.0<br>12.0                         | 1.3<br>1.8<br>1.7<br>1.4<br>4.5<br>2.0<br>1.5<br>3.0<br>0.6<br>3.4<br>2.1                       |
| Treatment Pond Treatment Pond Treatment Pond Treatment Pond Treatment Pond Treatment Pond Treatment Pond Treatment Pond Treatment Pond Treatment Pond Treatment Pond Treatment Pond Treatment Pond Treatment Pond | 8/11/2005<br>9/15/2005<br>10/13/2005<br>6/29/2006<br>8/2/2006<br>10/11/2006<br>7/12/2007<br>7/8/2008<br>9/18/2008<br>10/16/2008<br>7/7/2009              |                                                                                                                        |                                                                                                                                                                 | 7.8<br>7.3                                                                       | 281<br>401                                                                | 26.2<br>16.0                                                                                     | <0.1 2.1 1.7 0.1 0.1 1.1 0.2 0.4 0.7 1.4 1                                                                     | 14<br>10<br>15<br>9<br>13<br>19<br>18<br>14<br>22<br>23<br>12    | 9.6<br>8.1<br>11.0<br>8.0<br>9.0<br>16.0<br>11.6<br><1<br>16.0<br><1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 120<br>130<br>150<br>91<br>130<br>150<br>240<br>180<br>240<br>200<br>200                          | >3000 >16000 2400 170 >16000 16000 16000 5000 16000 9000               | 0.04<br>0.07<br>0.05<br>0.03<br><0.03<br>0.09<br>0.042<br>0.06<br>0.08<br>0.08<br>0.04 | 0.170<br>0.120<br>0.210<br>0.290<br><b>0.580</b><br><b>0.620</b><br><b>0.550</b><br><b>0.470</b><br><b>0.520</b><br><b>0.340</b><br><b>0.310</b> | 0.020<br>0.030<br><b>0.090</b><br>0.040<br>0.040<br>0.030<br>0.070<br>0.040<br>0.060<br>0.020<br>0.050          | 20.0<br>24.0<br>22.0<br>22.0<br>18.0<br>30.0<br>25.0<br>25.0<br>35.0<br>36.0<br>20.0              | 3.1<br>17.0<br>20.0<br>10.0<br>13.0<br>17.0<br>16.0<br>20.0<br>21.0<br>14.0               | 102<br>213                                                | 2.8<br>3.0<br>7.8                        | 76<br>260<br>290<br>180<br>230<br>340<br>270<br>300<br>420<br>400<br>250  | 7.3<br>8.5<br>9.8<br>6.1<br><0.03<br>10.0<br>9.7<br>9.0<br>11.0<br>12.0<br>9.9                       | 1.7<br>1.8<br>2.4<br>1.3<br>4.6<br>2.2<br>1.9<br>2.0<br>2.0<br>2.3<br>1.8                       |

| Well                    | Date      | Depth<br>To GW<br>(ft) | GW Elev.<br>(ft,<br>NAVD88) | Field pH | Field EC<br>(μS/cm) | Temp.<br>(C) | NO3-N<br>(mg/L) | TKN<br>(mg/L) | Ammo<br>nia as<br>N | TDS<br>(mg/L) | Total Coliform<br>(MPN/100ml) | B (mg/L) | Fe<br>(mg/L) | Mn<br>(mg/L) | Na<br>(mg/L) | CI<br>(mg/L) | ORP<br>(mV) | Dissolved<br>Oxygen<br>(mg/L) | Lab SC<br>(μS/cm) | Ca<br>(mg/L) | Mg<br>(mg/L) |
|-------------------------|-----------|------------------------|-----------------------------|----------|---------------------|--------------|-----------------|---------------|---------------------|---------------|-------------------------------|----------|--------------|--------------|--------------|--------------|-------------|-------------------------------|-------------------|--------------|--------------|
| Bloods Creek Upstream   | 8/11/2005 |                        |                             |          |                     |              | <0.1            | 2             | <1                  | 86            | 170                           | <0.03    | 0.360        | 0.020        | 5.0          | 2.0          |             |                               | 67                | 6.5          | 1.6          |
| Bloods Creek Upstream   | 6/20/2006 |                        |                             |          |                     |              | <0.1            | <1            | <1                  | 46            | <2                            | < 0.03   | < 0.02       | <0.01        | 1.0          | 1.2          |             |                               | 34                | 3.1          | 0.7          |
| Bloods Creek Upstream   | 7/12/2007 |                        |                             |          |                     |              | <0.1            | <1            | <1                  | 69            | 14                            | < 0.03   | 0.210        | 0.060        | 5.0          | 1.1          |             |                               | 57                | 6.5          | 1.3          |
| Bloods Creek Upstream   | 7/8/2008  |                        |                             | 7.2      | 66                  | 24.6         | <0.1            | <1            | <1                  | 64            | 130                           | < 0.03   | 0.170        | 0.020        | 5.0          | 1.8          | 204         | 5.8                           | 51                | 5.0          | 1.0          |
| Bloods Creek Upstream   | 7/7/2009  |                        |                             |          |                     |              | <0.1            | <1            | <1                  | 100           | 500                           | <0.03    | 0.280        | 0.040        | 4.0          | 2.2          |             |                               | 56                | 5.9          | 1.3          |
| Bloods Creek Downstream | 8/11/2005 |                        |                             |          |                     |              | <0.1            | 2             | <1                  | 100           | >16000                        | 0.05     | 0.160        | 0.020        | 20.0         | 3.2          |             |                               | 76                | 7.3          | 1.7          |
| Bloods Creek Downstream | 6/20/2006 |                        |                             |          |                     |              | <0.1            | <1            | <1                  | 84            | 17                            | < 0.03   | 0.050        | < 0.01       | 1.0          | 1.4          |             |                               | 40                | 3.7          | 0.9          |
| Bloods Creek Downstream | 7/12/2007 |                        |                             |          |                     |              | <0.1            | <1            | <1                  | 110           | >16000                        | < 0.03   | 0.340        | 0.020        | 5.0          | 2.6          |             |                               | 71                | 7.7          | 2.1          |
| Bloods Creek Downstream | 7/8/2008  |                        |                             | 7.3      | 61                  | 25.0         | <0.1            | <1            | <1                  | 98            | 500                           | < 0.03   | 0.220        | <0.01        | 3.0          | 2.8          | 178         | 6.7                           | 65                | 6.0          | 2.0          |
| Bloods Creek Downstream | 7/7/2009  |                        |                             |          |                     |              | <0.1            | <1            | <1                  | 110           | 170                           | <0.03    | 0.290        | <0.01        | 4.0          | 2.9          |             |                               | 64                | 6.8          | 1.6          |

| Well         Date         (mg/L)         Sulfate         Coliform         CaCO3           MW-1         9/1/2004         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         3.7         2         2         2         3.7         2         3.7         2         3.7         3.7         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0 | NO2-N<br>(mg/L)<br>NR <sup>2</sup><br>NR <sup>2</sup><br><0.1<br><0.1<br><0.1<br><0.1 | ***Total Nitrogen (mg/L)  NR <sup>2</sup> 1.0 2.0 <1 <1 | Lab pH<br>(std<br>units)<br>6.9<br>7.3<br>7.2<br>6.7 | nia as<br>NH3<br>(mg/L)<br><0.50 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------|----------------------------------|
| MW-1       9/1/2004       2         MW-1       10/13/2004       <2         MW-1       8/11/2005       2.0       71       87       <1       <1       71       3.7       <2         MW-1       9/15/2005       4.0       76       93       <1       <1       76       3.9       <2         MW-1       10/13/2005       3.0       61       74       <1       <1       61       3.0       <2         MW-1       6/29/2006       <1       55       67       <1       <1       55       0.6       <2         MW-1       8/2/2006       4.0       75       91       <1       <1       75       3.7       8         MW-1       10/10/2006       2.0       70       85       <1       <1       70       3.6       <2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NR <sup>2</sup><br>NR <sup>2</sup><br><0.1<br><0.1<br><0.1                            | NR <sup>2</sup><br>1.0<br>2.0<br><1                     | 6.9<br>7.3<br>7.2                                    |                                  |
| MW-1       10/13/2004          <2         MW-1       8/11/2005       2.0       71       87       <1       <1       71       3.7       <2         MW-1       9/15/2005       4.0       76       93       <1       <1       76       3.9       <2         MW-1       10/13/2005       3.0       61       74       <1       <1       61       3.0       <2         MW-1       6/29/2006       <1       55       67       <1       <1       55       0.6       <2         MW-1       8/2/2006       4.0       75       91       <1       <1       75       3.7       8         MW-1       10/10/2006       2.0       70       85       <1       <1       70       3.6       <2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NR <sup>2</sup><br><0.1<br><0.1<br><0.1<br><0.1                                       | 1.0<br>2.0<br><1                                        | 7.3<br>7.2                                           | <0.50                            |
| MW-1     8/11/2005     2.0     71     87     <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <0.1<br><0.1<br><0.1<br><0.1                                                          | 2.0<br><1                                               | 7.2                                                  |                                  |
| MW-1     9/15/2005     4.0     76     93     <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <0.1<br><0.1<br><0.1                                                                  | <1                                                      |                                                      |                                  |
| MW-1 10/13/2005 3.0 61 74 <1 <1 61 3.0 <2<br>MW-1 6/29/2006 <1 55 67 <1 <1 55 0.6 <2<br>MW-1 8/2/2006 4.0 75 91 <1 <1 75 3.7 8<br>MW-1 10/10/2006 2.0 70 85 <1 <1 70 3.6 <2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <0.1<br><0.1                                                                          |                                                         | 6.7                                                  |                                  |
| MW-1 6/29/2006 <1 55 67 <1 <1 55 0.6 <2<br>MW-1 8/2/2006 4.0 75 91 <1 <1 75 3.7 8<br>MW-1 10/10/2006 2.0 70 85 <1 <1 70 3.6 <2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <0.1                                                                                  | <1                                                      |                                                      |                                  |
| MW-1 8/2/2006 4.0 75 91 <1 <1 75 3.7 8<br>MW-1 10/10/2006 2.0 70 85 <1 <1 70 3.6 <2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                       | - 1                                                     | 6.8                                                  |                                  |
| MW-1 10/10/2006 2.0 70 85 <1 <1 70 3.6 <2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.1                                                                                  | <1                                                      | 5.9                                                  |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                       | <1                                                      | 6.8                                                  |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <0.1                                                                                  | <1                                                      | 6.6                                                  |                                  |
| MW-1 7/12/2007 5.0 87.8 107 <1 <1 88 3.7 <2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <0.1                                                                                  | <1                                                      | 7.2                                                  |                                  |
| MW-1 8/29/2007 4.4 96 117 <1 <1 96 4.5 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.1                                                                                  | <1                                                      | 7.4                                                  |                                  |
| MW-1 9/26/2007 4.0 100 122 <1 <1 100 4.3 <2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <0.1                                                                                  | <1                                                      | 7.3                                                  |                                  |
| MW-1 7/8/2008 4.0 65 79 <1 <1 65 4.0 <2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <0.1                                                                                  | <1                                                      | 7.0                                                  |                                  |
| MW-1 9/18/2008 4.0 95 116 <1 <1 95 4.3 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.1                                                                                  | <1                                                      | 7.3                                                  |                                  |
| MW-1 1/16/2008 4.0 90 109 <1 <1 90 4.5 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.1                                                                                  | <1                                                      | 7.2                                                  |                                  |
| MW-1 7/7/2009 4.0 75 91 <1 <1 75 5.6 <2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 0.2                                                                                 | <1                                                      | 7.3                                                  |                                  |
| MW-1 9/30/2009 5.0 110 134 <1 <1 110 4.5 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.1                                                                                  | <1                                                      | 7.0                                                  |                                  |
| MW-1 10/26/2009 4.0 100 122 <1 <1 100 5.1 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.1                                                                                  | 1.3                                                     | 7.5                                                  |                                  |
| MW-1 7/13/2010 3.0 65 79 <1 <1 65 4.4 <2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.1                                                                                  | <1                                                      | 6.4                                                  |                                  |
| MW-1 8/24/2010 3.0 78 95 <1 <1 78 4.7 <2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.1                                                                                  | <1                                                      | 7.0                                                  |                                  |
| MW-1 11/4/2010 3.0 76 93 <1 <1 76 3.3 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <0.1                                                                                  | 6.0                                                     | 5.9                                                  |                                  |
| MW-1 7/21/2011 2.9 76 93 <1 <1 76 3.6 <2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.1                                                                                  | <1                                                      | 5.6                                                  |                                  |
| MW-1 9/8/2011 3.1 76 93 <1 <1 76 4.7 <2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <0.1                                                                                  | 2.0                                                     | 7.0                                                  |                                  |
| MW-1 10/20/2011 3.3 87 106 <1 <1 87 4.6 <2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.1                                                                                  | 2.0                                                     | 6.6                                                  |                                  |
| MW-1 6/26/2012 2.5 54 66 <1 <1 54 3.1 <1.8 56.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <0.1                                                                                  | 0.2                                                     | 6.7                                                  |                                  |
| MW-1 7/31/2012 3.6 99 121 <1 <1 99 3.9 <1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <0.1                                                                                  | 1.0                                                     | 7.0                                                  |                                  |
| MW-1 10/9/2012 3.5 85 104 <1 <1 85 4.4 <1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <0.2                                                                                  | 2.0                                                     | 6.5                                                  |                                  |
| MW-1 5/30/2013 3.1 80 98 <1 <1 80 4.3 <1.8 60.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <0.2                                                                                  | <1                                                      | 6.4                                                  |                                  |
| MW-1 8/21/2013 3.3 85 104 <1 <1 85 4.4 <1.8 65.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.2                                                                                  | <1                                                      | 6.6                                                  |                                  |
| MW-1 10/15/2013 4.7 100 122 <1 <1 100 4.3 <1.8 88.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.2                                                                                  | <1                                                      | 6.4                                                  |                                  |
| MW-1 6/12/2014 2.5 58 71 <1 <1 58 4.6 <1.8 52.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                       |                                                         | 6.2                                                  |                                  |
| MW-1 8/12/2014 3.6 86 105 <1 <1 86 4.4 <1.8 66.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                       |                                                         | 7.4                                                  |                                  |
| MW-1 10/14/2014 3.7 86 105 <1 <1 86 4.0 <1.8 77.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                       |                                                         | 7.2                                                  |                                  |
| MW-1 6/17/2015 2.0 42 51 <1 <1 42 3.6 <1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                       |                                                         |                                                      |                                  |
| MW-1 9/9/2015 3.7 80 98 <1 <1 80 4.2 <1.8 69.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                       |                                                         | 6.6                                                  |                                  |
| MW-1 11/12/2015 3.0 68 83 <1 <1 68 4.2 <1.8 62.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                       |                                                         | 6.5                                                  |                                  |
| MW-1 7/7/2016 2.9 86 105 <1 <1 86 3.6 <1.8 63.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                       |                                                         |                                                      |                                  |
| MW-1 9/8/2016 3.2 80 98 <10 <10 80 3.5 <1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                       |                                                         |                                                      |                                  |
| MW-1 10/20/2016 3.6 81 99 <10 <10 81 3.1 6.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                       |                                                         |                                                      |                                  |
| MW-1 7/13/2017 1.3 37 41 <1 <1 34 2.3 <1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                       |                                                         |                                                      |                                  |
| MW-1 8/24/2017 3.0 62 76 <1 <1 62 4.5 <1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                       |                                                         |                                                      |                                  |
| MW-1 9/28/2017 2.8 60 73 <1 <1 60 4.5 <1.8 58.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                       |                                                         |                                                      |                                  |
| MW-1 6/29/2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                       |                                                         |                                                      |                                  |
| MW-1 8/23/2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                       |                                                         |                                                      |                                  |
| MW-1 10/10/2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                       |                                                         |                                                      |                                  |
| MW-1 7/18/2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                       |                                                         |                                                      |                                  |
| MW-1 8/29/2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                       |                                                         |                                                      |                                  |
| MW-1 10/3/2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                       |                                                         |                                                      |                                  |

|              |              | K         | HCO3 as<br>CaCO3 | HCO3 as  | CO3 as  | OH as<br>CaCO3 | Total<br>Alkalinit<br>y as<br>CaCO3 | Sulfate      | Fecal<br>Coliform | Hardness<br>as<br>CaCO3 | NO2-N        | ***Total<br>Nitrogen | Lab pH<br>(std | Ammo<br>nia as<br>NH3 |
|--------------|--------------|-----------|------------------|----------|---------|----------------|-------------------------------------|--------------|-------------------|-------------------------|--------------|----------------------|----------------|-----------------------|
| Well         |              | (mg/L)    | (mg/L)           | (mg/L)   | (mg/L)  | (mg/L)         | (mg/L)                              | (mg/L)       | (MPN/100ml)       | (mg/l)                  | (mg/L)       | (mg/L)               | units)         | (mg/L)                |
| MW-1         |              |           |                  |          |         |                |                                     |              |                   |                         |              |                      |                |                       |
| MW-1         |              |           |                  |          |         |                |                                     |              |                   |                         |              |                      |                |                       |
| MW-1         |              |           |                  |          |         |                |                                     |              |                   |                         |              |                      |                |                       |
| MW-1<br>MW-1 |              |           |                  |          |         |                |                                     |              |                   |                         |              |                      |                |                       |
| MW-1         |              |           |                  |          |         |                |                                     |              |                   |                         |              |                      |                |                       |
| 10100-1      | 10/21/2021   |           |                  |          |         |                |                                     |              |                   |                         |              |                      |                |                       |
| MW-2         | 2 10/30/2002 |           |                  |          |         |                |                                     |              | NR <sup>2</sup>   |                         | <0.020       | NR <sup>2</sup>      |                | <0.50                 |
| MW-2         |              |           |                  |          |         |                |                                     |              | 4                 |                         | $NR^2$       | $NR^2$               | 6.7            | <0.2                  |
| MW-2         | 2 11/13/2003 |           |                  |          |         |                |                                     |              | $NR^2$            |                         | <0.050*      | $NR^2$               | 6.7            | < 0.50                |
| MW-2         |              |           |                  |          |         |                |                                     |              | <2                |                         | $NR^2$       | $NR^2$               | 6.5            | < 0.50                |
| MW-2         |              |           |                  |          |         |                |                                     |              | <2                |                         | $NR^2$       | $NR^2$               | 6.5            | <0.50                 |
| MW-2         |              |           |                  |          |         |                |                                     |              | <2                |                         | $NR^2$       | 10.0                 | 7.1            |                       |
| MW-2         |              | 1.0       | 25               | 30       | <1      | <1             | 25                                  | <0.5         | <2                |                         | <0.1         | 2.0                  | 6.9            |                       |
| MW-2         |              | 2.0       | 30               | 37       | <1      | <1             | 30                                  | 0.6          | <2                |                         | <0.1         | 2.1                  | 6.5            |                       |
| MW-2         |              | 2.0       | 25               | 30       | <1      | <1             | 25                                  | <0.5         | <2                |                         | <0.1         | <1                   | 6.5            |                       |
| MW-2         |              | <1        | 20               | 24       | <1      | <1             | 20                                  | <0.5         | <2                |                         | <0.1         | <1                   | 5.6            |                       |
| MW-2         |              | 2.0       | 20               | 24       | <1      | <1             | 20                                  | <0.5         | <2                |                         | <0.1         |                      | 6.1            |                       |
| MW-2         |              | 2.0<br><1 |                  |          |         | <1             | 20<br>25                            | <0.5<br><0.5 |                   |                         | <0.1<br><0.1 | <1                   | 6.0            |                       |
|              |              |           | 25               | 30       | <1      |                |                                     |              | <2                |                         |              | <1                   |                |                       |
| MW-2         |              | 2.0       | 25               | 30       | <1      | <1             | 25                                  | <0.5         | 2                 |                         | <0.1         | 0.7                  | 6.8            |                       |
| MW-2         |              | 2.2       | 35               | 43       | <1      | <1             | 35                                  | 1.6          | <2                |                         | <0.1         | <1                   | 7.0            |                       |
| MW-2         |              | 2.0       | 30               | 37       | <1      | <1             | 30                                  | 1.4          | <2                |                         | <0.1         | <1                   | 6.7            |                       |
| MW-2         |              | 1.0       | 25               | 30       | <1      | <1             | 25                                  | <0.5         | <2                |                         | <0.1         | <1                   | 6.5            |                       |
| MW-2         |              | 2.0       | 25               | 30       | <1      | <1             | 25                                  | 0.6          | <2                |                         | <0.1         | 3.2                  | 6.9            |                       |
| MW-2         | 2 10/16/2008 | 1.0       | 25               | 30       | <1      | <1             | 25                                  | 0.6          | <2                |                         | <0.1         | <1                   | 7.0            |                       |
| MW-2         | 7/7/2009     | 1.0       | 25               | 30       | <1      | <1             | 25                                  | 0.5          | <2                |                         | <0.2         | <1                   | 7.0            |                       |
| MW-2         | 9/30/2009    | 2.0       | 30               | 37       | <1      | <1             | 30                                  | <0.5         | <2                |                         | <0.1         | <1                   | 6.8            |                       |
| MW-2         | 10/26/2009   | 2.0       | 25               | 30       | <1      | <1             | 25                                  | < 0.5        | 800               |                         | <0.1         | 0.5                  | 6.7            |                       |
| MW-2         | 7/13/2010    | <1        | 20               | 24       | <1      | <1             | 20                                  | < 0.5        | <2                |                         | <0.1         | <1                   | 6.1            |                       |
| MW-2         | 8/24/2010    | <1        | 22               | 27       | <1      | <1             | 22                                  | < 0.5        | <2                |                         | <0.1         | <1                   | 6.3            |                       |
| MW-2         | 11/4/2010    | <1        | 25               | 30       | <1      | <1             | 25                                  | <0.5         | 4                 |                         | <0.1         | 3.0                  | 5.8            |                       |
| MW-2         |              | 8.0       | 22               | 27       | <1      | <1             | 22                                  | <0.5         | <2                |                         | <0.1         | <1                   | 6.2            |                       |
| MW-2         |              | 1.0       | 27               | 33       | <1      | <1             | 27                                  | <0.5         | <2                |                         | <0.1         | 2.0                  | 6.4            |                       |
| MW-2         |              | 1.0       | 33               | 40       | <1      | <1             | 33                                  | <0.5         | -<br><2           |                         | <0.1         | 1.0                  | 6.1            |                       |
| MW-2         |              | 0.9       | 30               | 37       | -<br><1 | -<br><1        | 30                                  | <0.5         | <1.8              | 22.7                    | <0.1         | 2.0                  | 6.2            |                       |
| MW-2         |              | 1.0       | 35               | 43       | <1      | <1             | 35                                  | <0.5         | 11                | <i>LL</i> .1            | <0.1         | <1                   | 6.3            |                       |
| MW-2         |              | 1.4       | 30               | 43<br>37 | <1      | <1             | 30                                  | 0.8          | <1.8              |                         | <0.2         | <1                   | 5.9            |                       |
|              |              |           |                  |          | <1      | <1             | 30<br>18                            |              |                   | 16 E                    |              |                      |                |                       |
| MW-2         |              | 0.8       | 18               | 22       |         |                |                                     | 0.5          | <1.8              | 16.5                    | <0.2         | <1                   | 6.1            |                       |
| MW-2         |              | 1.4       | 28               | 34       | <1      | <1             | 28                                  | 0.6          | <1.8              | 21.8                    | <0.2         | <1                   | 5.2            |                       |
| MW-2         |              | 1.4       | 22               | 27       | <1      | <1             | 22                                  | 0.6          | <1.8              | 17.8                    | <0.2         | <1                   | 5.6            |                       |
| MW-2         | 6/12/2014    | 0.9       | 18               | 22       | <1      | <1             | 18                                  | 0.5          | <1.8              | 16.3                    |              |                      | 5.9            |                       |

|              |                        | K         | CaCO3    | HCO3 as  | CaCO3    | OH as<br>CaCO3 | Total Alkalinit y as CaCO3 | Sulfate    | Fecal<br>Coliform | Hardness<br>as<br>CaCO3 | NO2-N        | ***Total        | Lab pH<br>(std | Ammo<br>nia as<br>NH3 |
|--------------|------------------------|-----------|----------|----------|----------|----------------|----------------------------|------------|-------------------|-------------------------|--------------|-----------------|----------------|-----------------------|
| Well         | Date                   | (mg/L)    | (mg/L)   | (mg/L)   | (mg/L)   | (mg/L)         | (mg/L)                     | (mg/L)     | (MPN/100ml)       | (mg/l)                  | (mg/L)       | (mg/L)          | units)         | (mg/L)                |
| MW-2         | 8/12/2014              | 5.8       | 28       | 34       | <1       | <1             | 28                         | 0.6        | <1.8              | 20.9                    |              |                 | 6.7            |                       |
| MW-2         | 10/14/2014             | 1.1       | 24       | 29       | <1       | <1             | 24                         | 0.6        | <1.8              | 26.5                    |              |                 | 5.9            |                       |
| MW-2         | 6/17/2015              | 1.0       | 30       | 36       | <1       | <1             | 30                         | <0.5       | <1.8              |                         |              |                 |                |                       |
| MW-2         | 9/9/2015               | 1.6       | 40       | 49       | <1       | <1             | 40                         | 8.0        | <1.8              | 19.5                    |              |                 | 6.9            |                       |
| MW-2         | 11/13/2015             | 1.0       | 26       | 32       | <1       | <1             | 26                         | <0.5       | 2                 | 22.5                    |              |                 | 6.1            |                       |
| MW-2         | 7/7/2016               | 0.9       | 30       | 37       | <1       | <1             | 30                         | <0.5       | <1.8              | 19.2                    |              |                 |                |                       |
| MW-2         | 9/8/2016               | 1.1       | 34       | 41       | <10      | <10            | 34                         | <0.5       | <1.8              |                         |              |                 |                |                       |
| MW-2         | 10/20/2016             | 1.1       | 28       | 34       | <10      | <10            | 28                         | <0.5       | 170               |                         |              |                 |                |                       |
| MW-2         | 7/13/2017              | 1.0       | 16       | 19       | <1       | <1             | 16                         | <0.5       | <1.8              |                         |              |                 |                |                       |
| MW-2         | 8/24/2017              | 1.2       | 22       | 27       | <1       | <1             | 22                         | < 0.5      | <1.8              |                         |              |                 |                |                       |
| MW-2         | 9/28/2017              | 1.1       | 28       | 34       | <1       | <1             | 28                         | < 0.5      | <1.8              | 22.5                    |              |                 |                |                       |
| MW-2         | 6/28/2018              |           |          |          |          |                |                            |            |                   |                         |              |                 |                |                       |
| MW-2         | 8/22/2018              |           |          |          |          |                |                            |            |                   |                         |              |                 |                |                       |
| MW-2         | 10/10/2018             |           |          |          |          |                |                            |            |                   |                         |              |                 |                |                       |
| MW-2         | 7/17/2019              |           |          |          |          |                |                            |            |                   |                         |              |                 |                |                       |
| MW-2         | 8/28/2019              |           |          |          |          |                |                            |            |                   |                         |              |                 |                |                       |
| MW-2         | 10/2/2019              |           |          |          |          |                |                            |            |                   |                         |              |                 |                |                       |
| MW-2         | 6/10/2020              |           |          |          |          |                |                            |            |                   |                         |              |                 |                |                       |
| MW-2         | 8/12/2020              |           |          |          |          |                |                            |            |                   |                         |              |                 |                |                       |
| MW-2         | 10/14/2020             |           |          |          |          |                |                            |            |                   |                         |              |                 |                |                       |
|              |                        |           |          |          |          |                |                            |            |                   |                         |              |                 |                |                       |
| MW-2         | 6/9/2021               |           |          |          |          |                |                            |            |                   |                         |              |                 |                |                       |
| MW-2         | 8/11/2021              |           |          |          |          |                |                            |            |                   |                         |              |                 |                |                       |
| MW-2         | 10/20/2021             |           |          |          |          |                |                            |            |                   |                         |              |                 |                |                       |
| MW-3         | 10/30/2002             |           |          |          |          |                |                            |            | NR <sup>2</sup>   |                         | <0.020       | NR <sup>2</sup> |                | <0.50                 |
| MW-3         | 7/29/2003              |           |          |          |          |                |                            |            | 80                |                         | $NR^2$       | $NR^2$          | 6.6            | <0.2                  |
| MW-3         | 11/13/2003             |           |          |          |          |                |                            |            | $NR^2$            |                         | 0.06*        | $NR^2$          | 6.0            | **                    |
| MW-3         | 6/22/2004              |           |          |          |          |                |                            |            | <2                |                         | $NR^2$       | $NR^2$          | 6.0            | < 0.50                |
| MW-3         | 9/1/2004               |           |          |          |          |                |                            |            | <2                |                         | $NR^2$       | $NR^2$          | 6.2            | < 0.50                |
| MW-3         | 10/13/2004             |           |          |          |          |                |                            |            | <2                |                         | $NR^2$       | 0.3             | 6.7            |                       |
| MW-3         | 8/11/2005              | <1        | 20       | 24       | <1       | <1             | 20                         | 1.9        | <2                |                         | <0.1         | <1              | 6.2            |                       |
| MW-3         | 9/15/2005              | 2.0       | 25       | 30       | <1       | <1             | 25                         | 1.4        | 8                 |                         | <0.1         | <1              | 5.9            |                       |
| MW-3         | 10/13/2005             | 2.0       | 20       | 24       | <1       | <1             | 20                         | 1.8        | <2                |                         | <0.1         | 2.4             | 6.1            |                       |
| MW-3         | 6/29/2006              | <1        | 20       | 24       | <1       | <1             | 20                         | 1.3        | <2                |                         | <0.1         | <1              | 5.5            |                       |
| MW-3<br>MW-3 | 8/2/2006<br>10/10/2006 | 2.0<br><1 | 20<br>20 | 24<br>24 | <1<br><1 | <1<br><1       | 20<br>20                   | 1.3<br>1.5 | <2<br><2          |                         | <0.1<br><0.1 | 0.2<br>2.0      | 5.7<br>5.4     |                       |
| MW-3         | 7/12/2007              | 2.0       | 28       | 24<br>34 | <1       | <1             | 28                         | 1.5        | <2                |                         | <0.1<br><0.1 | 0.2             | 6.5            |                       |
| MW-3         | 8/29/2007              | 1.7       | 25       | 30       | <1       | <1             | 25                         | 1.6        | 4                 |                         | <0.1         | <1              | 6.3            |                       |
| MW-3         | 9/26/2007              | 2.0       | 30       | 37       | <1       | <1             | 30                         | 0.5        | 2                 |                         | <0.1         | <1              | 6.3            |                       |
| MW-3         | 7/8/2008               | 1.0       | 35       | 43       | <1       | <1             | 35                         | 1.2        | <2                |                         | <0.1         | <1              | 6.3            |                       |
| MW-3         | 9/18/2008              | 2.0       | 20       | 24       | <1       | <1             | 20                         | 2.0        | <2                |                         | <0.1         | <1              | 6.2            |                       |
| MW-3         | 10/16/2008             | 2.0       | 30       | 37       | <1       | <1             | 30                         | 2.1        | <2                |                         | <0.1         | 0.15            | 6.2            |                       |

|              |                        |               | Total                |              |              |              |                      |               |                    |          |                 |                      |                   |        |
|--------------|------------------------|---------------|----------------------|--------------|--------------|--------------|----------------------|---------------|--------------------|----------|-----------------|----------------------|-------------------|--------|
|              |                        |               |                      |              |              |              | Alkalinit            |               |                    | Hardness | •               |                      |                   | Ammo   |
|              |                        |               |                      | HCO3 as      | CO3 as       | OH as        | y as                 |               | Fecal              | as       |                 | ***Total             | Lab pH            |        |
| VA/~ II      | Data                   | K             | CaCO3                | HCO3         | CaCO3        | CaCO3        | CaCO3                | Sulfate       | Coliform           | CaCO3    | NO2-N           | Nitrogen             | (std              | NH3    |
| Well MW-3    | <b>Date</b> 7/7/2009   | (mg/L)<br>1.0 | ( <b>mg/L)</b><br>20 | (mg/L)<br>24 | (mg/L)<br><1 | (mg/L)<br><1 | ( <b>mg/L)</b><br>20 | (mg/L)<br>3.5 | (MPN/100ml)<br><2  | (mg/l)   | (mg/L)<br><0.2  | ( <b>mg/L)</b><br><1 | <b>units)</b> 6.5 | (mg/L) |
| MW-3         | 9/30/2009              | 3.0           | 40                   | 49           | <1           | <1           | 40                   | 3.2           | <2<br><2           |          | <0.2<br><0.1    | <1                   | 6.0               |        |
| MW-3         | 10/26/2009             | 2.0           | 15                   | 18           | <1           | <1           | 15                   | 3.3           | 4                  |          | <0.1            | 0.90                 | 6.4               |        |
| MW-3         | 7/13/2010              | <1            | 20                   | 24           | <1           | <1           | 20                   | <0.5          | <del>-</del><br>-2 |          | <0.1            | <1                   | 6.1               |        |
| MW-3         | 8/24/2010              | <1            | 27                   | 33           | <1           | <1           | 27                   | <0.5          | <2                 |          | <0.1            | <1                   | 5.8               |        |
| MW-3         | 11/4/2010              | <1            | 25                   | 30           | <1           | <1           | 25                   | <0.5          | 26                 |          | <0.1            | 3.00                 | 5.6               |        |
| MW-3         | 7/21/2011              | 0.9           | 16                   | 20           | <1           | <1           | 16                   | <0.5          | <2                 |          | <0.1            | <1                   | 6.2               |        |
| MW-3         | 9/8/2011               | 1.1           | 22                   | 27           | <1           | <1           | 22                   | <0.5          | <2                 |          | <0.1            | 2.00                 | 6.1               |        |
| MW-3         | 10/20/2011             | 1.2           | 27                   | 33           | <1           | <1           | 27                   | < 0.5         | 11                 |          | <0.1            | 1.00                 | 6.1               |        |
| MW-3         | 6/26/2012              | 1.3           | 30                   | 37           | <1           | <1           | 30                   | 1.3           | <1.8               | 22.1     | <0.1            | <1                   | 6.0               |        |
| MW-3         | 7/31/2012              | 1.4           | 35                   | 43           | <1           | <1           | 35                   | 1.2           | <1.8               |          | < 0.2           | <1                   | 6.0               |        |
| MW-3         | 10/9/2012              | 1.3           | 35                   | 43           | <1           | <1           | 35                   | 1.5           | <1.8               |          | < 0.2           | <1                   | 5.7               |        |
| MW-3         | 5/30/2013              | 0.9           | 20                   | 24           | <1           | <1           | 20                   | 2.3           | <1.8               | 15.7     | < 0.2           | <1                   | 5.9               |        |
| MW-3         | 8/21/2013              | 1.1           | 18                   | 22           | <1           | <1           | 18                   | 1.3           | <1.8               | 18.7     | < 0.2           | <1                   | 4.2               |        |
| MW-3         | 10/15/2013             | 1.5           | 32                   | 39           | <1           | <1           | 32                   | 1.4           | <1.8               | 21.8     | < 0.2           | <1                   | 5.4               |        |
| MW-3         | 6/12/2014              | 1.1           | 20                   | 24           | <1           | <1           | 20                   | 1.3           | <1.8               | 15.3     |                 |                      | 5.7               |        |
| MW-3         | 8/12/2014              | 4.6           | 20                   | 24           | <1           | <1           | 20                   | 1.2           | <1.8               | 19.4     |                 |                      | 5.6               |        |
| MW-3         | 10/14/2014             | 1.2           | 22                   | 27           | <1           | <1           | 22                   | 1.3           | <1.8               | 20.5     |                 |                      | 5.5               |        |
| MW-3         | 6/17/2015              | 1.3           | 28                   | 34           | <1           | <1           | 28                   | 1.3           | <1.8               |          |                 |                      |                   |        |
| MW-3         | 9/9/2015               | 1.6           | 42                   | 51           | <1           | <1           | 42                   | 1.4           | 7.8                | 18.7     |                 |                      | 7.4               |        |
| MW-3         | 11/13/2015             | 1.1           | 24                   | 29           | <1           | <1           | 24                   | 1.3           | <1.8               | 19.1     |                 |                      |                   |        |
| MW-3         | 7/7/2016               | 1.1           | 30                   | 37           | <1           | <1           | 30                   | 1.1           | <1.8               | 21.7     |                 |                      |                   |        |
| MW-3         | 9/8/2016               | 1.4           | 26                   | 32           | <10          | <10          | 26                   | 1.2           | 49                 |          |                 |                      |                   |        |
| MW-3         | 10/20/2016             | 1.5           | 27                   | 33           | <10          | <10          | 27                   | 1.0           | <1.8               |          |                 |                      |                   |        |
| MW-3         | 7/13/2017              | 1.1           | 50                   | 61           | <1           | <1           | 50                   | 1.2           | <1.8               |          |                 |                      |                   |        |
| MW-3         | 8/24/2017              | 1.6           | 38                   | 46           | <1           | <1           | 38                   | 1.0           | <1.8               |          |                 |                      |                   |        |
| MW-3         | 9/28/2017              | 1.5           | 40                   | 49           | <1           | <1           | 40                   | 1.1           | <1.8               | 24.2     |                 |                      |                   |        |
| MW-3         | 6/28/2018              |               |                      |              |              |              |                      |               |                    |          |                 |                      |                   |        |
| MW-3         | 8/22/2018              |               |                      |              |              |              |                      |               |                    |          |                 |                      |                   |        |
| MW-3         | 10/10/2018             |               |                      |              |              |              |                      |               |                    |          |                 |                      |                   |        |
| MW-3         | 7/17/2019              |               |                      |              |              |              |                      |               |                    |          |                 |                      |                   |        |
| MW-3         | 8/28/2019              |               |                      |              |              |              |                      |               |                    |          |                 |                      |                   |        |
| MW-3         | 10/2/2019              |               |                      |              |              |              |                      |               |                    |          |                 |                      |                   |        |
| MW-3         | 6/10/2020              |               |                      |              |              |              |                      |               |                    |          |                 |                      |                   |        |
| MW-3<br>MW-3 | 8/12/2020              |               |                      |              |              |              |                      |               |                    |          |                 |                      |                   |        |
| MW-3         | 10/14/2020<br>6/9/2021 |               |                      |              |              |              |                      |               |                    |          |                 |                      |                   |        |
| MW-3         | 8/11/2021              |               |                      |              |              |              |                      |               |                    |          |                 |                      |                   |        |
| MW-3         | 10/20/2021             |               |                      |              |              |              |                      |               |                    |          |                 |                      |                   |        |
| C-441AI      | 10/20/2021             |               |                      |              |              |              |                      |               |                    |          |                 |                      |                   |        |
| MW-4         | 10/30/2002             |               |                      |              |              |              |                      |               | NR <sup>2</sup>    |          | <0.020          | NR <sup>2</sup>      |                   | <0.50  |
| MW-4         | 7/29/2003              |               |                      |              |              |              |                      |               | <2                 |          | $NR^2$          | $NR^2$               | 6.5               | <0.2   |
| MW-4         | 11/13/2003             |               |                      |              |              |              |                      |               | NR <sup>2</sup>    |          | 0.05*           | NR <sup>2</sup>      | 6.9               | **     |
| MW-4         | 6/22/2004              |               |                      |              |              |              |                      |               | <2                 |          | NR <sup>2</sup> | NR <sup>2</sup>      | 6.8               | <0.50  |
| MW-4         | 9/1/2004               |               |                      |              |              |              |                      |               | <2                 |          | NR <sup>2</sup> | NR <sup>2</sup>      | 6.9               | <0.50  |
|              |                        |               |                      |              |              |              |                      |               |                    |          | NR <sup>2</sup> |                      |                   | ~0.50  |
| MW-4         | 10/13/2004             |               |                      |              |              |              |                      |               | <2                 |          | INK             | <1.1                 | 7.1               |        |

|      |            |        |         |         |        |        | T-1-1              |         |             |          |        |          |        |        |
|------|------------|--------|---------|---------|--------|--------|--------------------|---------|-------------|----------|--------|----------|--------|--------|
|      |            |        |         |         |        |        | Total<br>Alkalinit |         |             | Hardness |        |          |        | Ammo   |
|      |            |        | HCO3 as | HCO3 as | CO3 as | OH as  | y as               |         | Fecal       | as       |        | ***Total | Lab pH | nia as |
|      |            | K      | CaCO3   | HCO3    | CaCO3  | CaCO3  | CaCO3              | Sulfate | Coliform    | CaCO3    | NO2-N  | Nitrogen | (std   | NH3    |
| Well | Date       | (mg/L) | (mg/L)  | (mg/L)  | (mg/L) | (mg/L) | (mg/L)             | (mg/L)  | (MPN/100ml) | (mg/l)   | (mg/L) | (mg/L)   | units) | (mg/L) |
| MW-4 | 8/11/2005  | 3.0    | 96      | 117     | <1 <1  | <1     | 96                 | 5.7     | <2          | (9)      | <0.1   | <1       | 6.9    | (9. –) |
| MW-4 | 9/15/2005  | 5.0    | 100     | 122     | <1     | <1     | 100                | 5.8     | -<br><2     |          | <0.1   | 0.1      | 6.6    |        |
| MW-4 | 10/13/2005 | 4.0    | 110     | 134     | <1     | <1     | 110                | 5.1     | -<br><2     |          | <0.1   | 1.2      | 6.8    |        |
| MW-4 | 6/29/2006  | 2.0    | 90      | 110     | <1     | <1     | 90                 | 4.1     | <2          |          | <0.1   | 0.1      | 6.2    |        |
| MW-4 | 8/2/2006   | 5.0    | 85      | 102     | <1     | <1     | 85                 | 6.2     | <2          |          | <0.1   | <1       | 6.7    |        |
| MW-4 | 10/10/2006 | <1     | 85      | 104     | <1     | <1     | 85                 | 6.0     | <2          |          | <0.1   | 1.0      | 6.8    |        |
| MW-4 | 7/12/2007  | 4.0    | 87      | 106     | <1     | <1     | 87                 | 6.7     | <2          |          | <0.1   | 0.1      | 6.8    |        |
| MW-4 | 8/29/2007  | 4.1    | 91      | 111     | <1     | <1     | 91                 | 6.9     | <2          |          | <0.1   | <1       | 7.2    |        |
| MW-4 | 9/26/2007  | 4.0    | 86      | 105     | <1     | <1     | 86                 | 10.0    | <2          |          | <0.1   | <1       | 7.0    |        |
| MW-4 | 7/8/2008   | 4.0    | 86      | 105     | <1     | <1     | 86                 | 5.8     | <2          |          | <0.1   | <1       | 7.0    |        |
| MW-4 | 9/18/2008  | 4.0    | 85      | 104     | <1     | <1     | 85                 | 6.2     | <2          |          | <0.1   | <1       | 6.9    |        |
| MW-4 | 10/16/2008 | 4.0    | 90      | 109     | <1     | <1     | 90                 | 5.9     | <2          |          | <0.1   | <0.1     | 6.9    |        |
| MW-4 | 7/7/2009   | 4.0    | 95      | 116     | <1     | <1     | 95                 | 7.0     | <2          |          | <0.2   | 2.4      | 7.1    |        |
| MW-4 | 9/30/2009  | 4.0    | 80      | 98      | <1     | <      | 80                 | 6.3     | <2          |          | <0.1   | <1       | 6.8    |        |
| MW-4 | 10/26/2009 | 3.0    | 90      | 110     | <1     | <1     | 90                 | 5.4     | 13          |          | <0.1   | 0.3      | 7.1    |        |
| MW-4 | 7/13/2010  | 4.0    | 100     | 122     | <1     | <1     | 100                | 5.2     | <2          |          | <0.1   | <1       | 6.6    |        |
| MW-4 | 8/24/2010  | 3.0    | 82      | 100     | <1     | <1     | 82                 | 5.6     | <2          |          | <0.1   | <1       | 6.4    |        |
| MW-4 | 11/4/2010  | 3.0    | 75      | 91      | <1     | <1     | 75                 | 6.8     | 13          |          | <0.1   | <1       | 6.5    |        |
| MW-4 | 7/21/2011  | 3.7    | 92      | 112     | <1     | <1     | 92                 | 4.1     | <2          |          | <0.1   | <1       | 6.9    |        |
| MW-4 | 9/8/2011   | 3.1    | 87      | 106     | <1     | <1     | 87                 | 5.0     | <2          |          | <0.1   | 1.0      | 6.9    |        |
| MW-4 | 10/20/2011 | 3.2    | 70      | 85      | <1     | <1     | 70                 | 7.3     | <2          |          | <0.1   | <1       | 7.0    |        |
| MW-4 | 6/26/2012  | 3.4    | 89      | 108     | <1     | <1     | 89                 | 7.0     | <1.8        | 86.4     | <0.1   | <1       | 8.0    |        |
| MW-4 | 7/31/2012  | 3.4    | 84      | 102     | <1     | <1     | 84                 | 6.6     | <1.8        |          | <0.2   | 2.0      | 6.6    |        |
| MW-4 | 10/9/2012  | 3.2    | 75      | 91      | <1     | <1     | 75                 | 6.8     | <1.8        |          | <0.2   | <1       | 5.8    |        |
| MW-4 | 5/30/2013  | 3.5    | 86      | 105     | <1     | <1     | 86                 | 6.1     | <1.8        | 81.7     | <0.2   | <1       | 6.4    |        |
| MW-4 | 8/21/2013  | 3.4    | 89      | 109     | <1     | <1     | 89                 | 6.7     | <1.8        | 72.9     | <0.2   | <1       | 6.5    |        |
| MW-4 | 10/15/2013 | 4.0    | 91      | 111     | <1     | <1     | 91                 | 6.7     | <1.8        | 81.2     | <0.2   | <1       | 6.6    |        |
| MW-4 | 6/12/2014  | 4.1    | 89      | 109     | <1     | <1     | 89                 | 5.9     | <1.8        | 91.2     |        |          | 5.6    |        |
| MW-4 | 8/12/2014  | 4.0    | 92      | 112     | <1     | <1     | 92                 | 6.0     | <1.8        | 82.8     |        |          | 6.9    |        |
| MW-4 | 10/14/2014 | 3.2    | 78      | 95      | <1     | <1     | 78                 | 6.5     | <1.8        | 75.2     |        |          | 6.7    |        |
| MW-4 | 6/17/2015  | 3.4    | 86      | 105     | <1     | <1     | 86                 | 6.0     | <1.8        |          |        |          |        |        |
| MW-4 | 9/9/2015   | 3.9    | 110     | 134     | <1     | <1     | 110                | 6.3     | <1.8        | 77.4     |        |          | 6.7    |        |
| MW-4 | 11/13/2015 | 11.4   | 78      | 95      | <1     | <1     | 78                 | 5.3     | <1.8        | 69.5     |        |          | 6.8    |        |
| MW-4 | 7/7/2016   | 3.6    | 22      | 27      | <1     | <1     | 22                 | 4.8     | <1.8        | 85.9     |        |          |        |        |
| MW-4 | 9/8/2016   | 3.4    | 92      | 112     | <10    | <10    | 92                 | 5.4     | <1.8        |          |        |          |        |        |
| MW-4 | 10/20/2016 | 3.4    | 75      | 91      | <10    | <10    | 75                 | 4.8     | 7.8         |          |        |          |        |        |
| MW-4 | 7/13/2017  | 3.3    | 86      | 104     | <1     | <1     | 86                 | 4.2     | <1.8        |          |        |          |        |        |
| MW-4 | 8/24/2017  | 3.7    | 240     | 292     | <1     | <1     | 240                | 5.8     | 130         |          |        |          |        |        |
| MW-4 | 9/28/2017  | 3.3    | 90      | 110     | <1     | <1     | 90                 | 5.4     | 13          | 77.4     |        |          |        |        |
| MW-4 | 6/28/2018  |        |         |         |        |        |                    |         |             |          |        |          |        |        |
| MW-4 | 8/22/2018  |        |         |         |        |        |                    |         |             |          |        |          |        |        |
| MW-4 | 10/10/2018 |        |         |         |        |        |                    |         |             |          |        |          |        |        |
| MW-4 | 7/17/2019  |        |         |         |        |        |                    |         |             |          |        |          |        |        |
| MW-4 | 8/28/2019  |        |         |         |        |        |                    |         |             |          |        |          |        |        |
| MW-4 | 10/2/2019  |        |         |         |        |        |                    |         |             |          |        |          |        |        |
| MW-4 | 6/10/2020  |        |         |         |        |        |                    |         |             |          |        |          |        |        |

MW-4

8/12/2020

|      |            |        |          |         |        |        | Total             |         |             |             |                 |                 |          | <b>A</b>    |
|------|------------|--------|----------|---------|--------|--------|-------------------|---------|-------------|-------------|-----------------|-----------------|----------|-------------|
|      |            |        | HCO3 as  | HCO3 as | CO3 as | OH as  | Alkalinit<br>y as |         | Fecal       | Hardness as | •               | ***Total        | Lab pH   | Ammo nia as |
|      |            | K      | CaCO3    | HCO3    | CaCO3  | CaCO3  | CaCO3             | Sulfate | Coliform    | CaCO3       | NO2-N           | Nitrogen        | (std     | NH3         |
| Well | Date       | (mg/L) | (mg/L)   | (mg/L)  | (mg/L) | (mg/L) | (mg/L)            | (mg/L)  | (MPN/100ml) | (mg/l)      | (mg/L)          | (mg/L)          | units)   | (mg/L)      |
| MW-4 | 10/14/2020 |        |          |         |        |        |                   |         |             |             |                 |                 |          |             |
| MW-4 | 6/9/2021   |        |          |         |        |        |                   |         |             |             |                 |                 |          |             |
| MW-4 | 8/11/2021  |        |          |         |        |        |                   |         |             |             |                 |                 |          |             |
| MW-4 | 10/20/2021 |        |          |         |        |        |                   |         |             |             |                 |                 |          |             |
| MW-5 | 9/1/2004   |        |          |         |        |        |                   |         | 17          |             | NR <sup>2</sup> | NR <sup>2</sup> | 6.6      | <0.50       |
| MW-5 | 10/13/2004 |        |          |         |        |        |                   |         | 2           |             | $NR^2$          | 2.0             | 6.8      |             |
| MW-5 | 8/11/2005  | 1.0    | 45       | 55      | <1     | <1     | 45                | 1.8     | <2          |             | <0.1            | 2.0             | 6.2      |             |
| MW-5 | 9/15/2005  | 3.0    | 51       | 62      | <1     | <1     | 51                | 2.0     | <2          |             | <0.1            | 0.1             | 7.6      |             |
| MW-5 | 10/13/2005 | 3.0    | 35       | 43      | <1     | <1     | 35                | 1.3     | <2          |             | <0.1            | 0.2             | 6.1      |             |
| MW-5 | 6/29/2006  | 2.0    | 25       | 30      | <1     | <1     | 25                | 0.7     | <2          |             | <0.1            | <1              | 5.4      |             |
| MW-5 | 8/2/2006   | 3.0    | 35       | 42      | <1     | <1     | 35                | 1.0     | <2          |             | <0.1            | <1              | 6.1      |             |
| MW-5 | 10/11/2006 | <1     | 45       | 55      | <1     | <1     | 45                | 1.7     | <2          |             | <0.1            | 1.0             | 6.0      |             |
| MW-5 | 7/12/2007  |        |          |         |        |        |                   |         |             |             |                 |                 | Well pun | nped dry    |
| MW-5 | 8/29/2007  |        |          |         |        |        |                   |         |             |             |                 |                 | •        | , ,         |
| MW-5 | 9/26/2007  |        |          |         |        |        |                   |         |             |             |                 |                 | Well pun | nped dry    |
| MW-5 | 7/8/2008   |        |          |         |        |        |                   |         |             |             |                 |                 | Well pun |             |
| MW-5 | 9/18/2008  |        |          |         |        |        |                   |         |             |             |                 |                 | •        | , ,         |
| MW-5 | 10/16/2008 |        |          |         |        |        |                   |         |             |             |                 |                 |          |             |
| MW-5 | 7/7/2009   | 2.0    | 45       | 55      | <1     | <1     | 45                | 2.7     | <2          |             | <0.2            | <1              | 6.5      |             |
| MW-5 | 9/30/2009  | 2.0    | NS       | NS      | NS     | NS     | NS                | 2.5     | NS          |             | 0.2             | NS              | 7.5      | well pun    |
| MW-5 | 10/26/2009 |        |          |         |        |        |                   |         |             |             |                 |                 |          | •           |
| MW-5 | 7/13/2010  | 3.0    | 35       | 43      | <1     | <1     | 35                | <0.5    | <2          |             | <0.1            | <1              | 6.0      |             |
| MW-5 | 8/24/2010  | 1.0    | 37       | 45      | <1     | <1     | 37                | <0.5    | <2          |             | <0.1            | <1              | 6.7      |             |
| MW-5 | 11/4/2010  | 2.0    | 41       | 50      | <1     | <1     | 41                | <0.5    | <2          |             | <0.1            | <1              | 6.1      |             |
| MW-5 | 7/21/2011  | 1.9    | 27       | 33      | <1     | <1     | 27                | <0.5    | <2          |             | <0.1            | <1              | 4.9      |             |
| MW-5 | 9/8/2011   | 2.2    | 43       | 52      | <1     | <1     | 43                | <0.5    | <2          |             | <0.1            | 1.0             | 6.5      |             |
| MW-5 | 10/20/2011 | 2.2    | 38       | 46      | <1     | <1     | 38                | 1.7     | <2          |             | <0.1            | <1              | 6.0      |             |
| MW-5 | 6/26/2012  | 4.6    | 39       | 48      | <1     | <1     | 39                | 1.0     | IVS         | 39.8        | <0.1            | 0.1             | 6.9      |             |
| MW-5 | 7/31/2012  | 2.4    | 39       | 48      | <1     | <1     | 39                | 2.1     | <1.8        |             | < 0.2           | <1              | 6.3      |             |
| MW-5 | 10/9/2012  |        |          |         |        |        |                   |         |             |             |                 |                 |          |             |
| MW-5 | 5/30/2013  | 1.5    | 38       | 46      | <1     | <1     | 38                | 0.9     | IVS         | 27.6        | <0.2            | <1              | 6.0      | well pun    |
| MW-5 | 8/21/2013  | 1.7    | 26       | 32      | <1     | <1     | 26                | 0.8     | <1.8        | 25.2        | <0.2            | <1              | 6.0      |             |
| MW-5 | 10/15/2013 | 2.4    | 33       | 40      | <1     | <1     | 33                | 2.7     | <1.8        | 27.3        | <0.2            | <1              | 8.1      |             |
| MW-5 | 6/12/2014  | 2.4    | 36       | 44      | <1     | <1     | 36                | 1.0     | <1.8        | 29.8        | V               | •               | 5.8      |             |
| MW-5 | 8/12/2014  | 3.2    | 46       | 56      | <1     | <1     | 46                | 1.2     | <1.8        | 41.1        |                 |                 | 5.6      |             |
| MW-5 | 10/14/2014 | V      |          |         | •      | ·      |                   |         |             |             |                 |                 | 0.0      |             |
| MW-5 | 6/17/2015  | 2.6    | 42       | 51      | <1     | <1     | 42                | 1.1     | <1.8        |             |                 |                 |          |             |
| MW-5 | 9/9/2015   | 3.3    | 46       | 56      | <1     | <1     | 46                | 1.2     | IVS         | 39.9        |                 |                 | 7.0      |             |
| MW-5 | 11/12/2015 | 1.4    | 42       | 51      | <1     | <1     | 42                | 1.0     | IVS         | 39.1        |                 |                 |          |             |
| MW-5 | 7/7/2016   | 3.2    | 46       | 56      | <1     | <1     | 46                | 1.0     | <1.8        | 59.5        |                 |                 |          |             |
| MW-5 | 9/8/2016   | 0.2    | 10       | 00      | •      | •      | .0                | 1.0     | 1.0         | 00.0        |                 |                 |          |             |
| MW-5 | 10/20/2016 |        |          |         |        |        |                   |         |             |             |                 |                 |          |             |
| MW-5 | 7/13/2017  |        |          |         |        |        |                   |         |             |             |                 |                 |          |             |
| MW-5 | 8/24/2017  | 3.2    | 58       | 71      | <1     | <1     | 58                | 1.0     | <1.8        |             |                 |                 |          |             |
| MW-5 | 9/28/2017  | 2.9    | 34       | 41      | <1     | <1     | 34                | 1.0     | <1.8        | 34.8        |                 |                 |          |             |
| MW-5 | 6/29/2018  | 2.0    | <b>0</b> |         | - 1    | - 1    | O r               | 1.0     | -1.0        | 51.0        |                 |                 |          |             |

|      |            | Total    |         |         |        |                |               |         |                   | Handraga    |         |                      |                |               |  |
|------|------------|----------|---------|---------|--------|----------------|---------------|---------|-------------------|-------------|---------|----------------------|----------------|---------------|--|
|      |            |          | HCO2 00 | HCO2 00 | CO2 00 | OU 00          | Alkalinit     |         | Food              | Hardness    |         | ***Total             | l ab nU        | Ammo          |  |
|      |            | K        | CaCO3   | HCO3 as | Cos as | OH as<br>CaCO3 | y as<br>CaCO3 | Sulfate | Fecal<br>Coliform | as<br>CaCO3 | NO2-N   | ***Total<br>Nitrogen | Lab pH<br>(std | nia as<br>NH3 |  |
| Well | Date       | (mg/L)   | (mg/L)  | (mg/L)  | (mg/L) | (mg/L)         | (mg/L)        | (mg/L)  | (MPN/100ml)       | (mg/l)      | (mg/L)  | (mg/L)               | units)         | (mg/L)        |  |
| MW-5 | 8/23/2018  | <u> </u> | , ,     | , ,     |        | · · · ·        |               | · • ·   |                   | , , ,       |         | · · · ·              | •              | <u> </u>      |  |
| MW-5 | 10/10/2018 |          |         |         |        |                |               |         |                   |             |         |                      |                |               |  |
| MW-5 | 7/18/2019  |          |         |         |        |                |               |         |                   |             |         |                      |                |               |  |
| MW-5 | 8/29/2019  |          |         |         |        |                |               |         |                   |             |         |                      |                |               |  |
| MW-5 | 10/3/2019  |          |         |         |        |                |               |         |                   |             |         |                      |                |               |  |
| MW-5 | 6/11/2020  |          |         |         |        |                |               |         |                   |             |         |                      |                |               |  |
| MW-5 | 8/13/2020  |          |         |         |        |                |               |         |                   |             |         |                      |                |               |  |
| MW-5 | 10/15/2020 |          |         |         |        |                |               |         |                   |             |         |                      |                |               |  |
| MW-5 | 6/10/2021  |          |         |         |        |                |               |         |                   |             |         |                      |                |               |  |
| MW-5 | 8/12/2021  |          |         |         |        |                |               |         |                   |             |         |                      |                |               |  |
| MW-5 | 10/21/2021 |          |         |         |        |                |               |         |                   |             |         |                      |                |               |  |
|      |            |          |         |         |        |                |               |         | 2                 |             |         | 2                    |                |               |  |
| MW-6 | 10/30/2002 |          |         |         |        |                |               |         | $NR^2$            |             | <0.020  | $NR^2$               |                | <0.50         |  |
| MW-6 | 7/29/2003  |          |         |         |        |                |               |         | <2                |             | $NR^2$  | $NR^2$               | 6.5            | <0.2          |  |
| MW-6 | 11/13/2003 |          |         |         |        |                |               |         | $NR^2$            |             | <0.050* | $NR^2$               | 6.7            | **            |  |
| MW-6 | 6/22/2004  |          |         |         |        |                |               |         | <2                |             | $NR^2$  | $NR^2$               | 7.0            | < 0.50        |  |
| MW-6 | 9/1/2004   |          |         |         |        |                |               |         | <2                |             | $NR^2$  | $NR^2$               | 7.0            | < 0.50        |  |
| MW-6 | 10/13/2004 |          |         |         |        |                |               |         | <2                |             | $NR^2$  | <1.1                 | 7.6            |               |  |
| MW-6 | 8/11/2005  | 5.0      | 250     | 305     | <1     | <1             | 250           | 1.8     | <2                |             | <0.1    | <1                   | 7.3            |               |  |
| MW-6 | 9/15/2005  | 4.0      | 240     | 293     | <1     | <1             | 240           | 1.9     | <2                |             | <0.1    | 1.2                  | 7.0            |               |  |
| MW-6 | 10/13/2005 | 4.0      | 240     | 292     | <1     | <1             | 240           | 1.8     | <2                |             | <0.1    | 0.2                  | 7.3            |               |  |
| MW-6 | 6/29/2006  | <1       | 230     | 280     | <1     | <1             | 230           | 1.8     | <2                |             | <0.1    | <1                   | 6.8            |               |  |
| MW-6 | 8/2/2006   | 3.0      | 230     | 280     | <1     | <1             | 230           | 1.6     | <2                |             | <0.1    | <1                   | 6.8            | <1            |  |
| MW-6 | 10/10/2006 | <1       | 250     | 304     | <1     | <1             | 250           | 1.9     | <2                |             | <0.1    | <1                   | 7.0            | ·             |  |
| MW-6 | 7/12/2007  | 6.0      | 233     | 284     | <1     | <1             | 233           | 1.9     | <2                |             | <0.1    | <1                   | 7.1            |               |  |
| MW-6 | 8/29/2007  | 4.3      | 260     | 317     | <1     | <1             | 260           | 2.1     | 7                 |             | <0.1    | <1                   | 7.3            |               |  |
| MW-6 | 9/26/2007  | 5.0      | 260     | 317     | <1     | <1             | 260           | 1.7     | <2                |             | <0.1    | <1                   | 7.3            |               |  |
| MW-6 | 7/8/2008   | 4.0      | 236     | 288     | <1     | <1             | 236           | 1.9     | <2                |             | <0.1    | <1                   | 7.2            |               |  |
| MW-6 | 9/18/2008  | 4.0      | 270     | 329     | <1     | <1             | 270           | 2.1     | <2                |             | <0.1    | <1                   | 7.1            |               |  |
| MW-6 | 10/16/2008 | 4.0      | 270     | 329     | <1     | <1             | 270           | 1.9     | <2                |             | <0.1    | <0.1                 | 7.7            |               |  |
| MW-6 | 7/7/2009   | 4.0      | 260     | 317     | <1     | <1             | 260           | 3.2     | <2                |             | <0.2    | <1                   | 7.2            |               |  |
| MW-6 | 9/30/2009  | 5.0      | 260     | 317     | <1     | <1             | 260           | 2.6     | <2                |             | <0.1    | <1                   | 7.0            |               |  |
| MW-6 | 10/26/2009 | 4.0      | 250     | 305     | <1     | <1             | 250           | 3.2     | <2                |             | <0.1    | <1                   | 7.6            |               |  |
| MW-6 | 7/13/2010  | 4.0      | 250     | 305     | <1     | <1             | 250           | < 0.5   | <2                |             | <0.1    | <1                   | 6.8            |               |  |
| MW-6 | 8/24/2010  | 3.0      | 230     | 280     | <1     | <1             | 230           | <0.5    | <2                |             | <0.1    | <1                   | 6.7            |               |  |
| MW-6 | 11/4/2010  | 2.0      | 230     | 281     | <1     | <1             | 230           | 2.9     | <2                |             | <0.1    | <1                   | 6.5            |               |  |
| MW-6 | 7/21/2011  | 4.3      | 270     | 329     | <1     | <1             | 270           | 2.3     | <2                |             | <0.1    | <1                   | 7.0            |               |  |
| MW-6 | 9/8/2011   | 3.5      | 270     | 329     | <1     | <1             | 270           | < 0.5   | <2                |             | <0.1    | <1                   | 7.0            |               |  |
| MW-6 | 10/20/2011 | 3.7      | 190     | 232     | <1     | <1             | 190           | <0.5    | <2                |             | <0.1    | <1                   | 6.6            |               |  |
| MW-6 | 6/26/2012  | 3.7      | 230     | 280     | <1     | <1             | 230           | 1.9     | <1.8              | 236         | <0.1    | <1                   | 6.8            |               |  |
| MW-6 | 7/31/2012  | 3.8      | 260     | 317     | <1     | <1             | 260           | 3.0     | <1.8              |             | <0.2    | <1                   | 6.8            |               |  |
| MW-6 | 10/9/2012  | 4.1      | 290     | 354     | <1     | <1             | 290           | 2.0     | <1.8              |             | <0.2    | <1                   | 6.7            |               |  |
| MW-6 | 5/30/2013  | 3.3      | 190     | 232     | <1     | <1             | 190           | 2.8     | <1.8              | 154         | <0.2    | <1                   | 6.5            |               |  |
| MW-6 | 8/21/2013  | 3.9      | 250     | 305     | <1     | <1             | 250           | 2.0     | <1.8              | 191         | <0.2    | <1                   | 6.5            |               |  |
| MW-6 | 10/15/2013 | 4.4      | 270     | 329     | <1     | <1             | 270           | 3.1     | <1.8              | 257         | <0.2    | <1                   | 6.3            |               |  |
|      | 6/12/2014  | 4.6      | 260     | 317     | <1     | <1             | 260           | 3.0     | <1.8              | 218         |         |                      | 5.9            |               |  |

| Well           | Date       | K<br>(mg/L) | HCO3 as<br>CaCO3<br>(mg/L) | HCO3 as<br>HCO3<br>(mg/L) | CO3 as<br>CaCO3<br>(mg/L) | OH as<br>CaCO3<br>(mg/L) | Total Alkalinit y as CaCO3 (mg/L) | Sulfate<br>(mg/L) | Fecal<br>Coliform<br>(MPN/100ml) | Hardness<br>as<br>CaCO3<br>(mg/l) | NO2-N<br>(mg/L) | ***Total<br>Nitrogen<br>(mg/L) | Lab pH<br>(std<br>units) | Ammo<br>nia as<br>NH3 |
|----------------|------------|-------------|----------------------------|---------------------------|---------------------------|--------------------------|-----------------------------------|-------------------|----------------------------------|-----------------------------------|-----------------|--------------------------------|--------------------------|-----------------------|
| MW-6           | 8/12/2014  | 4.9         | 310                        | 378                       | (IIIg/L)<br><1            | (III <b>g/L)</b><br><1   | 310                               | 3.1               | <1.8                             | 248                               | (IIIg/L)        | (IIIg/L)                       | 5.7                      | (mg/L)                |
| MW-6           | 10/14/2014 | 4.3         | 280                        | 341                       | <1                        | <1                       | 280                               | 2.0               | <1.8                             | 240                               |                 |                                | 6.5                      |                       |
| MW-6           | 6/17/2015  | 2.4         | 190                        | 231                       | <1                        | <1                       | 190                               | 1.6               | <1.8                             | 241                               |                 |                                | 0.5                      |                       |
| MW-6           | 9/9/2015   | 3.3         | 250                        | 305                       | <1                        | <1                       | 250                               | 1.8               | <1.8                             | 199                               |                 |                                | 6.5                      |                       |
| MW-6           | 11/12/2015 | 1.4         | 90                         | 110                       | <1                        | <1                       | 90                                | 0.8               | <1.8                             | 84                                |                 |                                | 6.2                      |                       |
| MW-6           | 7/7/2016   | 2.6         | 170                        | 207                       | <1                        | <1                       | 170                               | 1.2               | <1.8                             | 140                               |                 |                                | 0.2                      |                       |
| MW-6           | 9/8/2016   | 3.3         | 226                        | 276                       | <10                       | <10                      | 226                               | 1.7               | <1.8                             |                                   |                 |                                |                          |                       |
| MW-6           | 10/20/2016 | 2.9         | 183                        | 223                       | <10                       | <10                      | 183                               | 1.8               | <1.8                             |                                   |                 |                                |                          |                       |
| MW-6           | 7/13/2017  | 3.0         | 190                        | 231                       | <1                        | <1                       | 190                               | 1.4               | <1.8                             |                                   |                 |                                |                          |                       |
| MW-6           | 8/24/2017  | 1.9         | 120                        | 146                       | <1                        | <1                       | 120                               | 0.9               | <1.8                             |                                   |                 |                                |                          |                       |
| MW-6           | 9/28/2017  | 1.3         | 80                         | 98                        | <1                        | <1                       | 80                                | 0.7               | <1.8                             | 64.4                              |                 |                                |                          |                       |
| MW-6           | 6/29/2018  | 1.0         | 00                         | 00                        | • • •                     | *1                       | 00                                | 0.7               | 11.0                             | 04.4                              |                 |                                |                          |                       |
| MW-6           | 8/23/2018  |             |                            |                           |                           |                          |                                   |                   |                                  |                                   |                 |                                |                          |                       |
| MW-6           | 10/10/2018 |             |                            |                           |                           |                          |                                   |                   |                                  |                                   |                 |                                |                          |                       |
| MW-6           | 7/18/2019  |             |                            |                           |                           |                          |                                   |                   |                                  |                                   |                 |                                |                          |                       |
| MW-6           | 8/29/2019  |             |                            |                           |                           |                          |                                   |                   |                                  |                                   |                 |                                |                          |                       |
| MW-6           | 10/3/2019  |             |                            |                           |                           |                          |                                   |                   |                                  |                                   |                 |                                |                          |                       |
| MW-6           | 6/11/2020  |             |                            |                           |                           |                          |                                   |                   |                                  |                                   |                 |                                |                          |                       |
| MW-6           | 8/13/2020  |             |                            |                           |                           |                          |                                   |                   |                                  |                                   |                 |                                |                          |                       |
| MW-6           | 10/15/2020 |             |                            |                           |                           |                          |                                   |                   |                                  |                                   |                 |                                |                          |                       |
| MW-6           | 6/10/2021  |             |                            |                           |                           |                          |                                   |                   |                                  |                                   |                 |                                |                          |                       |
| MW-6           | 8/12/2021  |             |                            |                           |                           |                          |                                   |                   |                                  |                                   |                 |                                |                          |                       |
| MW-6           | 10/21/2021 |             |                            |                           |                           |                          |                                   |                   |                                  |                                   |                 |                                |                          |                       |
| Discharge Pump | 8/11/2005  | 3.0         | 40                         | 49                        | <1                        | <1                       | 40                                | 3.6               | <2                               |                                   | <0.1            | 12.0                           | 6.7                      |                       |
| Discharge Pump | 9/15/2005  | 5.0         | 61                         | 74                        | <1                        | <1                       | 61                                | 6.1               | 1700                             |                                   | 0.8             | 9.9                            | 6.9                      |                       |
| Discharge Pump | 10/13/2005 | 6.0         | 76                         | 93                        | <1                        | <1                       | 76                                | 7.2               | 22                               |                                   | 0.3             | 15.0                           | 7.2                      |                       |
| Discharge Pump | 6/29/2006  | 7.0         | 55                         | 67                        | <1                        | <1                       | 55                                | 3.4               | <2                               |                                   | <0.1            | 8.0                            | 6.4                      |                       |
| Discharge Pump | 8/2/2006   | 6.0         | 70                         | 85                        | <1                        | <1                       | 70                                | 4.2               | <2                               |                                   | <0.1            | 12.1                           | 6.9                      |                       |
| Discharge Pump | 10/11/2006 | <1          | 70                         | 85                        | <1                        | <1                       | 70                                | 5.6               | 4                                |                                   | 0.1             | 12.8                           | 7.1                      |                       |
| Discharge Pump | 7/12/2007  | 6.0         | 52.8                       | 64                        | <1                        | <1                       | 52.8                              | 3.6               | 2                                |                                   | <0.1            | 6.5                            | 7.2                      |                       |
| Discharge Pump | 7/8/2008   | 6.0         | 75                         | 91                        | <1                        | <1                       | 75                                | 4.9               | 6                                |                                   | <0.1            | <1                             | 7.3                      |                       |
| Discharge Pump | 9/18/2008  | 5.0         | 28                         | 34                        | <1                        | <1                       | 28                                | 6.7               | 30                               |                                   | <0.1            | <1                             | 8.9                      |                       |
| Discharge Pump | 10/16/2008 | 7.0         | 15                         | 18                        | <1                        | <1                       | 15                                | 85.0              | 13                               |                                   | <0.1            | 5.5                            | 7.9                      |                       |
| Discharge Pump | 7/7/2009   | 6.0         | 95                         | 116                       | <1                        | <1                       | 95                                | 7.3               | 11                               |                                   | <0.2            | 14.0                           | 7.2                      |                       |
| Treatment Pond | 8/11/2005  | 5.0         | 30                         | 37                        | <1                        | <1                       | 30                                | 1.0               | 1300                             |                                   | <0.1            | 14.0                           | 8.5                      |                       |
| Treatment Pond | 9/15/2005  | 6.0         | 66                         | 81                        | <1                        | <1                       | 66                                | 6.1               | >3000                            |                                   | 8.0             | 12.9                           | 7.1                      |                       |
| Treatment Pond | 10/13/2005 | 6.0         | 76                         | 93                        | <1                        | <1                       | 76                                | 7.2               | 1300                             |                                   | 0.3             | 17.0                           | 7.3                      |                       |
| Treatment Pond | 6/29/2006  | 5.0         | 55                         | 67                        | <1                        | <1                       | 55                                | 3.7               | 17                               |                                   | <0.1            | 9.1                            | 6.9                      |                       |
| Treatment Pond | 8/2/2006   | 5.0         | 75                         | 91                        | <1                        | <1                       | 75                                | 4.2               | 700                              |                                   | 0.1             | 13.2                           | 7.2                      |                       |
| Treatment Pond | 10/11/2006 | <1          | 110                        | 134                       | <1                        | <1                       | 110                               | 6.7               | 2800                             |                                   | 0.2             | 20.3                           | 7.3                      |                       |
| Treatment Pond | 7/12/2007  | 8.0         | 90.8                       | 111                       | <1                        | <1                       | 90.8                              | 4.4               | 1100                             |                                   | 0.1             | 18.4                           | 7.6                      |                       |
| Treatment Pond | 7/8/2008   | 7.0         | 50                         | 61                        | <1                        | <1                       | 50                                | 5.4               | 30                               |                                   | 0.2             | 14.6                           | 7.8                      |                       |
| Treatment Pond | 9/18/2008  | 10.0        | 190                        | 231                       | <1                        | <1                       | 190                               | 6.8               | 16000                            |                                   | 0.4             | 23.1                           | 8.0                      |                       |
| Treatment Pond | 10/16/2008 | 10.0        | 130                        | 159                       | <1                        | <1                       | 130                               | 7.7               | 2400                             |                                   | 0.1             | 24.5                           | 7.6                      |                       |
| Treatment Pond | 7/7/2009   | 6.0         | 75                         | 91                        | <1                        | <1                       | 75                                | 6.8               | 700                              |                                   | 0.7             | 13.7                           | 7.9                      |                       |

|                         |           |             |                            |                           |                           |                          | Total<br>Alkalinit      |                   |                                  |                                   |                 | Ammo                           |                          |  |
|-------------------------|-----------|-------------|----------------------------|---------------------------|---------------------------|--------------------------|-------------------------|-------------------|----------------------------------|-----------------------------------|-----------------|--------------------------------|--------------------------|--|
| Well                    | Date      | K<br>(mg/L) | HCO3 as<br>CaCO3<br>(mg/L) | HCO3 as<br>HCO3<br>(mg/L) | CO3 as<br>CaCO3<br>(mg/L) | OH as<br>CaCO3<br>(mg/L) | y as<br>CaCO3<br>(mg/L) | Sulfate<br>(mg/L) | Fecal<br>Coliform<br>(MPN/100ml) | Hardness<br>as<br>CaCO3<br>(mg/l) | NO2-N<br>(mg/L) | ***Total<br>Nitrogen<br>(mg/L) | Lab pH<br>(std<br>units) |  |
| Bloods Creek Upstream   | 8/11/2005 | <1          | 30                         | 37                        | <1                        | <1                       | 30                      | 0.5               | 80                               |                                   | <0.1            | 2.0                            | 7.0                      |  |
| Bloods Creek Upstream   | 6/20/2006 | <1          | 10                         | 12                        | <1                        | <1                       | 10                      | < 0.5             | <2                               |                                   | <0.1            | <1                             | 6.3                      |  |
| Bloods Creek Upstream   | 7/12/2007 | 2.0         | 25.6                       | 31                        | <1                        | <1                       | 25.6                    | 0.5               | 8                                |                                   | <0.1            | <1                             | 7.0                      |  |
| Bloods Creek Upstream   | 7/8/2008  | 2.0         | 24                         | 29                        | <1                        | <1                       | 24                      | < 0.5             | 13                               |                                   | <0.1            | <1                             | 7.1                      |  |
| Bloods Creek Upstream   | 7/7/2009  | 1.0         | 15                         | 18                        | <1                        | <1                       | 15                      | 2.1               | 50                               |                                   | <0.2            | <1                             | 6.8                      |  |
| Bloods Creek Downstream | 8/11/2005 | 6.0         | 81                         | 99                        | <1                        | <1                       | 81                      | 1.0               | 130                              |                                   | <0.1            | 2.0                            | 6.8                      |  |
| Bloods Creek Downstream | 6/20/2006 | <1          | 15                         | 18                        | <1                        | <1                       | 15                      | < 0.5             | 2                                |                                   | <0.1            | <1                             | 6.3                      |  |
| Bloods Creek Downstream | 7/12/2007 | 6.0         | 30                         | 37                        | <1                        | <1                       | 30                      | 0.7               | 50                               |                                   | <0.1            | <1                             | 6.9                      |  |
| Bloods Creek Downstream | 7/8/2008  | 1.0         | 25                         | 30                        | <1                        | <1                       | 25                      | 0.6               | 130                              |                                   | <0.1            | <1                             | 7.1                      |  |
| Bloods Creek Downstream | 7/7/2009  | 1.0         | 30                         | 37                        | <1                        | <1                       | 30                      | 2.2               | 13                               |                                   | <0.2            | <1                             | 7.2                      |  |