Attn: Harold Hold (916) 464-4676 Central Valley Regional Water Quality Control Board 11020 Sun Center Drive #200 Rancho Cordova, CA 95670-6114

Discharger:	Bear Valley Water District
Name of Facility:	Bear Valley Wastewater Treatment and Disposal Facility
WDRs Order Number:	5-201-208
County:	Alpine County
Regulator Program:	Waste Discharge to Land (Non15)
Unit:	Compliance
CIWQS Place ID:	209035

The <u>Bear Valley Water District</u> is hereby submitting to the Central Valley Regional Water Quality Control Board the following information:

Check all that apply:

Annual Monitoring Report for the year _____

1st / 2nd / 3rd / 4th (circle one) Quarterly Monitoring Report for the year of_____

1st / 2ⁿ (/3rd) (circle one) Tri-annual Monitoring Report for the year <u>2015</u>

Monthly Monitoring Report for the year _____

Violation Notification

During the monitoring period, there were (were not (circle one) any violations of the WDRs.

- 1. The violations were: See attached report
- 2. The actions to correct the violations were: **See attached report**

Certification Statement

"I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment."

Signature:

Phone: 209-753-2112

Printed Name: Jeff Gouveia General Manager Date: January 28, 2016

Bear Valley Water District – Third Tri-Annual 2015 Groundwater Monitoring Report

Prepared for: Bear Valley Water District PO Box 5027 Bear Valley, California 95223

Prepared by: Stantec Consulting Services Inc. 1340 Treat Boulevard, Suite 300 Walnut Creek, California 94597

January 28, 2016

Table of Contents

1.0	EXECUTIVE SUMMARY	1.1
 2.0 2.1 2.2 2.3 2.4 	INTRODUCTION AND BACKGROUND INTRODUCTION BACKGROUND GEOLOGY SOILS	2.1 2.1 2.3 2.3 2.3 2.3
2.1	 2.4.1 Ridge Top 2.4.2 Ridge Side 2.4.3 Valley Floor 2.4.4 Field Observations 	2.3 2.3 2.4 2.4 2.4 2.4
3.0 3.1 3.2 3.3	GROUNDWATER REGULATORY REQUIREMENTS	3.1 3.1 3.1 3.2
4.0 4.1 4.2 4.3	GROUNDWATER MONITORING RESULTSMONITORING SUMMARYGROUNDWATER ELEVATIONS, GRADIENTS, AND FLOW DIRECTIONGROUNDWATER QUALITY4.3.1Compliance Monitoring Well MW-14.3.2Background Monitoring Well MW-24.3.3Compliance Monitoring Well MW-34.3.4Compliance Monitoring Well MW-44.3.5Compliance Monitoring Well MW-54.3.6Compliance Monitoring Well MW-6	4.1 4.2 4.4 4.6 4.7 4.7 4.8 4.8
5.0 5.1 5.2 5.3 5.4 5.5	BACKGROUND GROUNDWATER QUALITY STATISTICAL ANALYSIS INTRODUCTION OUTLIER ANALYSIS NORMALITY TEST SITE SPECIFIC GROUNDWATER LIMITATIONS ANTI-DEGRADATION ASSESSMENT	5.1 5.1 5.3 5.3 5.3
6.0	SUMMARY AND CONCLUSIONS	6.1
7.0	PROFESSIONAL SEALS AND CERTIFICATIONS	7.1
LIST C	OF TABLES	

Table 1 Regional Board Interim Groundwater Limitations	3.3
Table 2 Groundwater Monitoring Requirements	4.1
Table 3 Third Tri-Annual 2015 Groundwater Quality Summary	4.2
Table 4 Groundwater Elevation Summary	4.3

Table 5 2015 Statistical Assessment of Background Groundwater Quality	5.3
Table 6 2015 Recommended Site Specific Groundwater Limitations	5.4
Table 7 2015 Groundwater Monitoring Compliance Summary	5.5

LIST OF FIGURES

Figure 1 Third Tri-Annual 2015 Groundwater Elevation Contour Map	2.2
Figure 2 Groundwater Elevation Time Series Chart	4.4
Figure 3 TDS Time Series Chart	4.5
Figure 4 Chloride Time Series Chart	4.5

LIST OF APPENDICES

APPENDIX A	GROUNDWATER MONITORING PROTOCOL
APPENDIX B	THIRD TRI-ANNUAL 2015 ANALYTICAL RESULTS AND FIELD LOGS
APPENDIX C	HISTORICAL GROUNDWATER ELEVATIONS AND QUALITY

Executive Summary January 28, 2016

1.0 Executive Summary

- Groundwater elevation monitoring during the third tri-annual monitoring event of 2015 indicates flow that was roughly perpendicular to site topography and generally towards to the west and northwest at a horizontal gradient ranging from 0.061 to 0.074;
- Groundwater quality monitoring indicates pH (MW-2, MW-3, and MW-6), manganese (MW-1, MW-2, and MW-6), and total coliform organisms (MW-1 and MW-2) exceeded water quality goals for agricultural or potable use during the third tri-annual monitoring event. Note that there was an insufficient volume of water available to sample MW-5 for total and fecal coliform organisms;
- Revised background statistics were computed and the site specific groundwater limitations updated. Of all the constituents assessed tri-annually in 2015, only manganese (MW-6) was present at concentrations that may be considered above background, at statistically significant levels. Conditions that naturally favor manganese mobilization are present in shallow groundwater in the area, including acidic soils and naturally low pH, thus these exceedances should not be considered as irrefutable proof that an impact has occurred;
- All of the other parameters statistically assessed, including salts such as sodium, chloride, TDS, EC, and nitrate, as well as total coliform, were in compliance with site specific groundwater limitations, indicating further compliance with State's Anti-Degradation Policy;
- It is important to note that as only one background well exists and thus computed background statistics cannot reasonably account for natural special variations in water chemistry common in shallow groundwater systems. Furthermore, surface water from a nearby stream may influence groundwater quality due to its close proximity to the shallow background monitoring well; and,
- Lack of a groundwater monitoring network that adequately accounts for spatial variations in background groundwater quality remains the most significant monitoring deficiency at the wastewater treatment and disposal facility.

Introduction and Background January 28, 2016

2.0 Introduction and Background

2.1 INTRODUCTION

The Bear Valley Water District (District) provides sanitary sewer collection, treatment and disposal for approximately 600 residential and commercial connections in the Alpine County community of Bear Valley, including the Lake Alpine basin area and the Mt. Reba Ski Area. The District's service area is primarily north of State Highway 4 serving the developed private lands in the Bear Valley village area and US Forest Service campgrounds and special use permitted areas. The District wastewater treatment and disposal facility (WWTF) is regulated by the Central Valley Regional Water Quality Control Board (Regional Board) and the Regional Board's Waste Discharge Requirements Order No. R5-2005-0139 and Order No. 5-01-208 (WDRs). The WWTF is located south of Highway 4 and is shown in Figure 1.

The District's WDRs contain monitoring and reporting requirements, which include tri-annual monitoring of groundwater. This report presents groundwater monitoring data obtained during the third tri-annual monitoring event, which was conducted on October 14, 2015 and satisfies the Tri-Annual Groundwater Monitoring Report reporting requirements as specified in the District's Revised Monitoring and Reporting Program for WDR Order No. R5-2005-0139 (MRP). The revised MRP states that groundwater monitoring reports shall be submitted "by the 1st day of February, July, and September of each year", corresponding to combined annual/third tri-annual, first tri-annual, and second tri-annual reporting periods, respectively. It should be noted that these reporting periods do not correspond to climate and related environmental conditions that prohibit site access and well sampling during certain times of the year and therefore the actual report submittal may vary from that which is stipulated in the MRP.

Regional Board staff's recognition of these climate controls was memorialized in the *July 31*, *2012* email correspondence. In summary, that correspondence stated that Regional Board staff will not recommend enforcement to the Executive Officer so long as the 1st and 2nd tri-annual monitoring reports are submitted by September 1st and November 1st of each year, respectively, instead of the dates currently required in the MRP. The third tri-annual report remains due by February 1st. Although Regional Board staff have informally agreed to extend tri-annual monitoring report due dates by not seeking enforcement (provided the 1st and 2nd tri-annual reports are submitted by September 1st and November 1st, respectively), we further recommend that Regional Board staff formally memorialize these changes in the MRP at their earliest convenience, in order to assure further violations and potential related enforcement actions against the District do not occur.

Introduction and Background January 28, 2016

Figure 1 Third Tri-Annual 2015 Groundwater Elevation Contour Map

Introduction and Background January 28, 2016

2.2 BACKGROUND

An average flow of 0.04 million gallons per day (MGD) entered the District WWTF during the 2014-2015 water year, which was then treated in a series of aerated treatment ponds where the biodegradable constituents are consumed and/or sequestered. Effluent from the aerated ponds was then stored in a 106 MG reservoir (effluent storage pond) or applied directly to land (summer months only). During the summer months, the stored effluent may be disposed of through spray irrigation to approximately 120 acres of permitted land, including approximately 80 acres of leased land and approximately 40 acres of land authorized by a Special Use Permit from the US Forest Service. Of the 120 gross acres of land, approximately 80 acres (40 from each disposal area) are currently suitable and/or used for effluent disposal purposes. The leased disposal area and permitted US Forest Service land have been in service before the installation of the groundwater monitoring wells (approximately 25 years for the leased land) at the site.

Effluent disposal via spray irrigation involves the disbursement of the effluent through low impact sprinklers upon soils and vegetation within the disposal area. The water is allowed to percolate into the soil and evapotranspirate into the atmosphere. The WDRs currently limit influent flow to 0.1 MGD (annual average basis) and limit application of wastewater to reasonable rates considering soil, climate and the irrigation management system.

2.3 GEOLOGY

The District's WWTF is located west of the Sierra crest along Bloods Creek, a tributary of the North Fork of the Stanislaus River. The elevations range from 7080 ft (msl) at the treatment pond to 7480 ft (msl) at the ballast pond on top of the ridge, east of the treatment and storage ponds. The geologic map for the Sacramento quadrangle (Wagner, Jennings, Bedrossian and Bortugno, 1981) indicates that Mesozoic granites underlie the area. This was confirmed by the presence of numerous granite outcrops in the meadows and at the base of the ridge. The map also shows traces of the Tertiary Mehrten Formation, described as an andesitic conglomerate, sandstone, and breccia. Although a competent outcrop of andesitic rock was not observed, the ridge does contain numerous andesitic fragments, produced by parent rock weathering. Just below the eastern side of the ridge crest are numerous large granite boulders, potentially representing glacial transport and deposition.

2.4 SOILS

The following soil descriptions are taken from the 1981 U.S. Forest Service soil survey of the Stanislaus National Forest. The descriptions are in agreement with field observations at the site and include the following:

2.4.1 Ridge Top

The soil along the southern end of the ridge top is classified as a lithic cryumbrept. This soil is described as a tan, moderately acid, loam about 5 inches thick, and containing no substantive

Introduction and Background January 28, 2016

subsoil. Rock content can range up to 60 percent from the substratum of fractured hard andesitic tuff or tuff-breccia. The soil has excessive drainage with moderately rapid permeability and a very high maximum erosion hazard. The soil supports basin sagebrush, mule's ear, perennial grasses, and scattered lodgepole pine.

2.4.2 Ridge Side

The soil along the disposal area, on the west side of the ridge, is classified as a gerle family generally found on 5 to 35 percent slopes. The surface soil is described as a dark gray, slightly acid, sandy loam, about 10 inches thick. The subsoil is described as a moderately acid, light brownish gray, sandy loam. The substratum is extremely stony (rock content can exceed 35%) consisting of glacial debris derived from granitic parent rocks. Additionally, the soil has excessive drainage, rapid permeability, and a moderate to high maximum erosion hazard, typically supporting mixed conifer forests.

2.4.3 Valley Floor

The valley floor soil, north of and below the treatment pond, is classified as an entic cryumbrept and described as a brown, moderately acid loam, sandy loam, and loamy sand, about 40 inches in thickness. The substratum is recent alluvium from granitic rocks and is well drained with moderately rapid to rapid permeability. It supports annual grasses, perennial grasses or sedge, and brush.

2.4.4 Field Observations

There is a good correlation between the topography of the disposal area and soil development and thickness. Mass wasting and in place weathering/deposition created a soil continuum that one can easily recognize and follow from the ridge top to the valley floor. Starting at the top of the ridge the soil is thin and scarcely present. What soil exists is very shallow, poorly developed, poorly sorted, contains no appreciable organic matter, and has a large percentage of andesitic rock fragments. The thickness of the soil increases as one moves down slope with more organic content being observed, correlating well with increased vegetation. Although the soil is still poorly sorted, it increasingly becomes more uniform towards a sandy loam with granitics composing more of the parent material. On the valley floor the soil contains organic material and is at its maximum development and thickness within the disposal area. The alluvial substratum is well-sorted sand with the parent material consisting of mostly granitic rock, with only a minor andesitic contribution. The granitic origin is marked by numerous small mica flakes, found within the soil profile.

Groundwater Regulatory Requirements January 28, 2016

3.0 Groundwater Regulatory Requirements

Discharge at the Bear Valley Water District WWTF is subject to requirements contained in the wastewater permit (Waste Discharge Requirements, or WDRs), Standard Provisions and Reporting Requirements for Waste Discharge Requirements 1 March 1991, the Water Quality Control Plan for the California Regional Water Quality Control Board, Central Valley Region and associated documents (Basin Plan). These requirements and policies are discussed below as they relate to discharges to land and the groundwater limitations at the WWTF.

3.1 WATER QUALITY OBJECTIVES AND BASIN PLAN REQUIREMENTS

The Central Valley Basin Plan contains water quality objectives for groundwater. These water quality objectives apply to all groundwater in the San Joaquin River Basin, though they do not require improvement over naturally occurring background concentrations. The groundwater objectives are:

- Bacteria total coliform organisms shall be less than 2.2 MPN/100ml over any sevenday period.
- Groundwater shall not contain chemical constituents that adversely affect beneficial uses.
- At a minimum, groundwater designated for municipal use shall not contain chemical constituents in concentrations greater than the maximum contaminant levels (MCLs) contained in Title 22 of the California Code of Regulations. To protect all beneficial uses, the Regional Board may apply limits more stringent than the MCLs.
- At a minimum, groundwater designated for municipal use shall not contain concentrations of radionuclides in excess of the MCLs contained in Title 22 of the California Code of Regulations.
- Groundwater shall not contain taste or odor constituents that cause nuisance or adversely affect beneficial uses.
- Groundwater shall be maintained free of toxic substances in concentrations that produce detrimental physiological response...

In conjunction with the Basin Plan groundwater objectives, the Regional Board has compiled water quality goals in the Regional Board staff report *A Compilation of Water Quality Goals,* updated in August of 2007. This report is intended to assist interpretation of the above narrative water quality objectives.

3.2 ANTIDEGRADATION POLICY

In 1968, the State Water Resources Control Board adopted Resolution No. 68-16, Statement of Policy with Respect to Maintaining High Quality of Waters in California, or the State

Groundwater Regulatory Requirements January 28, 2016

Antidegradation Policy. The Antidegradation policy requires that whenever the quality of waters is better than the water quality standards or water quality objectives, and a discharge does or reasonably has the potential to degrade the high quality water, then such degradation must:

- Not unreasonably affect beneficial uses, i.e., cause the water to exceed water quality standards or water quality objectives; and
- Be consistent with the best practicable treatment and control technology such that the highest water quality is maintained consistent with the maximum benefit to the people of the State.

The Antidegradation Policy applies to surface water and groundwater.

3.3 BEAR VALLEY WATER DISTRICT WASTE DISCHARGE REQUIREMENTS

The current District WDRs (Order No. 5-01-208 section D) have groundwater limitations that state:

- 1. Release of waste constituents from any storage or treatment component associated with the WWTF shall not cause groundwater under and beyond the storage or treatment component, as determined by an approved monitoring network, to:
 - a. Contain any of the constituents (identified in Table 1) in concentrations greater than as listed or greater than background quality, whichever is greater.
 - b. Contain any constituent identified in Groundwater Limitation D.1.a in concentrations greater than background quality (whether chemical, physical, biological, bacteriological, radiological, or some other property of characteristic).
 - c. Exhibit a pH of less than 6.5 or greater than 8.5 pH Units.
 - d. Impart taste, odor, or color that creates nuisance or impairs any beneficial use.
- 2. a. Release of waste constituents from any land disposal area associated with the WWTF shall not cause groundwater under and beyond the land disposal area to contain waste constituents in concentrations statistically greater than background water quality, except for coliform bacteria. For coliform bacteria, increases shall not cause the most probable number of total coliform organisms to exceed 2.2 MPN/100ml of any 7-day period.

b. If groundwater monitoring shows that waste constituents are present in concentrations greater than background, then upon the request of the Executive Officer, the Discharger shall complete the report described in Provision F.3.

Groundwater Regulatory Requirements January 28, 2016

Table 1 Regional Board Interim Groundwater Limitations

Units	Interim Limitation [*]
Std. units	6.5 - 8.4**
mg/l	0.6
mg/l	142
mg/l	0.3
mg/l	0.05
mg/l	69
MPN/100ml	Non-Detect
mg/l	450
mg/l	10
mg/l	1
mg/l	10
mg/l	0.5
	Units Std. units mg/l mg/l mg/l mg/l MPN/100ml mg/l mg/l mg/l mg/l mg/l mg/l

* From Waste Discharge Requirements Order No. 5-01-208 **From a Compilation of Water Quality Goals, July 2008

Groundwater Monitoring Results January 28, 2016

4.0 Groundwater Monitoring Results

4.1 MONITORING SUMMARY

The third tri-annual groundwater monitoring event occurred on November 12 and 13, 2015 with sampling and analytical activities being performed by J.L. Analytical Services, Inc. The sampling procedure utilized in monitoring the District's wells is included as Appendix A of this report for reference. Field measurements of depth to groundwater, electrical conductivity (EC), pH, oxidation reduction potential (ORP), dissolved oxygen (DO), and groundwater temperature were conducted in addition to the laboratory analysis of the parameters identified in Table 2 and according to the revised Monitoring and Reporting Program (MRP) No. 5-01-208, dated June 20, 2002. Groundwater samples were also collected for expanded general mineral chemistry, the results of which are summarized in Table 3. The field logs and laboratory results for the third tri-annual sampling event are included as Appendix B of this report.

Parameter	Units	Frequency ¹
Total Dissolved Solids	mg/l	3 times per year
Nitrate as Nitrogen	mg/l	3 times per year
рН	pH units	3 times per year
Total Coliform Organisms ²	MPN/100ml	3 times per year
Ammonia	mg/l	3 times per year
Total Kjeldahl Nitrogen	mg/l	3 times per year
General Minerals ³	mg/l	1 time per year

Table 2 Groundwater Monitoring Requirements

1. Immediately after snowmelt, in the middle of the summer, and in the fall (shortly before wells become inaccessible due to snow cover.)

2. Method No. 9221E, using a minimum of three dilutions of 15 tubes.

3. General minerals include boron, chloride, iron, manganese, and sodium, collected during the fall.

Groundwater Monitoring Results January 28, 2016

Parameter	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6
Field pH	6.5	6.1	6.0	6.8	6.6	6.2
Field EC (µS/cm)	161	60	68	189	108	209
Temp. (C)	8.3	12.1	10.6	8.9	7.7	8.1
ORP (mV)	270	349	243	253	200	93
Dissolved Oxygen (mg/L)						
Lab SC (μS/cm)	160	60	68	190	110	210
CI (mg/L)	3.7	0.9	4.1	7.7	6.7	9.7
NO3-N (mg/L)	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
TKN (mg/L)	<1	<1	<1	<1	<1	<1
Ammonia as N	<1	<1	<1	<1	<1	<1
TDS (mg/L)	160	90	67	130	220	120
B (mg/L)	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03
Ca (mg/L)	17.3	5.9	5.3	18.4	9.5	23.8
Fe (mg/L)	<0.03	<0.03	<0.03	<0.03	<0.03	0.176
Mg (mg/L)	4.6	1.9	1.5	5.7	3.7	6.0
Mn (mg/L)	0.205	0.023	<0.01	<0.01	0.071	0.815
K (mg/L)	3.0	1.0	1.1	11.4	1.4	1.4
Na (mg/L)	5.1	2.4	5.1	8.2	4.2	7.5
HCO ₃ as CaCO ₃ (mg/L)	68	26	24	78	42	90
HCO ₃ as HCO ₃ (mg/L)	83	32	29	95	51	110
CO ₃ as CaCO ₃ (mg/L)	<1	<1	<1	<1	<1	<1
OH as CaCO ₃ (mg/L)	<1	<1	<1	<1	<1	<1
Total Alkalinity as CaCO ₃ (mg/L)	68	26	24	78	42	90
Sulfate (mg/L)	4.2	<0.5	1.3	5.3	1.0	0.8
Total Coliform (MPN/100ml)	17	6.8	<1.8	<1.8	IVS	<1.8
Fecal Coliform (MPN/100ml)	<1.8	2	<1.8	<1.8	IVS	<1.8
Hardness as CaCO3 (mg/l)	62.0	22.5	19.1	69.5	39.1	84.0

Table 3 Third Tri-Annual 2015 Groundwater Quality Summary

Bold data indicates and simple exceedance of a water quality goal, not to be confused with a statistically significant exceedances. IVS – Insufficient volume of water available to sample.

4.2 GROUNDWATER ELEVATIONS, GRADIENTS, AND FLOW DIRECTION

Depth to groundwater was measured on November 12 and 13, 2015 relative to the surveyed top north quadrant of the PVC well casing. Groundwater elevations were subsequently calculated for the third tri-annual monitoring event and summarized in Table 4 below. Table 4 also contains groundwater elevations from the three previous monitoring events and provides the

Groundwater Monitoring Results January 28, 2016

computed change in elevation at each well (in parentheses) relative to the previous monitoring event, illustrating recent temporal variability in groundwater elevation at the WWTF. Calculated groundwater elevations for the third tri-annual 2015 monitoring event were utilized to construct a contour map (Figure 1), which was subsequently used to estimate both groundwater flow direction and horizontal gradient. Interpreted groundwater flow direction during the third tri-annual monitoring was found to be roughly perpendicular to site topography and generally towards the northwest at a horizontal gradient ranging from 0.061 to 0.074 (Figure 1). Historical groundwater elevations are provided as Appendix C, while a time series plot for computed groundwater elevations is provided as Figure 2, for further reference.

Table 4 Groundwater Elevation Summary

Monitoring	Reference Point	Groundwater Elevation (feet , NAVD88)				
Well	Elevation (ft, NAVD88)	10/14/2014	6/17/2015	9/9/2015	11/12/15	
MW-1	7114.08	7101.69 (-1.72)	7103.36 (+1.67)	7103.89 (+0.53)	7103.08 (-0.81)	
MW-2	7067.53	7057.25 (-2.34)	7065.59 (+8.34)	7057.22 (-8.37)	7058.72 (+1.50)	
MW-3	7056.37	7049.25 (-2.50)	7054.39 (+5.14)	7051.50 (-2.89)	7050.59 (-0.91)	
MW-4	7054.79	7050.10 (-1.12)	7052.38 (+2.28)	7051.07 (-1.31)	7051.63 (+0.56)	
MW-5	7203.78	7189.55 (-1.22)	7190.59 (+1.04)	7191.34 (+0.75)	7190.55 (-0.79)	
MW-6	7059.49	7052.53 (-2.06)	7057.37 (+4.86)	7054.99 (-2.38)	7059.49 (+4.50)	

Groundwater Monitoring Results January 28, 2016

4.3 GROUNDWATER QUALITY

Groundwater samples for the third tri-annual monitoring event were collected on November 12 and 13, 2015. A summary of the lab and field results for this monitoring event are provided above in Table 3, while historical groundwater quality data are provided in Appendix C for further reference. Historical and third tri-annual data were compiled in time series plots for TDS (Figure 3) and chloride (Figure 4) to illustrate temporal variations in groundwater salinity at the site.

Groundwater Monitoring Results January 28, 2016

Figure 3 TDS Time Series Chart

Groundwater Monitoring Results January 28, 2016

Figure 4 Chloride Time Series Chart

4.3.1 Compliance Monitoring Well MW-1

Monitoring well MW-1 is generally located hydrogeologically down gradient of wastewater disposal operations and hydrogeologically up gradient of the eastern portion of the treatment pond (Figure 1). Field pH, field EC, ORP, and laboratory determined TDS measured during the third tri-annual monitoring event were reported at values of 6.5, 161 μ S/cm, 270 mV, and 160 mg/l, respectively. Nitrate as N and ammonia as N were not detected above their respective laboratory reporting limits of 0.2 and 1 mg/l. Furthermore, total coliform organisms were detected at a density of 17 MPN/100ml, while fecal coliform organisms were not detected above the laboratory reporting limit of 1.8 MPN/100ml. The general minerals sodium, chloride, and manganese were detected at concentrations of 5.1, 3.7, and 0.205 mg/l, respectively, while boron and iron were not detected above the laboratory reporting limit of 1.8 MPN/100ml. The general minerals sodium, chloride, and manganese mort detected above the laboratory reporting limit of 5.1, 3.7, and 0.205 mg/l, respectively, while boron and iron were not detected above the laboratory reporting limit of 0.03 mg/l. Additional parameters monitored during the third tri-annual monitoring event of 2015 are summarized in Table 3 for reference.

Groundwater Monitoring Results January 28, 2016

4.3.2 Background Monitoring Well MW-2

Monitoring well MW-2 is located hydrogeologically up gradient of the disposal areas and serves as the background monitoring well for the WWTF (Figure 1). Field pH, field EC, ORP, and laboratory determined TDS measured during the third tri-annual monitoring event were reported at values of 6.1, 60 μ S/cm, 349 mV, and 90 mg/l, respectively. Nitrate as N and ammonia as N were not detected above their respective laboratory reporting limits. Furthermore, total coliform organisms were detected at a density of 6.8 MPN/100ml, while fecal coliform organisms were detected at a density of 2 MPN/100ml. The general minerals sodium, chloride, and manganese were reported at concentrations of 2.4, 0.9, and 0.023 mg/l, respectively, while boron and iron were not detected above their laboratory reporting limit. Additional parameters monitored during the third tri-annual monitoring event of 2015 are summarized in Table 3 for reference.

4.3.3 Compliance Monitoring Well MW-3

Monitoring well MW-3 is located hydrogeologically down gradient of wastewater disposal operations, near the northwestern portion of the WWTF property (Figure 1). Field pH, EC, ORP, and laboratory determined TDS measured during the third tri-annual monitoring event were reported at values of 6.0, 68 μ S/cm, 243 mV, and 67 mg/l, respectively. Nitrate as N and ammonia as N were not detected above their respective laboratory reporting limits. Furthermore, total and fecal coliform organisms were not detected above the laboratory reporting limit of 1.8 MPN/100ml. The general minerals sodium and chloride were reported at concentrations of 5.1 and 4.1 mg/l respectively, while boron, iron, and manganese were not detected above their respective laboratory reporting limits.

4.3.4 Compliance Monitoring Well MW-4

Monitoring well MW-4 is located hydrogeologically down gradient of wastewater disposal operations and the wastewater treatment pond, near the northwestern portion of the WWTF property (Figure 1). Field pH, EC, ORP, and laboratory determined TDS measured during the third tri-annual monitoring event were reported at values of 6.8, 189 μ S/cm, 253 mV, and 130 mg/l, respectively. Nitrate as N and ammonia as N were not detected above their respective laboratory reporting limits. Furthermore, total and fecal coliform organisms were not detected above the laboratory reporting limit of 1.8 MPN/100ml. The general minerals sodium and chloride were detected at concentrations of 8.2 and 7.7 mg/l, respectively, while boron, iron, and manganese were not detected above their laboratory reporting limits. Additional parameters monitored during the third tri-annual monitoring event of 2015 are summarized in Table 3 for reference.

Groundwater Monitoring Results January 28, 2016

4.3.5 Compliance Monitoring Well MW-5

Monitoring well MW-5 is located hydrogeologically down gradient of wastewater disposal operations, near the south-central portion of the WWTF property (Figure 1). Field pH, EC, ORP, and laboratory determined TDS measured during the third tri-annual monitoring event were reported at values of 6.6, 108 μ S/cm, 200 mV, and 220 mg/l, respectively. Nitrate as N and ammonia as N were not detected above their respective laboratory reporting limits. The general minerals sodium, chloride, and manganese were detected at concentrations of 4.2, 6.7, and 0.071 mg/l, respectively, while boron and iron were not detected above their laboratory reporting limits. Note that there was not sufficient water available to sample for total and fecal coliform organism. Additional parameters monitored during the third tri-annual monitoring event of 2015 are summarized in Table 3 for reference.

4.3.6 Compliance Monitoring Well MW-6

Monitoring well MW-6 is located hydrogeologically down to cross gradient of wastewater disposal operations and down gradient/adjacent to the effluent storage pond, near the southwestern portion of the WWTF property (Figure 1). Field pH, EC, ORP, and laboratory determined TDS measured during the third tri-annual monitoring event were reported at values of 6.2, 209 μ S/cm, 93 mV, and 120 mg/l, respectively. Nitrate as N and ammonia as N were not detected above their respective laboratory reporting limits. Furthermore, total and fecal coliform organisms were not detected above the laboratory reporting limit of 1.8 MPN/100ml. The general minerals sodium, chloride, iron, and manganese were detected at concentrations of 7.5, 9.7, 0.176, and 0.815 mg/l, respectively, while boron was not detected above its laboratory reporting limit. Additional parameters monitored during the third tri-annual monitoring event of 2015 are summarized in Table 3 for reference.

Background Groundwater Quality January 28, 2016

5.0 Background Groundwater Quality

5.1 STATISTICAL ANALYSIS INTRODUCTION

On behalf of the District, ECO:LOGIC Engineering (now Stantec) submitted a <u>Groundwater</u> <u>Characterization Report</u> (GCR), in *January 2005*. This report was submitted in accordance with the District's WDRs and the Regional Board's *July 8, 2004* <u>Technical Report Review and</u> <u>Comments</u> letter requesting a statistical determination of background groundwater quality, pursuant to Title 27, Section 20415(e) (10) of the California Code of Regulations. The report compared actual COPC concentration at each of the compliance wells to both the Regional Board's Interim Groundwater Limitations and calculated background COPC using the 95% Confidence Limit (CL). As part of the <u>2006 Annual Report</u>, the statistical assessment was revised via an alternative methodology utilizing the 99% upper prediction limit (UPL) for parametrically distributed data, combined with alternative tests for non-parametric data. The background groundwater quality assessment has been updated annually since 2006. The analysis provided below represents the most current update to the statistical assessment of background groundwater quality, utilizing data collected through the third tri-annual monitoring event of 2015.

The following provides a summary of the assumptions used to compute the 99% UPL of background groundwater quality:

- Statistical analysis performed annually;
- Statistical test performed for the parameters TDS, nitrate, ammonia, pH, total coliform, boron, chloride, iron, sodium, and manganese;
- Data collected during the years of 2003 and earlier were not assessed due in part to several factors including the influence of well drilling activities and lack of filtration for metals. All data following 2003 were included in the statistical analysis;
- A pass 1 of 3 re-sampling strategy was employed; and,
- Maximum reported value, not reflective of an unreasonable anomaly, used to represent background groundwater quality for non-parametric data.

5.2 OUTLIER ANALYSIS

Prior to the evaluation of background groundwater quality, all background data (MW-2) were reviewed using Dixon's test (where n is between 3 and 25) or Rosner's test (for n > 25) for statistically significant outliers at the 99% confidence limit. The following provides a summary of the identified outliers and any actions taken.

Background Groundwater Quality January 28, 2016

Field pH: No outliers identified.

TDS: One statistical outlier was identified during the 7/7/09 monitoring event. The results are anomalously high and do not correspond with the reported EC values, suggesting a laboratory error. The reported outlier was subsequently removed.

Nitrate as N: One outlier was identified and during the 10/26/09 monitoring event. This outlier was reviewed, determined to be reasonable, and subsequently retained for further analysis.

Ammonias as N: Three outliers were identified and during the 9/1/04, 6/22/04, and 9/15/05. These outliers were reviewed, determined to be reasonable, and retained for further analysis

Total Coliform: Three outliers were identified and during the 7/8/08, 10/26/09, and 11/4/10 monitoring events. Of these outliers, one was notably higher than all of the rest (10/26/09). For 10/26/09, no known cause of the outlier could be identified, however many of the other monitoring wells, that do not typically contain elevated coliform, also reported high values during this event, suggesting potential sampling or laboratory bias. Accordingly, this outlier was removed from further analysis. All other outliers were determined to be reasonable and retained for further analysis.

Boron: No outliers identified.

Chloride: Two statistical outlier were identified and during the 9/18/08 and 10/9/2012 monitoring events. These data were reviewed and no anthropogenic cause could be attributed to the anomalies. Accordingly, they were retained for further analysis.

Iron: No outliers identified.

Sodium: Two statistical outliers were identified and during 9/18/08 and 10/9/12 monitoring events. These outliers were reviewed and no anthropogenic cause could be attributed to the anomalies. Accordingly, they were retained for further analysis.

Manganese: Six statistical outliers were identified during the 10/13/04, 8/29/07, 7/21/11, 10/9/12, 8/21/13, and 10/14/14 monitoring events. These outliers were reviewed and no anthropogenic cause could be attributed to the anomalies. Accordingly, they were retained for further analysis.

Background Groundwater Quality January 28, 2016

5.3 NORMALITY TEST

Following the outlier analysis a normality test was performed using Shapiro-Wilks Test at the 99% level of confidence. If the background monitoring data were normally distributed, or could be made normal through an appropriate transformation, parametric tests were applied. Alternatively, if the data were found to be non-parametrically distributed, non-parametric statistical tests were used. Following the initial data review, as summarized above, 99% background UPLs were computed, based on inclusion of the most recent 2015 monitoring data the results of which are summarized in Table 5.

COPC	Background 99% UPL	Data Distribution/Method	Data Points
TDS (mg/l)	125	Parametric UPL	35
Nitrate as N (mg/l)	0.5	Non-Parametric UPL	36
Ammonia as N (mg/l)	1	Non-Parametric UPL	36
pН	7.4 – 5.7	Parametric UPL	36
Total Coliform (MPN/100ml)	500	Non-Parametric UPL	35
Boron (mg/l)	0.03	Non-Parametric UPL	34
Chloride (mg/l)	7.3	Parametric UPL (Natural Log. Transformed)	34
Iron (mg/l)	1.54	Non-Parametric UPL	36
Sodium (mg/l)	8.6	Non-Parametric UPL	34
Manganese (mg/l)	0.22	Non-Parametric UPL	36

Table 5 2015 Statistical Assessment of Background Groundwater Quality

Bold data indicate an exceedance of the Regional Board's Interim Groundwater Limitations

5.4 SITE SPECIFIC GROUNDWATER LIMITATIONS

For COPC's where the background 99% UPL or non-parametric statistics are greater than the Regional Board's Interim Groundwater Limitation, the background statistic should be used for facility compliance. Of the COPCs analyzed, computed background (MW-2) statistics for iron, manganese, and total coliform exceeded the Regional Board's Interim Groundwater Limitations of 0.3 mg/l, 0.05 mg/l, and non-detect, respectively. Furthermore, background pH values were statistically lower than the lower limit of the groundwater goal of 6.5. Conversely, where an Interim Groundwater Limitation is greater than the background statistic, the Interim Groundwater Limitation should be used to assess facility compliance, as was the case for all the remaining parameters, provided the facility is implementing best practicable treatment and control measures for the constituent of potential concern. It should be noted however, that the WDR Interim Groundwater Limitations for boron and chloride are inconsistent with agricultural water quality goals and were revised accordingly. Table 6 presents the recommended site specific groundwater limitations for the facility.

Background Groundwater Quality January 28, 2016

COPC	Site Specific Groundwater Limitation	Basis for Limitation	Compliance Assessment Methodology
TDS (mg/l)	450	Agricultural Water Quality Goal	95% LCL
Nitrate as N (mg/l)	10	Primary Maximum Contaminant Level	Not to exceed
Ammonia as N (mg/l)	1.5	Taste and Odor Threshold	95% LCL
рН	5.7 – 8.4	STAT Parametric UPL/Agricultural Water Quality Goal	Pass 1 of 3/ 95% LCL
Total Coliform (MPN/100ml)	500	STAT Non-Parametric UPL	Not to exceed
Boron (mg/l)	0.7	Agricultural Water Quality Goal	95% LCL
Chloride (mg/l)	106	Agricultural Water Quality Goal	95% LCL
Iron (mg/I)	1.54	STAT Non-Parametric UPL	Not to exceed
Sodium (mg/l)	69	Agricultural Water Quality Goal	95% LCL
Manganese (mg/l)	0.22	STAT Non-Parametric UPL	Not to exceed

Table 6 2015 Recommended Site Specific Groundwater Limitations

Bold data indicate an exceedance of the Regional Board's Interim Groundwater Limitations

5.5 ANTI-DEGRADATION ASSESSMENT

In evaluating facility compliance, the UPL methodology is not appropriate for statistically assessing compliance with water quality goals based on MCLs or agricultural limitations (such as those used in determining Interim Groundwater Limitations) because many of these goals are based on long term averages of water quality. Accordingly the 95% lower confidence interval (LCL) about the mean is recommended (95% LCL for two-tailed test such as pH) and is appropriate for assessing compliance with the parameters TDS, ammonia, upper pH, boron, chloride, and sodium, which were based on unrestricted agricultural use or taste and odor thresholds. However, where a parametric 99% UPL serves as the site specific groundwater limitation, the pass 1 of 3 re-sampling should be used to assess compliance (that is if one sample of the past three is less than the limitation, no statistically significant impact is noted). Alternatively, for non-parametric tests, a simple exceedance of the site specific groundwater limitation may indicate a statistically significant impact. Table 7 summarizes the results of the compliance assessment.

Background Groundwater Quality January 28, 2016

COPC	Site Specific Groundwater Limitation	Compliance Assessment Methodology	2015 Statistically Significant Exceedance
TDS (mg/l)	450	95% LCL	None
Nitrate as N (mg/l)	10	Not to Exceed	None
Ammonia as N (mg/l)	1.5	95% LCL	None
рН	5.7 – 8.4	Pass 1 of 3/ 95% LCL	None
Total Coliform (MPN/100ml)	500	Not to Exceed	None
Boron (mg/l)	0.7	95% LCL	None
Chloride (mg/l)	106	95% LCL	None
Iron (mg/l)	1.54	Not to Exceed	None
Sodium (mg/l)	69	95% LCL	None
Manganese (mg/l)	0.22	Not to Exceed	MW-6

Table 7 2015 Groundwater Monitoring Compliance Summary

Of the parameters assessed, manganese was detected in groundwater at levels that statistically exceed site specific groundwater limitations during 2015. The exceedances occurred at monitoring well MW-6. Manganese is an element that forms pH and redox sensitive minerals in the subsurface, which can become mobile under reducing conditions and in groundwater with low pH, both of which are not uncommon in alpine groundwater environments. For instance, the dilute nature and lack of buffering capacity of alpine groundwater (primarily snowmelt) and presences of acidic surface soils bode well for low pH groundwater, a condition that naturally favors manganese mobilization. Therefore, the presence of manganese in groundwater should not in of itself be considered irrefutable proof of wastewater impacts.

Caution should also be exercised when evaluating computed "background" groundwater values to that of down gradient monitoring locations as the computed background statistics only consider one datum (MW-2) and thus, does not account for natural spatial variations in groundwater quality in the area. Spatial variability of the quality of shallow groundwater is more the norm than the exception and can be attributed to a host of issues including, but not limited to, soil column thickness, soil composition, bedrock composition, grain size distribution, organic matter content, groundwater elevation, acidity/alkalinity, land use, and redox potential. As such quantitative interpretation or comparison of groundwater data collected at "down gradient" monitoring locations to only one background location for the purpose of assessing facility compliance is not recommended. The computed background statistics and site specific groundwater goals should thus be used only to identify areas which *may have* been impacted with current or historic wastewater disposal practices. If improved background statistics are required, additional monitoring wells should be installed at locations up and cross gradient of the waste discharge.

Background Groundwater Quality January 28, 2016

All of the parameters assessed, with the potential exception of manganese, were in compliance with the site specific groundwater limitations, indicating further compliance with regards to the State's Anti-Degradation Policy.

Summary and Conclusions January 28, 2016

6.0 Summary and Conclusions

Groundwater was assessed during the third tri-annual monitoring event, pursuant to the District's WDRs and MRP, issued by the Regional Board. During the third tri-annual monitoring event, reported water quality values for pH (MW-2, MW-3, and MW-6), manganese (MW-1, MW-2, and MW-6), and total coliform organisms (MW-1 and MW-2) exceeded a Regional Board interim groundwater quality goal, which consists of goals for agricultural or potable use. Of these parameters, a revised statistical analysis indicates statistically significant exceedances of site specific groundwater limitations occurred for only one parameter, manganese and at MW-6. Dissolved manganese is commonly spatially transient and can be influenced by variables other than the disposal of effluent. It should be noted that the current groundwater monitoring network contains only one background monitoring well (MW-2) making it impossible to incorporate potential spatial variations into the background statistics. Accordingly, a statistically significant impact should not be considered irrefutable proof that the impact originated as a result of the discharge. Regardless, a revised statistical assessment will be conducted as part of the <u>2015 Annual Report</u>, which will also include a revised assessment of background groundwater quality.

Professional Seals and Certifications January 28, 2016

7.0 Professional Seals and Certifications

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment.

Thomas W. Butler, PG, CHG, CEG Senior Hydrogeologist/Geochemist

Appendix A Groundwater Monitoring Protocol January 28, 2016

Appendix A Groundwater Monitoring Protocol

Bear Valley Water District Groundwater Monitoring Well Sampling Procedures

1) The covers of the monitoring wells were opened and loose material cleared from the edged. A propane torch was used to briefly burn the frame of the cover and any debris inside the box and around the well casing (i.e., eliminating potential contamination of samples from ants). The wells are 2-in PVC approximately 13.5 to 23.5 feet deep with the lower 10 to 15 feet screened. The compression cap was removed and placed top down on the well cover.

2) Water surface depth was measured to within 0.01 feet by lowering an electronic tape into the well while passing it through a cloth soaked in hypochlorite solution (the tape was cleaned and disinfected in the lab prior to bringing it to the field). The water depth was measured relative the top of the north quadrant of the PVC well casing. More than three well volumes were purged from the wells until pH, EC and temperature stabilized. The volume to purge was calculated based on the well casing diameter (area) times the water column height (well depth from well logs minus depth to water surface times three. no annular space estimate was included).

3) Dedicated 12V submersible plastic pumps (ES 60) with a vinyl discharge hose were used for purging and sampling the wells. The pump, hose and cord were decontaminated prior to transport to the field in deionized (D.I.) water plus detergent, and then rinsed three times in D.I. water (running the pump during each to flush water through the impeller and hose) and finally the pump and appurtenances were placed in a dilute hypochlorite solution (running the pump to flush the solution through the impeller and hose). The pump and hose were removed from sealed bins and lowered into the well, avoiding pump or hose touching the cover frame, ground etc. The technician used rubber gloves during sampling and changed them each time anything "dirty" was touched. New gloves were rinsed in chlorine solution prior to handling equipment.

4) After priming and pumping a small amount of water through the hose (to remove and remaining liquid in the hose), the discharge rate was measured, by measuring the time to fill a one-gallon container. This time was them multiplied by the well purge volume as calculated in step 2) above. The time to purge three volumes was rounded up by approximately 5 minutes.

5) The pump was started and time recorded while it discharged. Approximately every three minutes a roughly 200 ml sample was collected in a glass container from the discharge pump hose and pH, EC and Temperature were measured with a multimeter. All wells stabilized with regards to pH EC, and Temperature.

6) Prelabled sample bottles, were introduced into the discharge stream of the pump after pumping 3-well volumes and stabilized pH, EC and Temperature. These were sealed and placed in an ice chest on ice for shipment to the lab.

7) The pump was shut off and all equipment was removed, the well cap was rinsed with dilute chlorine solution and replaced and the well cover replaced on the well.

8) After measurement, the measuring tape was rolled onto the reel while it was wiped.

Appendix B Third Tri-Annual 2015 Analytical Results and Field Logs January 28, 2016

Appendix B Third Tri-Annual 2015 Analytical Results and Field Logs

December 10, 2015

Bear Valley Water District Attn: Mr. Gouveia P.O. Box 5027 Bear Valley, CA 95223

Dear Mr. Gouveia:

On November 12 and 13, 2015, technicians from IEH-JL Analytical tested the monitoring wells at the Bear Valley Water Treatment facility. The wells at this site are located adjacent to the water treatment plant.

The two-inch wells were sampled and purged with a SS Monsoon 12 volt DC Submersible pump. Purging volumes were measured using a calibrated and graduated five-gallon container. Before and after each sampling, the pump was sanitized and rinsed with DI water. All water level measurements were taken from the PVC pipe at the top of the well casing. The samples were placed immediately into a refrigerated ice chest for transport to the laboratory.

No major new issues were found during this sampling period, other than Wells 1 and 5 would not pump due to icy conditions prior to the first purge. Samples were taken after the wells had regenerated. All other wells had sufficient water for normal purges and sample collection.

Sincerely,

Richard A. Jacobs, Ph.D.

Richard Jacobs Ph.D.,

GROUNDWATER MONITORING REPORT

Bear Valley Water District Bear Valley, CA 3rd Monitoring Event of 2015

Bear Valley Water District P.O. Box 5027 Bear Valley, CA 95223

Prepared for: Bear Valley Water District Attn: Mr. Gouveia P.O. Box 5027 Bear Valley, CA 95223

> Prepared by: IEH-JL Analytical 217 Primo Way Modesto, CA 95358 (209) 538-8111

November 2015

Bear Valley Water District Bear Valley, CA 3rd Monitoring Event of 2015 GROUNDWATER MONITORING REPORT

Table of Contents

Section 1.	Monitoring Well Report Body
Section 2.	Monitoring Well Field Data
	Original Field Data Sheets
Section 3.	Monitoring Well Field Data
Table	1. Monitoring Well Field Data
Table	2. Monitoring Well Purge Data
Section 4.	Monitoring Well Analytical Reports

Certificate of Analysis

Metals Report

November 2015

Bear Valley Water District Bear Valley, CA 3rd Monitoring Event of 2015

GROUNDWATER MONITORING REPORT

Section 1.

Bear Valley Report Body

November 2015

December 15, 2015

Bear Valley Water District Attn: Mr. Gouveia P.O. Box 5027 Bear Valley, CA 95223

Dear Mr. Gouveia:

On November 12 and 13, 2015, technicians from IEH-JL Analytical sampled the six monitoring wells at Bear Valley Water District. The Bear Valley Water District monitoring wells, at this site, are located around the wastewater treatment plant. The wells were sampled and purged with a SS Monsoon 12 volt DC Submersible pump. Purging volumes were measured using a calibrated and graduated five-gallon container. Before and after each sampling, the pump was cleaned and disinfected. All water level measurements were taken from the top of the well casing (PCV pipe), using a cleaned and disinfected water level meter. The wells were sampled according to accepted protocols. Specifically, they were purged a minimum of three volumes and the temperature, conductivity, and pH were allowed to stabilize. The samples were decanted into appropriate containers and immediately placed into a refrigerator for transport to the laboratory.

Wells 1 and 5 would not pump before acquiring a full purge due to the frozen conditions. Any remaining available water for these wells was tested at the laboratory. All other wells had sufficient water for normal purges, site testing and for sample submission to the laboratory.

All well locks were in acceptable condition and were locked prior to our departure.

Enclosed are the field notes and the analytical data, which represent this sampling event.

Sincerely,

Richard A. Jacobs, Ph.D.

Richard A. Jacobs, Ph.D.

IEH-JL Analytical

Bear Valley Water District Bear Valley, CA 3rd Monitoring Event of 2015 GROUNDWATER MONITORING REPORT

Section 2.

Monitoring Well Field Data

Original Monitoring Well Work Sheets

November 2015

IEH - JL ANALYTICAL WATER SAMPLE – FIELD DATA SHEET											
				8			· .	Monito	Forms/ MW Be	ear 12-06	
Client	BEAR V	ALLEY W	ater Distr	ict – B	ear Valley, C	CA Site De	escription:	Monito	ring we	<u>; # 1</u>	
Instrume PH: Prima pH meter	nt Calibrati ary calibratio reading:	on Data: Mon: pH4 p	Meter: YSI 5 H7 pH10 子 <u>10</u>	56 MP EC: 10 EC me	5 00 200 250 10 ter reading: <u></u>	Date 000 1413 2 1000	e: <u>11−12−/3</u> 060 10,000 µs/cm) Time:	1045		
System p	urged with	X DI Wa	ater (check a	appropria	ately)						
WELL I	NFORMA	TION:	and the second			Casing Diameter	Gal/Lin. Ft (GPLF)	Casin Diamet	g Ga er (GPLF)	
Well Dep	oth (WI	D) (ft):	2	7.29 I	Ft.		0.47	□ 4.5" ·	<u>→</u> -	0.83	
Depth to Water (DTW) (ft): $(-)$ $1(_1 \bigcirc Ft.$ $2^n \rightarrow 0.17$ 1.02											
water C	olumn (vv	D = D (VV).	(-)	0 -			0.38	□ 6 →		1.50	
Final De	pth to Wate	er:	1200	F	t. @		0.00	□ 8 →		2.60	
			1320	م	MAPN						
16.2	<u>9 X O.</u>	17 =	2,769	3	310	X	3 =	<u> </u>	<u>o</u> gal		
Water Colu	umn Galı	oer Linear Ft.	1 purge volu (before roun	me	Adjusted Purge vo (round up to near	lume Nu est 0.5) Cas	umber of sing Volumes	Total Purg	e Volume, ga		
PURGII Time pu	NG DATA	: { <u>record</u> ed: 125	р <u>Н, ЕС, & Те</u> О Тіте	emp before Samp	ore purging} t led: <u>1251</u>	hen [Expre	ess all data p C	er purge vol Date: <u> -</u> (lume] 2-15	_	
	Purge					T	with the second s		anna an		
Time	Volume	ъH	EC (uS/cm)	ORP (my)	D.O. (mg/l)	Temp (C.)	Color	Turbidity	Odor	Pumped Dry	
1250		6,48	161	270,1	(11.51.17	8.32	Clear	clear	none	NO	
	3.0										
	910										
	I			<u>.</u>			clear cloudy Yellow Brown	Clear Trace Light Moderate Heavy	None Faint Moderate Strong	Yes/No	
Other Not	es: 24,3	o well (septh	Hale	Frozen Only I Pu	no sudio	on to pi	sup out	water		
PURGIN	G EQUIPM	ENT		5	AMPLING EQ	UPMENT		EATHER	below 20	D Degrees	
Submers	sible Pump	X		S	Submersible Pu Bailer (Teflon)	mp 🗶 (PVC)	Ra	in Dust	Wind		
Well inte	enon) (PVC	Good 🛛	Fair 🖾 F	Poor Shi	ow QC Sample	es collected at	this well:				
Unfilter Bo	Unfiltered Sample 1_1 L BOD_2_300 ml DO 2_Coliform 1L Nalgene Base 1L Amber Glass										
Field Bo	Filtered ottles	2_1 L BOD	<u>1</u> 11 TKN	Spectrum	Coliform	<u>1</u> 1L	Nalgene Base	1L #	Amber Glass		
Sampler(s	s):Mike TS	urumak	Signature	hit	Shim	Date:	1-12-15				

•								Forms/ MW B	ear 12-06
lient: BEAR VAL	LEY Wate	r District -	- Bear Va	alley, CA	Site Desc	ription: Mo	onitoring	Well	<u>#2</u>
Instrument Calibrati PH: Primary calibration pH meter reading:	on Data: N on: pH4 p	leter: YSI 5 H7 pH10 <u>+</u> 10	56 MPS EC: 100 EC meter	200 250 1 reading: <u>((</u>	Date 000 1413 20 01000 1	: <u> 1-13-15</u> 060 10,000 uS/cm	Time: <u></u>	825	
System purged with	X DI Wa	ater (check a	appropriate	ly)			a an		
WELL INFORMA	TION:				Casing Diameter	Gal/Lin. Ft (GPLF)	Casing Diamete	er C	GPLF)
Well Depth (WI Depth to Water (D Water Column (W	0) (ft): TW) (ft): /D – DTW):	1 (-) <u>8</u> (=) <u>9</u>	7.90 Ft. <u>.81</u> Ft. <u>.09</u> Line	ear Ft.	$\begin{array}{c} \hline X & 2^{n} \rightarrow \\ \hline 3^{n} \rightarrow \end{array}$	0.17 0.38	□ 4.5" → □ 5" →		0.83
Final Depth to Wate	er:	9,2	-5_Ft.	@ /PM	□ 4 →	0.66	□ 6 → □ 8 →		2.60
Clock X 0. Water Column Gal (17 = ber Linear Ft.	1 + 5 4 5 1 purge volu (before roun	3 Ime Ad Iding) (ro	2,0 ljusted Purge v und up to near	Dolume Nu rest 0.5) Cas	<u>3</u> =	Total Purge) gal Volume, ga	ıl.
PURGING DATA	: { <u>record</u>	oH, EC, & Te	emp before e Sampleo	purging} d: 094	hen [Expre イチ	ess all data pe D	er purge volu ate: <u>(</u>]_[3	me] 3-15	
Purge Volume		EC (uS/cm)	ORP (my)	D.O. (mg/l)	Temp (C,)	Color	Turbidity	Odor	Pumpeo Dry
0930 Ø 0936 2.0 0941 4.0 0946 6.0	8.18 6.39 6.13 6.05	57 58 59 60	684,1 502,4 408,8 349,2		8,98 11,57 12,55 12,12	yellow yellow yellow yellow	Mod Mod Light	None None None	N6 N0 N0 N0
						clear cloudy Yellow Brown	Clear Trace Light Moderate Heavy	None Faint Moderate Strong	Yes/No
Other Notes: (구, 🤇	o wel	1 Depth							
PURGING EQUIPM Submersible Pump Bailer (Teflon) (PVC	ENT X		Sub Ba	MPLING EC omersible Pu iler (Teflon)	Imp X (PVC)	Am Rai	bient Tempe	rature: _ Win	0 0 <i>egre</i> es d
Well integrity: Unfiltered Sample Bottles	Good	Fair ♀ I	<u>2</u>	QC Sampl بر Coliform	es collected at	this well:	1L An	nber Glass	
Field Filtered Bottles	2_1 L BOD	<u>1</u> 11 TKN	(Coliform	<u>1</u> 1L	Nalgene Base	1L Ar	nber Glass	
Sampler(s): <u>Like Ts</u>	urumak	Signature:	him) Ling	Reviewed	by:	D	ate: <u> </u>	-13-15

t

IEH - JL ANALYTICAL										
Life Life	y	WAI	ERS	AMPL	E - FI	ELDI	JAIA	SHEE		
			-				No	Monito	Forms/ MW Be	ear 12-06
Clien	t: BEAR V	ALLEY W	ater Distr	rict – Bea	r Valley, C	A Site L	Description	Time	ning we	<u>#11#3</u>
PH: Prim PH meter	ent Calibrat hary calibration r reading:	i on Data: N on: pH4 p 	leter: YSI 5 H7 pH10 子 <u>10</u>	EC: 100 EC meter	200 250 10 reading: <u>1</u>	Date 000 1413 2 01000	e: <u>1(2/)4)</u> 2060 10,000 µS/cm	<u> </u>		
System p	ourged with	X DI Wa	ater (check	appropriate	ly)					
WELL	INFORMA	TION:		an a		Casing Diameter	Gal/Lin. Ft (GPLF)	Casing Diamete	g Ga	l/Lin. Ft GPLF)
Well De	pth (WI	D) (ft):	1	3.56 Ft.				□ <u>45</u> " →		0.83
Depth to	o Water (D	TW) (ft):	(-)_5	.78 Ft.	F (X 2" →	0.17	□ 5 " →		1.02
Water C	Column (V	/D – DTVV):	(=) <u>+</u> ,	<u>+8</u> Line	ear Ft.	□ 3" →	0.38			1.50
Final De	epth to Wat	er:	· · · ·	³ Ft. (0		0.66			2.60
				+ (AM)	PM					2.00
77	Q X O	17 =	0.982	.6 🎆	6,1	X	3 =	3,0) gal	
Water Col	umn Gal	per Linear Ft.	1 purge vol	ume Ad	justed Purge vo	olume N	umber of	Total Purge	Volume, ga	. I
			(before rou	nding) (roi	und up to near	est 0.5) Cas	sing Volumes		teres da la competitione de la comp	
PURGI Time pu	NG DATA	.: { <u>record r</u> ed: <u> (</u> c	<u>0H, EC, & T</u>	emp before e Samplec	<u>purging</u> } t	hen [Expr	ess all data p	ber purge voli Date: <u>\\-</u> \?	ume] S-15	
	Purge									-
Time	Volume	nH	EC (uS/cm)	ORP (my)	D.O. (ma/l)	Temp (C.)	Color	Turbidity	Odor	Dry
1116	Ø	8.29	88	227.6		14.06	clear	clear	None	NO
1121	1.0	6.42	68	246.8		10.25	clear	clear	None	NO
1123	210	6112 597	60	243.4		10.57	Clear	Clear Clear	None	ND
1165	210	<u></u>	V 0							
	1	a alaania minimaalaan yaalaa m					clear	Clear	None	Yes/No
							cloudy Yellow Brown	Trace Light Moderate	Faint Moderate Strong	
								Heavy		
Other Not	tes: 13,11	o well	Depth							
PURGIN	IG EQUIPM	ENT		SAM		UIPMENT	W	EATHER Be	elow 20	Degrees
Submers	sible Pump	X		Sub	mersible Pu	mp 🗙	An	nbient Tempe in Dust	erature: Wind	
Bailer (T	eflon) (PVC	<u>)</u>		Bai	ler (Teflon)	(PVC)				
Well int	egrity:	Good L	Fair 🔟	Poor shou		es collected a				Contension of the
Unfilter Bo	ed Sample ottles	1_1 L BOD	2_300 ml DO	_2_C	oliform	1L	Nalgene Base	1L Ai	mber Glass	angangan an
Field	Filtered ottles	2 1 L BOD	1_1I TKN	C	oliform	1L	. Nalgene Base	1L A	mber Glass	
Bearing the second s		an Balance an Inne an Inference and Anna Carlos		1	γ	1	1			
Sampler/	s):MikeT	Surmati	Signature	e: linhan	Jun	📶 Date: _(1-15-13			

G	1						CAL	UEET		
L.	J	VVAIE	RSA	MPLE			AIAS	HEEI		
V									Forms/ MW Be	ar 12-06
Client	BEAR V	ALLEY W	ater Dist	rict – Bea	r Valley, C	A Site D	escription	Monitor	ing we	# 4
Instrumer	nt Calibrat	ion Data: N	leter: YSI 5	556 MPS		Date	e: 11-13-1	<u> </u>	1825	
PH: Prima	ry calibrati	on:pH4 p 니	H7 pH10 7 10	EC: 100 EC meter	200 250 10 reading: (00 1413 2 0,000	µS/cm			
System pu	urged with	X DI Wa	ater (check	appropriate	ly)	+				
WELL IN	NFORMA	TION:		an an an the second		Casing	Gal/Lin. F	t Casing	Ga Ga	I/Lin. Ft
Well Den	th (Wi	D) (ff):		17.10 Ft.		Diameter	(GPLF)			
Depth to	Water (D	TW) (ft):	(-) 3	16 Ft.		X 2" →	0.17	0.17 □ 4.5" →		
Water Co	olumn (M	/D DTW):	(=) 13	94 Line	ear Ft.	□ 3" →	0.38	□ 5" →		1.02
Final Der	oth to Wet	er:	315	3 Ft	0	□ 4 →	0.66	□ 6 →		1.50
r mai Dep		UI.	1300	>AM/	PM)		-v-e-set5(12:194	□ 8 →		2.60
10.01			2 210		2.5	<u> </u>		. 7	5 00	
13,94	X 0.	17 =	1.569		LIJ	Lume N	=	Total Purce	<u> </u>	
Water Colur	mn Gal	per Linear Ft.	(before rou	nding) (roi	und up to near	est 0.5) Cas	sing Volumes	Total Turge	volunio, gui	
PURGIN Time pur	IG DATA	ed: <u>12-2-4</u>	0H, EC, & T Tim	emp before le Samplec	purging} t	hen [Expr	ess all data	per purge voli Date: <u>լլ-լ</u>	ume] 3-15	
Time	Purge Volume (gal)	рН	EC (uS/cm)	ORP (mv)	D.O. (mg/l)	Temp (C.)	Color	Turbidity	Odor	Pumped Dry
1224		7.85	152	217.8	(11917)	9.47	clear	clear	None	No
1227	2.5	6.56	195	108.1		9,03	clear	clear	None	NO
1229	510	6.41	190	227.7		9.07	Clear	Clear	None	NO
1250	7.5	6.83	189	2.53.1		8.90	Clear	Clear	wone	NO
							clear	Clear	None	Yes/No
							Yellow Brown	Light Moderate Heavy	Moderate Strong	
Other Note	s: 1518	l well D	repth	and a second			L <u></u>			
DUDONI	- FOUR		U	CAR		IDMENIT	14	EATHER 2	0000 20	Declees
Submersi	ble Pump	X		Sub	mersible Pur	np X	A	mbient Tempe	erature:	
Bailer (Te	flon) (PVC	c)		Bai	ler (Teflon)	(PVC)		ain Dust _		•
Well inte	grity: 🛛	Good 🛛	Fair 🛛	Poor snow	QC Sample	s collected at	t this well:			
Unfiltere Bot	d Sample ttles	<u>1</u> 1LBOD	2_300 ml DO	_2_C	oliform	1L	. Nalgene Base	1L A	nber Glass	
Field F Bot	-iltered ttles	2 1 L BOD	1_1I TKN	C	oliform	, 1L	. Nalgene Base	e1L A	mber Glass	
Sampler(s)):MileT	soromati	Sign	ature	\square	h	Date:(-13-15		

Forms/ MW Bear 12-06

Client: BEAR V	ALLEY W	ater Distr	ict – Be	ar Valley, C	A Site D	escription	Monitor	ing We	<u> # 5</u>		
Instrument Calibrat PH: Primary calibrati pH meter reading:	ion Data: M on: pH4	Neter: YSI 5 H7 pH10 <u>2</u> <u>(</u>) ater (check a	56 MPS EC: 100 EC meter) 200 250 10 reading: <u>(0</u> telv)	Date 000 1413 20 1000 µ	: <u>11-12-05</u> 060 10,000 S/cm	5 Time:	1045			
Gystern parged with			~	;;;	Casing	Col/Lin Et	Casing		al/Lin Et		
WELL INFORMA	TION:				Diameter	(GPLF)	Diamete	er (GPLF)		
Well Depth (W	D) (ft):	2	0.19 F	t.			□ <u> </u>		0.83		
Depth to Water (D	TW) (ft):	(-) 13	123 F	t.	X 2" →	0.17			1.02		
Water Column (V	VD DTW):	(=)6	96 Li	near Ft.	□ 3" →	0.38	□ 5″ →		4.50		
Final Depth to Wat	er:	15,8	[}] ∣ Ft	. @	□ 4 →	0.66			1.50		
<u>1415</u> AM/PM 2.60											
$1.61 \times 0.47 = 1.1032 = 1.5 \times 3 = 4.5 \text{ gal}$											
Water Column Gal	per Linear Ft.	1 purge volu	ime A	Adjusted Purge vo	olume Nu	mber of	Total Purge	e Volume, gal			
	Louissense come e age	(before roun	iding) 📗 (I	round up to near	est 0.5) Cas	ing Volumes					
	factoria		mn hofe	ro purging) 4		es all data r	er nurge vol	umel			
Time purging start	ed: 1351	<u>טרו, בט, א ופ</u> Timi	e Sample	ed: 1352		<u>, 33 an uata p</u>	Date: _[[-1	2-0			
Time parging start	cu. <u>()</u>		o oompii		le contra de la co						
Volume		EC	ORP	D.O.	Temp				Pumped		
Time (gal)	рН	(µS/cm)	(mv)	(mg/l)	(C.)	Color	Turbidity	Odor	Dry		
1351 Ø	6.57	108	200.1		7,72	Brown	It eavy	None	64		
1.5					-						
4.5											
			1								
			1			clear	Clear	None	Yes/No		
						cloudy Yellow	Trace Light	Faint Moderate			
						Brown	Moderate Heavy	Strong			
Other Notes: 1977	8 Lizell	Death	Ital	F Frozen	t muddy	could o	nly pour		0		
	0 00000	-qui	1100		- 4		((• • •	- ()	<u> </u>		
PURGING EQUIPM	ENT		SA	AMPLING EQ	UIPMENT	W	EATHER Be	elow 20	Degrees		
Submersible Pump	X		SL	Ibmersible Pu	mp 🗙	Ar	nbient Lempe	erature: Wind			
Bailer (Teflon) (PVC	C)		B	ailer (Teflon)	(PVC)						
Well integrity:	Good 🛛	Fair 🖾 F	oor show	QC Sample	es collected at	this well:					
Unfiltered Sample Bottles	Unfiltered Sample 1 1 L BOD 2 Coliform 1L Nalgene Base 1L Amber Glass										
Field Filtered Bottles	2_1 L BOD	1_1I TKN		Coliform	1L	Nalgene Base	1L A	mber Glass			
Reasonan and the strangeneous sector sector provide the sector of			1	/	1		A STATE OF A STAT				
Compler(a): Li	Summer	Sig	nature	·		Date: 1	-12-15				

•								Forms/ MW B	ear 12-06
Client: BEAR	ALLEY W	ater Distr	rict – Be	ar Valley,	CA Site	Descriptior	n: Monito	ring We	ell # 6
Instrument Calibrat PH: Primary calibrat pH meter reading: System purged with	ion Data: M ion: pH4 p 	Neter: YSI 5 H7 pH10 <u>7 10</u> ater (check	56 MPS EC: 100 EC mete) 200 250 1 er reading: <u>/</u> ely)	Date 000 1413 2 0,00 <i>0</i>	e: <u> - Z- 3</u> 2060 10,000 µS/cm	<u> </u>	045	
	TION	n de la constante de la consta La constante de la constante de			Casing	Gal/Lin. F	t Casing	Gi Gi	al/Lin. Ft
WELL INFORMA	TION.				Diameter	(GPLF)	Diamet	er	(GPLF)
Well Depth (W	D) (ft):	2	2.59 Fi		¥ 2" →	0.17	□ 4.5" →		0.83
Depth to Water (L	(ft):	(-) 0	<u>.0</u> [F1 .59 [ii	l. near Ft	~ ~ /	0.117	□ 5" →		1.02
water column (v	VD = D T VV).	(-)		ical i t.	□ 3" →	0.38			1.50
Final Depth to Wat	er:	3,19	Ft.	@		0.66			2.60
		1640	<u>></u> AN	M/PM)					2.00
22,59 X 0	.17 =	3.840	3	410	X	3 =	(21)	ර gal	a andre en en anno en ann
Water Column Gal	per Linear Ft.	1 purge volu	ime A	djusted Purge v	olume N	umber of	Total Purge	e Volume, ga	L.
	 Bodd Schubbergermannas (2000) — VISUPAL 	(before rour	ıding) 🎆 (r	ound up to near	rest 0.5) Cas	sing Volumes			
	· freeerd		amp hofo		hen lEvor	ess all data r	per purae vol	umel	endersekungens de L
Time purging start	ed 1617	Tim	e Sample	e pulging		[Date: 11-17	2-15	
Pures			o o o nin pro		1		ne o succes de la companya de la com La companya de la comp		
Volume		EC	ORP	D.O.	Temp				Pumped
Time (gal)	рН	(µS/cm)	(mv)	(mg/l)	(C.)	Color	Turbidity	Odor	Dry
1617 0	7,60	170	168.1		6,86	clear	clear	None	20
1627 410	6.21	199	100.1		8.06	cleal	Clear	None	NO
1629 8.0	6,19	205	9518		8.08	clear	Clear	Ware	NO
1631 1210	6120	209	1313		8.0F	Clear	Gear	None	NO
						clear cloudy Yellow Brown	Clear Trace Light Moderate Heavy	None Faint Moderate Strong	Yes/No
Other Notes: 22.	lo wei	1 Depth							
PURGING EQUIPM	ENT		SA	MPLING EQ	UIPMENT	W	EATHER Be	low 20	Degrees
Submersible Pump	X		Su	bmersible Pu	mp X	An Ra	in Dust	Wind	
Bailer (Teflon) (PVC	<i>i)</i>		Ba	aller (Tetion)	(PVC)	/ 10			
Well integrity:		Fair Ki F	OOL THO	w QC Sample	es collected at				
Unfiltered Sample Bottles	<u>1</u> 1LBOD	2_300 ml DO	_2	Coliform	1L	Nalgene Base	1L Ar	mber Glass	
Field Filtered Bottles	2_1 L BOD	1_1I TKN	-	Coliform	1L	Nalgene Base	1L Ar	mber Glass	
Sampler(s): <u>MikT</u>	Surumak	Sig	nature	:Dh	mf	Date: _ <i>[(</i>	1-12-15	_	

Monitoring Well -- Lock Report

Client: BEAR VALLEY WD Bear Valley, CA

Date: 11-12-15 \$ 11-13-15

Well Number	ls there a lock?	Condition of the lock?	Does it Work?	Was it Locked upon arrival?	Was it locked upon departure?
	Yes / No	Acceptable / Bad	Yes / No	Yes / No	Yes / No
1	Yes	Acceptable	Ves	Yes	Yes
2	yes.	Acceptable	Ves	yes	yes
3	YES	Acceptable	YES	VES	Yes
4	yes	Acceptable	Yes	yes	Yes
5	yes	Acceptade	yes	yes.	yes
6	yes.	Accorable	yes	Yes	Ves
	1		/	/	
			aarteisele roofstaar (daarberde oorste oorste of telefere (sooren oorste oorste oorste oorste oorste oorste oo		

Comments:

All locks were good but hard to open because of the snow about 11/2 ft of snow on top had to chip the ice off.

Sampler: Mike TSUrumati

Form: Lock Report 4-04

Bear Valley Water District Bear Valley, CA 3rd Monitoring Event of 2015 GROUNDWATER MONITORING REPORT

Section 3.

Monitoring Well Field Data

 Table 1. Bear Valley Monitoring Well Field Data

 Table 2.
 Bear Valley Monitoring Well Purge Data

November 2015

TABLE 1

Field Data Bear Valley Water District Monitoring Well Field Data

November 12 & 13, 2015

Well Number	Initial Well Depth	Depth to Ground Water	Linear Feet of Water	Final Depth to Water	Measured Well Depth	Casing Diameter	Adjusted Purge Volume	Total Required Purge volume	Total Actual Purge volume
	(Ft)	(Ft)	(Ft)	(Ft)	(Ft)	(ln)	(Gal)	(Gal)	(Gal)
	(b)	(C)	(b - c)						
1	27.29	11.00	16.29	12.30	24.30	2	3.0	9.0	<1.0
2	17.90	8.81	9.09	9.25	17.60	2	2.0	6.0	6.0
3	13.56	5.78	7.78	8.13	13.10	2	1.0	3.0	3.0
4	17.10	3.16	13.94	3.53	15.81	2	2.5	7.5	7.5
5	20.19	13.23	6.96	15.81	19.78	2	1.5	4.5	<1.0
6	22.59	0.00	22.59	3.19	22.10	2	4.0	12.0	12.0

For 2" Casing - Casing Volume (gal) = Height of Water Column X 0.17 Gallons per linear foot

Well would not pump

TABLE 2 FIELD DATA BEAR VALLEY WATER DISTRICT

Monitoring Well - Purge Data Summary

Nove	mber 12 & 13	, 2015											
Well Number	Sampling Date	Time	Purge Volume (Gal)	pH (pH units)	EC (μS/cm)	O.R.P. (Millivolts)	D.O. (Mg/L)	Temp (C)	Color	Turbidity	Odor		
1	11/12/2015					* Insuffici	ent Water						
		9:36	2.0	6.4	58	500		11.6	Yellow	Moderate	None		
2	11/13/2015	9:41	4.0	6.1	59	410		12.6	Yellow	Moderate	None		
		9:46	6.0	6.1	60	350		12.1	Yellow	Light	None		
		11:21	1.0	6.4	68	250		10.3	Clear	Clear	None		
3	11/13/2015	11:23	2.0	6.1	68	240		10.3	Clear	Clear	None		
		11:25	3.0	6.0	68	240		10.6	Clear	Clear	None		
		12:27	2.5	6.6	200	110		9.0	Clear	Clear	None		
4	11/13/2015	12:29	5.0	6.4	190	230		9.1	Clear	Clear	None		
		12:50	7.5	6.8	190	250		8.9	Clear	Clear	None		
5	11/12/2015			* Insufficent Water									
		16:27	4.0	6.2	200	100		8.1	Clear	Clear	None		
6	11/12/2015	16:29	8.0	6.2	210	96		8.1	Clear	Clear	None		
		16:31	12.0	6.2	210	93		8.1	Clear	Clear	None		

Bear Valley Water District Bear Valley, CA 3rd Monitoring Event of 2015 GROUNDWATER MONITORING REPORT

Section 4.

Certificate of Analysis (Analytical Reports)

Metals Report

November 2015

217 Primo Way • Modesto, California 95358 • Office (209) 538-8111 • FAX (209) 538-3966

Bear Valley Water Dist.

P.O. Box 5027 Bear Valley,CA 95223

 Laboratory Number:
 36252701

 Description:
 Waste Water, MW #1, 11-12-15, 1251

 Report #
 L2.2-14R35625

 Report Date:
 12/04/2015

 Received Date:
 11/14/2015

 Work Order:
 362527

Analytical Results

Constituent		Result		Minimum Level	Method Detection Limit	Method Reference	Analysis Date	Analysis Time	Analyst
Total Dissolved Solids (TDS)		160	mg/l	20	6.8	SM 2540C	11/19/2015	15:25	JG
pH		6.5	SŪ	0.5	0.2	SM 4500-H B	11/12/2015	12:50	AS
Total Alkalinity (as CaCO3)		68	mg/l	5.0	3.0	SM 2320B	12/01/2015	09:50	NH
Bicarbonate Alkalinity (as CaCO3)		68	mg/l			SM 2320B	12/01/2015	09:50	NH
Carbonate Alkalinity (as CaCO3)	<	1	mg/l			SM 2320B	12/01/2015	09:50	NH
Hydroxide Alkalinity (as CaCO3)	<	1	mg/l			SM 2320B	12/01/2015	09:50	NH
Ammoniacal Nitrogen by Kjeldahl	<	1	mg/l	1.0	0.8	SM 4500 NH3 C	12/02/2015	08:30	SKS
Total Kjeldahl Nitrogen (TKN)	<	1	mg/l	1.0	0.8	SM 4500-Norg B	11/18/2015	08:30	SKS
Electrical Conductivity (E.C.)		160	umho/cm	1.0	1.0	SM 2510B ⁵	11/12/2015	12:50	AS
Chloride		3.7	mg/l	0.2	0.01	EPA 300.0	11/13/2015	17:54	JA
Sulfate		4.2	mg/l	0.5	0.1	EPA 300.0	11/13/2015	17:54	JA
Nitrate Nitrogen	<	0.2	mg/l	0.1	0.014	EPA 300.0	11/13/2015	17:54	JA
Total Coliform (20 T LST)		17	MPN/100ml			SM 9221B	11/14/2015	NA	SM
Fecal Coliform (20 T LST)	<	1.8	MPN/100ml			SM 9221E	11/14/2015	NA	SM
Boron		See Report				See Attached Report	11/19/2015	14:55	СМ

QC Results

Constituent	QC Units		Blank		Matrix	Theoretical Spike	Matrix Spike	Matrix Spike Duplicate	Lab Control Spike	Precision %	Accuracy %	Response %
Total Dissolved Solids (TDS)	mg/l	<	20		510	3000	3500	3500	3000	0.9	100.5	100.0
pH	SŪ		NA		NA	NA	NA	NA	NA	NA	NA	NA
Total Alkalinity (as CaCO3)	mg/l	<	5		280	300	570	570	300	0.0	98.6	100.6
Bicarbonate Alkalinity (as CaCO3)	mg/l		NA		NA	NA	NA	NA	NA	NA	NA	NA
Carbonate Alkalinity (as CaCO3)	mg/l		NA		NA	NA	NA	NA	NA	NA	NA	NA
Hydroxide Alkalinity (as CaCO3)	mg/l		NA		NA	NA	NA	NA	NA	NA	NA	NA
Ammoniacal Nitrogen by Kjeldahl	mg/l	<	1	<	1	28	28	28	28	0.0	99.2	99.2
Total Kjeldahl Nitrogen (TKN)	mg/l	<	1	<	1	28	28	28	28	0.2	99.6	99.2
Electrical Conductivity (E.C.)	umho/cm		NA		NA	NA	NA	NA	NA	NA	NA	NA
Chloride	mg/l	<	0.2		7.9	0.8	8.7	8.7	0.8	0.5	101.3	100.0
Sulfate	mg/l	<	0.5		18	5.0	23	23	4.8	0.3	91.8	95.6
Nitrate Nitrogen	mg/l	<	0.1		0.6	0.9	1.4	1.4	0.9	0.6	92.0	94.3
Total Coliform (20 T LST)	MPN/100ml		NA		NA	NA	NA	NA	NA	NA	NA	NA
Fecal Coliform (20 T LST)	MPN/100ml		NA		NA	NA	NA	NA	NA	NA	NA	NA
Boron			NA		NA	NA	NA	NA	NA	NA	<u>NA</u>	NA

Notes

At 25 °C

217 Primo Way • Modesto, California 95358 • Office (209) 538-8111 • FAX (209) 538-3966

Bear Valley Water Dist.

P.O. Box 5027 Bear Valley,CA 95223

 Laboratory Number:
 36252701

 Description:
 Waste Water, MW #1, 11-12-15, 1251

 Report #
 L2.2-14R35625

 Report Date:
 12/04/2015

 Received Date:
 11/14/2015

 Work Order:
 362527

Analytical Results

Constituent	Result	Minimum Level	Method Detection Limit	Method Reference	Analysis Date	Analysis Time	Analyst
Calcium	See Report			See Attached Report	11/19/2015	14:55	СМ
Iron	See Report			See Attached Report	11/19/2015	14:55	СМ
Magnesium	See Report			See Attached Report	11/19/2015	14:55	СМ
Manganese	See Report			See Attached Report	11/19/2015	14:55	СМ
Potassium	See Report			See Attached Report	11/19/2015	14:55	СМ
Sodium	See Report			See Attached Report	11/19/2015	14:55	СМ

QC Results

Constituent	QC Units	Blank	Matrix	Theoretical Spike	Matrix Spike	Matrix Spike Duplicate	Lab Control Spike	Precision %	Accuracy %	Response %
Calcium		NA	NA	NA	NA	NA	NA	NA	NA	NA
Iron		NA	NA	NA	NA	NA	NA	NA	NA	NA
Magnesium		NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese		NA	NA	NA	NA	NA	NA	NA	NA	NA
Potassium		NA	NA	NA	NA	NA	NA	NA	NA	NA
Sodium		NA	NA	NA	NA	NA	NA	NA	NA	NA

Notes

Authorized By: _ Amon Smider_____

_12/04/2015

Amos Snider Laboratory Supervisor

ELAP Accreditation Laboratory Certificate #2776. Unless otherwise noted, all samples were received in acceptable condition. The result(s) in this report relate only to the portion of the sample(s) tested. This report does not constitute a release of product for consumption. This report shall not be reproduced in full, without written approval of the laboratory. This document contains confidential commercial information pursuant to 5 U.S.C. SEC. 552(b)(4).

217 Primo Way • Modesto, California 95358 • Office (209) 538-8111 • FAX (209) 538-3966

Bear Valley Water Dist.

P.O. Box 5027 Bear Valley,CA 95223

Laboratory Number: 36252702 Description: Waste Water, MW #2, 11-13-15, 947

Analy	vtical	Results	\$
/	, uoui	1.00 and	•

Constituent		Result		Minimum Level	Method Detection Limit	Method Reference	Analysis Date	Analysis Time	Analyst
Total Dissolved Solids (TDS)		90	mg/l	20	6.8	SM 2540C	11/19/2015	15:25	JG
pH		6.1	รบั	0.5	0.2	SM 4500-H B	11/13/2015	09:46	AS
Total Alkalinity (as CaCO3)		26	mg/l	5.0	3.0	SM 2320B	12/01/2015	09:50	NH
Bicarbonate Alkalinity (as CaCO3)		26	mg/l			SM 2320B	12/01/2015	09:50	NH
Carbonate Alkalinity (as CaCO3)	<	1	mg/l			SM 2320B	12/01/2015	09:50	NH
Hydroxide Alkalinity (as CaCO3)	<	1	mg/l			SM 2320B	12/01/2015	09:50	NH
Ammoniacal Nitrogen by Kjeldahl	<	1	mg/l	1.0	0.8	SM 4500 NH3 C	12/02/2015	08:30	SKS
Total Kjeldahl Nitrogen (TKN)	<	1	mg/l	1.0	0.8	SM 4500-Norg B	11/18/2015	08:30	SKS
Electrical Conductivity (E.C.)		60	umho/cm	1.0	1.0	SM 2510B ⁵	11/13/2015	09:46	AS
Chloride		0.9	mg/l	0.2	0.01	EPA 300.0	11/13/2015	17:54	JA
Sulfate	<	0.5	mg/l	0.5	0.1	EPA 300.0	11/13/2015	17:54	JA
Nitrate Nitrogen	<	0.2	mg/l	0.1	0.014	EPA 300.0	11/13/2015	17:54	JA
Total Coliform (20 T LST)		6.8	MPN/100ml			SM 9221B	11/14/2015	NA	SM
Fecal Coliform (20 T LST)		2.0	MPN/100ml			SM 9221E	11/14/2015	NA	SM
Boron		See Report				See Attached Report	11/19/2015	14:55	CM

QC Results

Constituent	QC Units		Blank		Matrix	Theoretical Spike	Matrix Spike	Matrix Spike Duplicate	Lab Control Spike	Precision %	Accuracy %	Response %
Total Dissolved Solids (TDS)	mg/l	<	20		510	3000	3500	3500	3000	0.9	100.5	100.0
pH	SŪ		NA		NA	NA	NA	NA	NA	NA	NA	NA
Total Alkalinity (as CaCO3)	mg/l	<	5		280	300	570	570	300	0.0	98.6	100.6
Bicarbonate Alkalinity (as CaCO3)	mg/l		NA		NA	NA	NA	NA	NA	NA	NA	NA
Carbonate Alkalinity (as CaCO3)	mg/l		NA		NA	NA	NA	NA	NA	NA	NA	NA
Hydroxide Alkalinity (as CaCO3)	mg/l		NA		NA	NA	NA	NA	NA	NA	NA	NA
Ammoniacal Nitrogen by Kjeldahl	mg/l	<	1	<	1	28	28	28	28	0.0	99.2	99.2
Total Kjeldahl Nitrogen (TKN)	mg/l	<	1	<	1	28	28	28	28	0.2	99.6	99.2
Electrical Conductivity (E.C.)	umho/cm		NA		NA	NA	NA	NA	NA	NA	NA	NA
Chloride	mg/l	<	0.2		7.9	0.8	8.7	8.7	0.8	0.5	101.3	100.0
Sulfate	mg/l	<	0.5		18	5.0	23	23	4.8	0.3	91.8	95.6
Nitrate Nitrogen	mg/l	<	0.1		0.6	0.9	1.4	1.4	0.9	0.6	92.0	94.3
Total Coliform (20 T LST)	MPN/100ml		NA		NA	NA	NA	NA	NA	NA	NA	NA
Fecal Coliform (20 T LST)	MPN/100ml		NA		NA	NA	NA	NA	NA	NA	NA	NA
Boron			NA		NA	NA	NA	NA	NA	NA	<u>NA</u>	NA

Notes

At 25 °C

 Report #
 L2.2-14R35625

 Report Date:
 12/04/2015

 Received Date:
 11/14/2015

 Work Order:
 362527

Page 3 of 12

217 Primo Way • Modesto, California 95358 • Office (209) 538-8111 • FAX (209) 538-3966

Bear Valley Water Dist.

P.O. Box 5027 Bear Valley,CA 95223

Laboratory Number: 36252702 Description: Waste Water, MW #2, 11-13-15, 947

Report #	L2.2-14R35625
Report Date:	12/04/2015
Received Date:	11/14/2015
Work Order:	362527

Analytical Results

Constituent	Result	Minimum Level	Method Detection Limit	Method Reference	Analysis Date	Analysis Time	Analyst
Calcium	See Report			See Attached Report	11/19/2015	14:55	СМ
Iron	See Report			See Attached Report	11/19/2015	14:55	СМ
Magnesium	See Report			See Attached Report	11/19/2015	14:55	СМ
Manganese	See Report			See Attached Report	11/19/2015	14:55	СМ
Potassium	See Report			See Attached Report	11/19/2015	14:55	СМ
Sodium	See Report			See Attached Report	11/19/2015	14:55	СМ

QC Results

Constituent	QC Units	Blank	Matrix	Theoretical Spike	Matrix Spike	Matrix Spike Duplicate	Lab Control Spike	Precision %	Accuracy %	Response %
Calcium		NA	NA	NA	NA	NA	NA	NA	NA	NA
Iron		NA	NA	NA	NA	NA	NA	NA	NA	NA
Magnesium		NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese		NA	NA	NA	NA	NA	NA	NA	NA	NA
Potassium		NA	NA	NA	NA	NA	NA	NA	NA	NA
Sodium		NA	NA	NA	NA	NA	NA	NA	NA	NA

Notes

Authorized By: _______ Smide_____

_12/04/2015

Amos Snider Laboratory Supervisor

ELAP Accreditation Laboratory Certificate #2776. Unless otherwise noted, all samples were received in acceptable condition. The result(s) in this report relate only to the portion of the sample(s) tested. This report does not constitute a release of product for consumption. This report shall not be reproduced in full, without written approval of the laboratory. This document contains confidential commercial information pursuant to 5 U.S.C. SEC. 552(b)(4).

217 Primo Way • Modesto, California 95358 • Office (209) 538-8111 • FAX (209) 538-3966

Bear Valley Water Dist.

P.O. Box 5027 Bear Valley,CA 95223

Laboratory Number: 36252703 Description: Waste Water, MW #3, 11-13-15, 1126

Analytical	Results

Constituent		Result		Minimum Level	Method Detection Limit	Method Reference	Analysis Date	Analysis Time	Analyst
Total Dissolved Solids (TDS)		67	mg/l	20	6.8	SM 2540C	11/19/2015	15:25	JG
pH		6.0	SŪ	0.5	0.2	SM 4500-H B	11/13/2015	11:25	AS
Total Alkalinity (as CaCO3)		24	mg/l	5.0	3.0	SM 2320B	12/01/2015	09:50	NH
Bicarbonate Alkalinity (as CaCO3)		24	mg/l			SM 2320B	12/01/2015	09:50	NH
Carbonate Alkalinity (as CaCO3)	<	1	mg/l			SM 2320B	12/01/2015	09:50	NH
Hydroxide Alkalinity (as CaCO3)	<	1	mg/l			SM 2320B	12/01/2015	09:50	NH
Ammoniacal Nitrogen by Kjeldahl	<	1	mg/l	1.0	0.8	SM 4500 NH3 C	12/02/2015	08:30	SKS
Total Kjeldahl Nitrogen (TKN)	<	1	mg/l	1.0	0.8	SM 4500-Norg B	11/18/2015	08:30	SKS
Electrical Conductivity (E.C.)		68	umho/cm	1.0	1.0	SM 2510B ⁵	11/12/2015	11:25	AS
Chloride		4.1	mg/l	0.2	0.01	EPA 300.0	11/13/2015	17:54	JA
Sulfate		1.3	mg/l	0.5	0.1	EPA 300.0	11/13/2015	17:54	JA
Nitrate Nitrogen	<	0.2	mg/l	0.1	0.014	EPA 300.0	11/13/2015	17:54	JA
Total Coliform (20 T LST)	<	1.8	MPN/100ml			SM 9221B	11/14/2015	NA	SM
Fecal Coliform (20 T LST)	<	1.8	MPN/100ml			SM 9221E	11/14/2015	NA	SM
Boron		See Report				See Attached Report	11/19/2015	14:55	СМ

QC Results

Constituent	QC Units		Blank		Matrix	Theoretical Spike	Matrix Spike	Matrix Spike Duplicate	Lab Control Spike	Precision %	Accuracy %	Response %
Total Dissolved Solids (TDS)	mg/l	<	20		510	3000	3500	3500	3000	0.9	100.5	100.0
pH	SŪ		NA		NA	NA	NA	NA	NA	NA	NA	NA
Total Alkalinity (as CaCO3)	mg/l	<	5		280	300	570	570	300	0.0	98.6	100.6
Bicarbonate Alkalinity (as CaCO3)	mg/l		NA		NA	NA	NA	NA	NA	NA	NA	NA
Carbonate Alkalinity (as CaCO3)	mg/l		NA		NA	NA	NA	NA	NA	NA	NA	NA
Hydroxide Alkalinity (as CaCO3)	mg/l		NA		NA	NA	NA	NA	NA	NA	NA	NA
Ammoniacal Nitrogen by Kjeldahl	mg/l	<	1	<	1	28	28	28	28	0.0	99.2	99.2
Total Kjeldahl Nitrogen (TKN)	mg/l	<	1	<	1	28	28	28	28	0.2	99.6	99.2
Electrical Conductivity (E.C.)	umho/cm		NA		NA	NA	NA	NA	NA	NA	NA	NA
Chloride	mg/l	<	0.2		7.9	0.8	8.7	8.7	0.8	0.5	101.3	100.0
Sulfate	mg/l	<	0.5		18	5.0	23	23	4.8	0.3	91.8	95.6
Nitrate Nitrogen	mg/l	<	0.1		0.6	0.9	1.4	1.4	0.9	0.6	92.0	94.3
Total Coliform (20 T LST)	MPN/100ml		NA		NA	NA	NA	NA	NA	NA	NA	NA
Fecal Coliform (20 T LST)	MPN/100ml		NA		NA	NA	NA	NA	NA	NA	NA	NA
Boron			NA		NA	NA	NA	NA	NA	NA	<u>NA</u>	NA

Notes

At 25 °C

 Report #
 L2.2-14R35625

 Report Date:
 12/04/2015

 Received Date:
 11/14/2015

 Work Order:
 362527

217 Primo Way • Modesto, California 95358 • Office (209) 538-8111 • FAX (209) 538-3966

Bear Valley Water Dist.

P.O. Box 5027 Bear Valley, CA 95223

Laboratory Number: 36252703 Waste Water, MW #3, 11-13-15, 1126

Report #	L2.2-14R35625
Report Date:	12/04/2015
Received Date:	11/14/2015
Work Order:	362527

Description:

Analytical Results

Constituent	Result	Minimum Level	Method Detection Limit	Method Reference	Analysis Date	Analysis Time	Analyst
Calcium	See Report			See Attached Report	11/19/2015	14:55	СМ
Iron	See Report			See Attached Report	11/19/2015	14:55	СМ
Magnesium	See Report			See Attached Report	11/19/2015	14:55	СМ
Manganese	See Report			See Attached Report	11/19/2015	14:55	СМ
Potassium	See Report			See Attached Report	11/19/2015	14:55	СМ
Sodium	See Report			See Attached Report	11/19/2015	14:55	СМ

QC Results

Constituent	QC Units	Blank	Matrix	Theoretical Spike	Matrix Spike	Matrix Spike Duplicate	Lab Control Spike	Precision %	Accuracy %	Response %
Calcium		NA	NA	NA	NA	NA	NA	NA	NA	NA
Iron		NA	NA	NA	NA	NA	NA	NA	NA	NA
Magnesium		NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese		NA	NA	NA	NA	NA	NA	NA	NA	NA
Potassium		NA	NA	NA	NA	NA	NA	NA	NA	NA
Sodium		NA	NA	NA	NA	NA	NA	NA	NA	NA

Notes

Authorized By: _ amos Smider_____

12/04/2015

Amos Snider Laboratory Supervisor

ELAP Accreditation Laboratory Certificate #2776. Unless otherwise noted, all samples were received in acceptable condition. The result(s) in this report relate only to the portion of the sample(s) tested. This report does not constitute a release of product for consumption. This report shall not be reproduced in full, without written approval of the laboratory. This document contains confidential commercial information pursuant to 5 U.S.C. Page 6 of 12 SEC. 552(b)(4).

217 Primo Way • Modesto, California 95358 • Office (209) 538-8111 • FAX (209) 538-3966

Bear Valley Water Dist.

P.O. Box 5027 Bear Valley, CA 95223

Description:

L2.2-14R35625 Report # Report Date: 12/04/2015 Received Date: 11/14/2015 Work Order: 362527

Laboratory Number: 36252704 Waste Water, MW #4, 11-13-15, 1251

Analytical Results

Constituent		Result		Minimum Level	Method Detection Limit	Method Reference	Analysis Date	Analysis Time	Analyst
Total Dissolved Solids (TDS)		130	mg/l	20	6.8	SM 2540C	11/19/2015	15:25	JG
pH		6.8	SŪ	0.5	0.2	SM 4500-H B	11/13/2015	12:50	AS
Total Alkalinity (as CaCO3)		78	mg/l	5.0	3.0	SM 2320B	12/01/2015	09:50	NH
Bicarbonate Alkalinity (as CaCO3)		78	mg/l			SM 2320B	12/01/2015	09:50	NH
Carbonate Alkalinity (as CaCO3)	<	1	mg/l			SM 2320B	12/01/2015	09:50	NH
Hydroxide Alkalinity (as CaCO3)	<	1	mg/l			SM 2320B	12/01/2015	09:50	NH
Ammoniacal Nitrogen by Kjeldahl	<	1	mg/l	1.0	0.8	SM 4500 NH3 C	12/02/2015	08:30	SKS
Total Kjeldahl Nitrogen (TKN)	<	1	mg/l	1.0	0.8	SM 4500-Norg B	11/18/2015	08:30	SKS
Electrical Conductivity (E.C.)		190	umho/cm	1.0	1.0	SM 2510B ⁵	11/13/2015	12:50	AS
Chloride		7.7	mg/l	0.2	0.01	EPA 300.0	11/13/2015	17:54	JA
Sulfate		5.3	mg/l	0.5	0.1	EPA 300.0	11/13/2015	17:54	JA
Nitrate Nitrogen	<	0.2	mg/l	0.1	0.014	EPA 300.0	11/13/2015	17:54	JA
Total Coliform (20 T LST)	<	1.8	MPN/100ml			SM 9221B	11/14/2015	NA	SM
Fecal Coliform (20 T LST)	<	1.8	MPN/100ml			SM 9221E	11/14/2015	NA	SM
Boron		See Report				See Attached Report	11/19/2015	14:55	СМ

QC Results

Constituent	QC Units		Blank		Matrix	Theoretical Spike	Matrix Spike	Matrix Spike Duplicate	Lab Control Spike	Precision %	Accuracy %	Response %
Total Dissolved Solids (TDS)	mg/l	<	20		510	3000	3500	3500	3000	0.9	100.5	100.0
pH	SU		NA		NA	NA	NA	NA	NA	NA	NA	NA
Total Alkalinity (as CaCO3)	mg/l	<	5		280	300	570	570	300	0.0	98.6	100.6
Bicarbonate Alkalinity (as CaCO3)	mg/l		NA		NA	NA	NA	NA	NA	NA	NA	NA
Carbonate Alkalinity (as CaCO3)	mg/l		NA		NA	NA	NA	NA	NA	NA	NA	NA
Hydroxide Alkalinity (as CaCO3)	mg/l		NA		NA	NA	NA	NA	NA	NA	NA	NA
Ammoniacal Nitrogen by Kjeldahl	mg/l	<	1	<	1	28	28	28	28	0.0	99.2	99.2
Total Kjeldahl Nitrogen (TKN)	mg/l	<	1	<	1	28	28	28	28	0.2	99.6	99.2
Electrical Conductivity (E.C.)	umho/cm		NA		NA	NA	NA	NA	NA	NA	NA	NA
Chloride	mg/l	<	0.2		7.9	0.8	8.7	8.7	0.8	0.5	101.3	100.0
Sulfate	mg/l	<	0.5		18	5.0	23	23	4.8	0.3	91.8	95.6
Nitrate Nitrogen	mg/l	<	0.1		0.6	0.9	1.4	1.4	0.9	0.6	92.0	94.3
Total Coliform (20 T LST)	MPN/100ml		NA		NA	NA	NA	NA	NA	NA	NA	NA
Fecal Coliform (20 T LST)	MPN/100ml		NA		NA	NA	NA	NA	NA	NA	NA	NA
Boron			NA		NA	NA	NA	NA	NA	NA	NA	NA

Notes

At 25 °C

217 Primo Way • Modesto, California 95358 • Office (209) 538-8111 • FAX (209) 538-3966

Bear Valley Water Dist.

P.O. Box 5027 Bear Valley,CA 95223

Laboratory Number: 36252704 Description: Waste Water, MW #4, 11-13-15, 1251

Report #	L2.2-14R35625
Report Date:	12/04/2015
Received Date:	11/14/2015
Work Order:	362527

Analytical Results

Constituent	Result	Minimum Level	Method Detection Limit	Method Reference	Analysis Date	Analysis Time	Analyst
Calcium	See Report			See Attached Report	11/19/2015	14:55	СМ
Iron	See Report			See Attached Report	11/19/2015	14:55	СМ
Magnesium	See Report			See Attached Report	11/19/2015	14:55	СМ
Manganese	See Report			See Attached Report	11/19/2015	14:55	CM
Potassium	See Report			See Attached Report	11/19/2015	14:55	СМ
Sodium	See Report			See Attached Report	11/19/2015	14:55	СМ

QC Results

Constituent	QC Units	Blank	Matrix	Theoretical Spike	Matrix Spike	Matrix Spike Duplicate	Lab Control Spike	Precision %	Accuracy %	Response %
Calcium		NA	NA	NA	NA	NA	NA	NA	NA	NA
Iron		NA	NA	NA	NA	NA	NA	NA	NA	NA
Magnesium		NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese		NA	NA	NA	NA	NA	NA	NA	NA	NA
Potassium		NA	NA	NA	NA	NA	NA	NA	NA	NA
Sodium		NA	NA	NA	NA	NA	NA	NA	NA	NA

Notes

Authorized By: _ amos Smider_____

_12/04/2015

Amos Snider Laboratory Supervisor

ELAP Accreditation Laboratory Certificate #2776. Unless otherwise noted, all samples were received in acceptable condition. The result(s) in this report relate only to the portion of the sample(s) tested. This report does not constitute a release of product for consumption. This report shall not be reproduced in full, without written approval of the laboratory. This document contains confidential commercial information pursuant to 5 U.S.C. SEC. 552(b)(4).

217 Primo Way • Modesto, California 95358 • Office (209) 538-8111 • FAX (209) 538-3966

Bear Valley Water Dist.

P.O. Box 5027 Bear Valley,CA 95223

 Laboratory Number:
 36252705

 Description:
 Waste Water, MW #5, 11-12-15, 1352

		_
Analy	vtical	Results

Constituent		Result		Minimum Level	Method Detection Limit	Method Reference	Analysis Date	Analysis Time	Analyst
Total Dissolved Solids (TDS)		220	mg/l	20	6.8	SM 2540C	11/19/2015	15:25	JG
pH		6.6	SŪ	0.5	0.2	SM 4500-H B	11/12/2015	13:51	AS
Total Alkalinity (as CaCO3)		42	mg/l	5.0	3.0	SM 2320B	12/01/2015	09:50	NH
Bicarbonate Alkalinity (as CaCO3)		42	mg/l			SM 2320B	12/01/2015	09:50	NH
Carbonate Alkalinity (as CaCO3)	<	1	mg/l			SM 2320B	12/01/2015	09:50	NH
Hydroxide Alkalinity (as CaCO3)	<	1	mg/l			SM 2320B	12/01/2015	09:50	NH
Ammoniacal Nitrogen by Kjeldahl	<	1	mg/l	1.0	0.8	SM 4500 NH3 C	12/02/2015	08:30	SKS
Total Kjeldahl Nitrogen (TKN)	<	1	mg/l	1.0	0.8	SM 4500-Norg B	11/18/2015	08:30	SKS
Electrical Conductivity (E.C.)		110	umho/cm	1.0	1.0	SM 2510B ⁵	11/13/2015	13:51	AS
Chloride		6.7	mg/l	0.2	0.01	EPA 300.0	11/13/2015	17:54	JA
Sulfate		1.0	mg/l	0.5	0.1	EPA 300.0	11/13/2015	17:54	JA
Nitrate Nitrogen	<	0.2	mg/l	0.1	0.014	EPA 300.0	11/13/2015	17:54	JA
Boron		See Report				See Attached Report	11/19/2015	14:55	СМ
Calcium		See Report				See Attached Report	11/19/2015	14:55	СМ
Iron		See Report				See Attached Report	11/19/2015	14:55	СМ

QC Results

Constituent	QC Units		Blank		Matrix	Theoretical Spike	Matrix Spike	Matrix Spike Duplicate	Lab Control Spike	Precision %	Accuracy %	Response %
Total Dissolved Solids (TDS)	mg/l	<	20		510	3000	3500	3500	3000	0.9	100.5	100.0
pH	SŪ		NA		NA	NA	NA	NA	NA	NA	NA	NA
Total Alkalinity (as CaCO3)	mg/l	<	5		280	300	570	570	300	0.0	98.6	100.6
Bicarbonate Alkalinity (as CaCO3)	mg/l		NA		NA	NA	NA	NA	NA	NA	NA	NA
Carbonate Alkalinity (as CaCO3)	mg/l		NA		NA	NA	NA	NA	NA	NA	NA	NA
Hydroxide Alkalinity (as CaCO3)	mg/l		NA		NA	NA	NA	NA	NA	NA	NA	NA
Ammoniacal Nitrogen by Kjeldahl	mg/l	<	1	<	1	28	28	28	28	0.0	99.2	99.2
Total Kjeldahl Nitrogen (TKN)	mg/l	<	1	<	1	28	28	28	28	0.2	99.6	99.2
Electrical Conductivity (E.C.)	umho/cm		NA		NA	NA	NA	NA	NA	NA	NA	NA
Chloride	mg/l	<	0.2		7.9	0.8	8.7	8.7	0.8	0.5	101.3	100.0
Sulfate	mg/l	<	0.5		18	5.0	23	23	4.8	0.3	91.8	95.6
Nitrate Nitrogen	mg/l	<	0.1		0.6	0.9	1.4	1.4	0.9	0.6	92.0	94.3
Boron			NA		NA	NA	NA	NA	NA	NA	NA	NA
Calcium			NA		NA	NA	NA	NA	NA	NA	NA	NA
Iron			NA		NA	NA	NA	NA	NA	NA	NA	NA

Notes

At 25 °C

 Report #
 L2.2-14R35625

 Report Date:
 12/04/2015

 Received Date:
 11/14/2015

 Work Order:
 362527

Page 9 of 12

217 Primo Way • Modesto, California 95358 • Office (209) 538-8111 • FAX (209) 538-3966

Bear Valley Water Dist.

P.O. Box 5027 Bear Valley,CA 95223

 Laboratory Number:
 36252705

 Description:
 Waste Water, MW #5, 11-12-15, 1352

Report #	L2.2-14R35625
Report Date:	12/04/2015
Received Date:	11/14/2015
Work Order:	362527

Analytical Results

Constituent	Result	Minimum Level	Method Detection Limit	Method Reference	Analysis Date	Analysis Time	Analyst
Magnesium	See Report			See Attached Report	11/19/2015	14:55	СМ
Manganese	See Report			See Attached Report	11/19/2015	14:55	СМ
Potassium	See Report			See Attached Report	11/19/2015	14:55	СМ
Sodium	See Report			See Attached Report	11/19/2015	14:55	СМ
				-			

QC Results

Constituent	QC Units	Blank	Matrix	Theoretical Spike	Matrix Spike	Matrix Spike Duplicate	Lab Control Spike	Precision %	Accuracy %	Response %
Magnesium		NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese		NA	NA	NA	NA	NA	NA	NA	NA	NA
Potassium		NA	NA	NA	NA	NA	NA	NA	NA	NA
Sodium		NA	NA	NA	NA	NA	NA	NA	NA	NA

Notes

_12/04/2015

Amos Snider Laboratory Supervisor

ELAP Accreditation Laboratory Certificate #2776. Unless otherwise noted, all samples were received in acceptable condition. The result(s) in this report relate only to the portion of the sample(s) tested. This report does not constitute a release of product for consumption. This report shall not be reproduced in full, without written approval of the laboratory. This document contains confidential commercial information pursuant to 5 U.S.C. SEC. 552(b)(4).

217 Primo Way • Modesto, California 95358 • Office (209) 538-8111 • FAX (209) 538-3966

Bear Valley Water Dist.

P.O. Box 5027 Bear Valley,CA 95223

 Laboratory Number:
 36252706

 Description:
 Waste Water, MW #6, 11-12-15, 1632

Anal	vtical	Resu	lts
/ 1101	Juoui	1.000	

Constituent		Result		Minimum Level	Method Detection Limit	Method Reference	Analysis Date	Analysis Time	Analyst
Total Dissolved Solids (TDS)		120	mg/l	20	6.8	SM 2540C	11/19/2015	15:25	JG
pH		6.2	SŪ	0.5	0.2	SM 4500-H B	11/12/2015	16:31	AS
Total Alkalinity (as CaCO3)		90	mg/l	5.0	3.0	SM 2320B	12/01/2015	09:50	NH
Bicarbonate Alkalinity (as CaCO3)		90	mg/l			SM 2320B	12/01/2015	09:50	NH
Carbonate Alkalinity (as CaCO3)	<	1	mg/l			SM 2320B	12/01/2015	09:50	NH
Hydroxide Alkalinity (as CaCO3)	<	1	mg/l			SM 2320B	12/01/2015	09:50	NH
Ammoniacal Nitrogen by Kjeldahl	<	1	mg/l	1.0	0.8	SM 4500 NH3 C	12/02/2015	08:30	SKS
Total Kjeldahl Nitrogen (TKN)	<	1	mg/l	1.0	0.8	SM 4500-Norg B	11/18/2015	08:30	SKS
Electrical Conductivity (E.C.)		210	umho/cm	1.0	1.0	SM 2510B ⁵	11/12/2015	16:31	AS
Chloride		9.7	mg/l	0.2	0.01	EPA 300.0	11/13/2015	17:54	JA
Sulfate		0.8	mg/l	0.5	0.1	EPA 300.0	11/13/2015	17:54	JA
Nitrate Nitrogen	<	0.2	mg/l	0.1	0.014	EPA 300.0	11/13/2015	17:54	JA
Total Coliform (20 T LST)	<	1.8	MPN/100ml			SM 9221B	11/14/2015	NA	SM
Fecal Coliform (20 T LST)	<	1.8	MPN/100ml			SM 9221E	11/14/2015	NA	SM
Boron		See Report				See Attached Report	11/19/2015	14:55	CM

QC Results

Constituent	QC Units		Blank		Matrix	Theoretical Spike	Matrix Spike	Matrix Spike Duplicate	Lab Control Spike	Precision %	Accuracy %	Response %
Total Dissolved Solids (TDS)	mg/l	<	20		510	3000	3500	3500	3000	0.9	100.5	100.0
pH	SŪ		NA		NA	NA	NA	NA	NA	NA	NA	NA
Total Alkalinity (as CaCO3)	mg/l	<	5		280	300	570	570	300	0.0	98.6	100.6
Bicarbonate Alkalinity (as CaCO3)	mg/l		NA		NA	NA	NA	NA	NA	NA	NA	NA
Carbonate Alkalinity (as CaCO3)	mg/l		NA		NA	NA	NA	NA	NA	NA	NA	NA
Hydroxide Alkalinity (as CaCO3)	mg/l		NA		NA	NA	NA	NA	NA	NA	NA	NA
Ammoniacal Nitrogen by Kjeldahl	mg/l	<	1	<	1	28	28	28	28	0.0	99.2	99.2
Total Kjeldahl Nitrogen (TKN)	mg/l	<	1	<	1	28	28	28	28	0.2	99.6	99.2
Electrical Conductivity (E.C.)	umho/cm		NA		NA	NA	NA	NA	NA	NA	NA	NA
Chloride	mg/l	<	0.2		7.9	0.8	8.7	8.7	0.8	0.5	101.3	100.0
Sulfate	mg/l	<	0.5		18	5.0	23	23	4.8	0.3	91.8	95.6
Nitrate Nitrogen	mg/l	<	0.1		0.6	0.9	1.4	1.4	0.9	0.6	92.0	94.3
Total Coliform (20 T LST)	MPN/100ml		NA		NA	NA	NA	NA	NA	NA	NA	NA
Fecal Coliform (20 T LST)	MPN/100ml		NA		NA	NA	NA	NA	NA	NA	NA	NA
Boron			NA		NA	NA	NA	NA	NA	NA	NA	NA

Notes

At 25 °C

 Report #
 L2.2-14R35625

 Report Date:
 12/04/2015

 Received Date:
 11/14/2015

 Work Order:
 362527

217 Primo Way • Modesto, California 95358 • Office (209) 538-8111 • FAX (209) 538-3966

Bear Valley Water Dist.

P.O. Box 5027 Bear Valley,CA 95223

Laboratory Number: 36252706 Description: Waste Water, MW #6, 11-12-15, 1632

Report #	L2.2-14R35625
Report Date:	12/04/2015
Received Date:	11/14/2015
Work Order:	362527

Analytical Results

Constituent	Result	Minimum Level	Method Detection Limit	Method Reference	Analysis Date	Analysis Time	Analyst
Calcium	See Report			See Attached Report	11/19/2015	14:55	СМ
Iron	See Report			See Attached Report	11/19/2015	14:55	СМ
Magnesium	See Report			See Attached Report	11/19/2015	14:55	СМ
Manganese	See Report			See Attached Report	11/19/2015	14:55	СМ
Potassium	See Report			See Attached Report	11/19/2015	14:55	СМ
Sodium	See Report			See Attached Report	11/19/2015	14:55	СМ

QC Results

Constituent	QC Units	Blank	Matrix	Theoretical Spike	Matrix Spike	Matrix Spike Duplicate	Lab Control Spike	Precision %	Accuracy %	Response %
Calcium		NA	NA	NA	NA	NA	NA	NA	NA	NA
Iron		NA	NA	NA	NA	NA	NA	NA	NA	NA
Magnesium		NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese		NA	NA	NA	NA	NA	NA	NA	NA	NA
Potassium		NA	NA	NA	NA	NA	NA	NA	NA	NA
Sodium		NA	NA	NA	NA	NA	NA	NA	NA	NA

Notes

Authorized By: _______ Smide_____

_12/04/2015

Amos Snider Laboratory Supervisor

ELAP Accreditation Laboratory Certificate #2776. Unless otherwise noted, all samples were received in acceptable condition. The result(s) in this report relate only to the portion of the sample(s) tested. This report does not constitute a release of product for consumption. This report shall not be reproduced in full, without written approval of the laboratory. This document contains confidential commercial information pursuant to 5 U.S.C. SEC. 552(b)(4).

IEH ANALYTICAL LABORATORIES LABORATORY & CONSULTING SERVICES 3927 AURORA AVENUE NORTH, SEATTLE, WA 98103 PHONE: (206) 632-2715

FAX: (206) 632-2417

CASE FILE NUMBER:	JLA052-63	PAGE 1			
REPORT DATE:	11/23/15				
DATE SAMPLED:	11/13/15	DATE RECEIVED:	11/17/15		
FINAL REPORT, LABORATOR	Y ANALYSIS OF SELECT	ED PARAMETERS ON WAT	ΓER		
SAMPLES FROM JL ANALYTI	CAL / BEAR VALLEY WA	TER DISTRICT			

CASE NARRATIVE

Six water samples were received by the laboratory in good condition and analyzed according to the chain of custody. No difficulties were encountered in the preparation or analysis of these samples. Sample data follows while QA/QC data is contained on the subsequent page.

SAMPLE DATA

				DISSOLV	ED METALS		
		MAGNESIUM	SODIUM	BORON	POTASSIUM	IRON	MANGANESE
SAMPLE DESCRIPTION	LAB ID	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
MW #1	362527-01	4.57	5.09	< 0.030	2.99	< 0.030	0.205
MW #2	362527-02	1.91	2.35	< 0.030	0.965	< 0.030	0.023
MW #3	362527-03	1.45	5.08	< 0.030	1.12	< 0.030	< 0.010
MW #4	362527-04	5.74	8.15	< 0.030	11.4	< 0.030	< 0.010
MW #5	362527-05	3.71	4.21	< 0.030	2.60	< 0.030	0.071
MW #6	362527-06	5.95	7.50	< 0.030	1.42	0.176	0.815

		DISS. METALS			
		CALCIUM	HARDNESS		
SAMPLE DESCRIPTION	LAB ID	(mg/L)	(mgCaCO3/L)		
MW #1	362527-01	17.3	62.0		
MW #2	362527-02	5.87	22.5		
MW #3	362527-03	5.25	19.1		
MW #4	362527-04	18.4	69.5		
MW #5	362527-05	9.54	39.1		
MW #6	362527-06	23.8	84		

IEH ANALYTICAL LABORATORIES LABORATORY & CONSULTING SERVICES 3927 AURORA AVENUE NORTH, SEATTLE, WA 98103

PHONE: (206) 632-2715 FAX: (206) 632-2417

CASE FILE NUMBER:	JLA052-63	PAC	GE 2
REPORT DATE:	11/23/15		
DATE SAMPLED:	11/13/15	DATE RECEIVED:	11/17/15
FINAL REPORT, LABORATO	ORY ANALYSIS OF SEL	ECTED PARAMETERS ON WAT	TER
SAMPLES FROM JL ANALY	FICAL / BEAR VALLEY	WATER DISTRICT	

QA/QC DATA

QC PARAMETER	MAGNESIUM	SODIUM	BORON	POTASSIUM	IRON	MANGANESE
	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
METHOD	EPA 200.7					
DATE ANALYZED	11/19/15	11/19/15	11/19/15	11/19/15	11/19/15	11/19/15
REPORTING LIMIT	0.100	0.500	0.030	0.500	0.030	0.010
DUPLICATE						
SAMPLE ID	BATCH	BATCH	BATCH	BATCH	BATCH	BATCH
ORIGINAL	1.88	9.68	0.084	3.58	0.204	< 0.010
DUPLICATE	1.87	9.59	0.083	3.52	0.203	< 0.010
RPD	0.69%	0.98%	0.96%	1.66%	0.39%	NC
SPIKE SAMPLE						
SAMPLE ID	BATCH	BATCH	BATCH	BATCH	BATCH	BATCH
ORIGINAL	1.88	9.68	0.084	3.58	0.204	< 0.010
SPIKED SAMPLE	12.2	20.5	0.582	13.8	5.11	0.496
SPIKE ADDED	10.0	10.0	0.500	10.0	5.00	0.500
% RECOVERY	103.40%	107.81%	99.50%	102.64%	98.10%	99.20%
						-
QC CHECK						
FOUND	9.75	9.47	0.464	9.24	0.503	0.495
TRUE	10.0	10.0	0.500	10.0	0.500	0.500
% RECOVERY	97.50%	94.70%	92.80%	92.40%	100.60%	99.00%
			-			·
BLANK	< 0.100	< 0.500	< 0.030	< 0.500	< 0.030	< 0.010

RPD = RELATIVE PERCENT DIFFERENCE.

NA = NOT APPLICABLE OR NOT AVAILABLE. NC = NOT CALCULABLE DUE TO ONE OR MORE VALUES BEING BELOW THE DETECTION LIMIT. OR = RECOVERY NOT CALCULABLE DUE TO SPIKE SAMPLE OUT OF RANGE OR SPIKE TOO LOW RELATIVE TO SAMPLE CONCENTRATION.

IEH ANALYTICAL LABORATORIES LABORATORY & CONSULTING SERVICES 3927 AURORA AVENUE NORTH, SEATTLE, WA 98103 PHONE: (206) 632-2715 FAX: (206) 632-2417

CASE FILE NUMBER:	JLA052-63	PAGE 3	
REPORT DATE:	11/23/15		
DATE SAMPLED:	11/13/15	DATE RECEIVED: 11/17/	15
FINAL REPORT, LABORATOF	RY ANALYSIS OF	SELECTED PARAMETERS ON WATER	
SAMPLES FROM JL ANALYTI	CAL / BEAR VAL	LEY WATER DISTRICT	

QA/QC DATA

QC PARAMETER	CALCIUM	HARDNESS
	(mg/L)	(mgCaCO3/L)
METHOD	EPA 200.7	SM18 2340B
DATE ANALYZED	11/19/15	11/19/15
REPORTING LIMIT	0.100	0.700
DUPLICATE		
SAMPLE ID	BATCH	BATCH
ORIGINAL	185	469
DUPLICATE	184	466
RPD	0.65%	0.65%
SPIKE SAMPLE		
SAMPLE ID	BATCH	
ORIGINAL	185	
SPIKED SAMPLE	196	
SPIKE ADDED	10.0	
% RECOVERY	107.00%	NA
QC CHECK		
FOUND	9.81	64.6
TRUE	10.0	66.2
% RECOVERY	98.10%	97.73%
BLANK	< 0.100	< 0.700

RPD = RELATIVE PERCENT DIFFERENCE. NA = NOT APPLICABLE OR NOT AVAILABLE. NC = NOT CALCULABLE DUE TO ONE OR MORE VALUES BEING BELOW THE DETECTION LIMIT. OR = RECOVERY NOT CALCULABLE DUE TO SPIKE SAMPLE OUT OF RANGE OR SPIKE TOO LOW RELATIVE TO SAMPLE CONCENTRATION.

SUBMITTED BY:

Mamien Hademsh"

Damien Gadomski, PhD Laboratory Manager

BEAR VALLEY WATER DISTRICT – THIRD TRI-ANNUAL 2015 GROUNDWATER MONITORING REPORT

Appendix C Historical Groundwater Elevations and Quality January 28, 2016

Appendix C Historical Groundwater Elevations and Quality

		Depth To GW	GW Elev. (ft,	Field	Field EC	Temp.	ORP	Dissolved Oxygen	Lab SC	CI	NO3-N	TKN	Ammo nia as	TDS	в	Са	Fe	Mg	Mn	К	Na	HCO3 as CaCO3
Well	Date	(ft)	NAVD88)	рН	(μS/cm)	(C)	(mV)	(mg/L)	(μS/cm)	(mg/L)	(mg/L)	(mg/L)	N	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
MW-1	9/1/2004	10.29	7103.79	6.7	221	4.8				NR³	<0.050	<1.0		166	NR ³		0.940		0.370		NR³	
MW-1	10/13/2004	12.73	7101.35	6.9	180	6.2				3.4	<0.1	1	<1	150	0.05		<0.02		0.350		7.0	
MW-1	8/11/2005	9.32	7104.76	6.5	150	6.4	71	5.5	160	1.2	<0.1	2	<1	200	<0.03	19.0	0.210	5.2	0.280	2.0	6.0	71
MW-1	9/15/2005	9.54	7104.54	7.0	150	6.4	56	7.9	160	3.6	<0.1	<1	<1	150	<0.03	20.0	0.730	5.3	0.300	4.0	6.0	76
MW-1	10/13/2005	9.50	7104.58	6.6	1482	7.1	138	7.5	170	2.2	<0.1	<1	<1	120	0.03	18.0	0.150	4.8	0.260	3.0	6.0	61
MW-1	6/29/2006	9.60	7104.48	6.9	125	5.1	103	1.7	140	1.6	<0.1	<1	<1	110	<0.03	14.0	0.060	3.9	0.140	<1	5.0	55
MW-1	8/2/2006	8.25	7105.83	7.7	156	6.9	65	4.3	170	1.4	<0.1	<1	<1	150	<0.03	20.0	<0.02	5.0	0.280	4.0	7.0	75
MW-1	10/10/2006	8.08	7106.00	6.8	171	5.9	70	2.7	180	1.5	<0.1	<1	<1	160	<0.03	22.0	0.130	5.7	0.360	2.0	7.0	70
MW-1	7/12/2007	10.10	7103.98	7.0	173	7.0	110	6.7	180	1.2	<0.1	<1	<1	220	<0.03	23.0	0.130	5.8	0.370	5.0	6.0	87.8
MW-1	8/29/2007	9.00	7105.08	7.1	180	7.7	-2	4.9	200	1.5	<0.1	<1	<1	170	0.037	25.0	0.340	5.8	0.430	4.4	6.0	96
MW-1	9/26/2007	12.30	7101.78	7.2	189	7.4	-121	4.7	200	1.0	<0.1	<1	<1	170	<0.03	23.0	0.140	6.0	0.380	4.0	6.7	100
MW-1	7/8/2008	10.25	7103.83	7.2	168	7.4	141	1.9	180	1.1	<0.1	<1	<1	170	< 0.03	21.0	0.060	6.0	0.270	4.0	6.0	65
MW-1	9/18/2008	9.70	7104.38	7.3	189	6.9	156	7.4	200	<1.0	<0.1	<1	<1	180	< 0.03	22.0	0.060	5.1	0.330	4.0	7.0	95
MW-1	1/16/2008	12.30	/101./8	7.6	180	6.4	78	7.1	190	1.2	<0.1	<0.1	<1	150	< 0.03	26.0	0.180	7.7	0.360	4.0	11.0	90
MVV-1	////2009	8.95	7105.13	7.2	168	6.8	469	6.2	180	0.8	<0.1	<1	<1	220	< 0.03	23.0	0.140	5.8	0.260	4.0	7.0	/5
IVIVV-1	9/30/2009	9.00	7105.08	6.2	194	6.8	52	1.9	190	0.6	<0.1	<1	<1	170	< 0.03	25.0	0.120	5.5	0.420	5.0	7.0	110
	7/12/2010	10.30	7103.78	2.1	142	0.3	281	1.0	190	1.1	0.3	1	<1	160	< 0.03	23.0	0.110	0.Z	0.280	4.0	9.0	100
	7/13/2010	8.80	7105.28	0.4	150	6.0	402	1.7	150	1.9	<0.1	<1	<1	140	< 0.03	19.0	0.040	4.7	0.220	3.0	6.U 7.0	05 70
	8/24/2010	9.03	7105.05	7.0	100	0.1	43	0.9	190	0.9	<0.1	< 6	< 1	170	< 0.03	20.0	<0.02	5.4 4.2	0.300	3.0	7.0	78 76
	11/4/2010	0.80	7105.28	5.9 5.6	1/3	0.3 5 7	132	2.0	170	2.2	<0.1	0	< 1	140	< 0.03	10.0	<0.02	4.3	0.310	3.0	0.0	70
	0/0/2011	0.10	7105.90	5.0 7.0	140	0.7 6.2	101	1.1	100	1.0	<0.1	2	<1	140	<0.03	14.7	0.017	4.1	0.200	2.9	4.0	70
	9/0/2011	9.54	7104.54	7.0	167	0.Z	30 61	1.5	100	1.1	<0.1	2	<1	140	<0.03	17.2	0.040	0.1 4.2	0.272	.। ১০	5.7 5.4	/0 07
	6/26/2011	9.44	7104.04	0.0 6.7	107	5.7	62	1.0	02	1.0	<0.1 0.2	Z _1	~1	140	<0.03	17.5	0.000	4.3	0.200	3.3	5.4 5.6	01 54
V VV -	7/21/2012	9.00	7103.08	0.7	93	0.4 9.5	102	2.1	200	1.7	0.Z	1	~1	150	<0.03	10.9	<pre>>0.02 0.021</pre>	4.1 5.9	0.190	2.0	5.0	00
	10/0/2012	12.30	7103.78	7.0 6.5	197	5.0	103 97	0.1	200	1.6	<0.1	ו כ	~1	140	<0.03	20.9	0.001	5.0	0.203	3.0	0.0	99 95
VVV - 1	5/30/2012	12.40	7101.00	6.4	104	5.0 6.1	108	1.5	150	1.0	<0.2	2 ~1	<1	140	<0.03	20.4	<0.105	5.0 4.5	0.322	3.0	0.0 5.3	80
N/\A/_1	8/21/2013	12 30	7103.00	6.6	133	0.1 8.1	276	23	180	1.7	<0.2	<1	<1	120	<0.03	18.6	<0.02 0.080	4.5	0.145	3.1	53	85
M\\/_1	10/15/2013	12.00	7101.03	6.4	103	7 1	514	13	190	1.5	<0.1	<1	<1	150	<0.03	25.7	0.000		0.200	4.7	6.8	100
M\\/_1	6/12/2014	11 04	7103.04	6.2	130	64	266	2.9	130	2.6	<0.2	<1	<1	120	<0.00	14.4	<0.000	4 1	0.000	25	5.0	58
M\\/_1	8/12/2014	10.67	7103.41	74	157	6.7	258	2.3	160	2.0	<0.2	<1	<1	140	<0.00	18.9	<0.02	4.1	0.002	3.6	5.0	86
MW-1	10/14/2014	12.39	7101 69	7.7	189	67	264	0.3	190	1.4	<0.2	<1	<1	170	<0.00	21.8	<0.02	5.6	0.200	37	6.2	86
MW-1	6/17/2015	10.72	7103.36	7.2	138	6.8	306	1.8	140	5.2	<0.2	<1	<1	110	< 0.03	12.5	<0.02	37	0.046	2.0	4.6	42
MW-1	9/9/2015	10.12	7103.89	6.6	165	67	241	27	170	2.2	<0.2	<1	<1	150	0.034	19.4	<0.02	5.0	0.203	37	5.9	80
MW-1	11/12/2015	11.00	7103.08	6.5	161	8.3	270		160	3.7	< 0.2	<1	<1	160	< 0.03	17.3	< 0.03	4.6	0.205	3.0	5.1	68
				0.0		0.0				•	•		·		0.00		0.00		•-=••	0.0	••••	
 MW-2	10/30/2002	12.25	7055.28	6.7						58.0	<0.050	NR ¹	<0.4	186	< 0.10 ^T		79 ^T		1.13 ^T		19.8 [⊤]	
MW-2	7/29/2003			7 1	112	92				NR ³	<0.1	1	<0.2	80	NR ³		NR ³		NR ³		NR ³	
M\M_2	11/13/2003	10.95	7056 58	7.7		0.2				<10	<0.050*	NR ¹	<0.4	00	<0.10 ^T		37		0.82		5.7^{T}	
	6/22/2004	2 76	7062.30	6.7	70	4.0					<0.050	2	-0.4	00			0 0 2 0		<0.02		ND ³	
	0/22/2004	3.70	7050.07	0.7	10	4.0					NC0.050	۷	∼ 0.4	02			0.920		<u>>0.02</u>			
IVIVV-2	9/1/2004	8.86	/058.6/	6.9	68	1.2				NR°	<0.050	1	<0.4	90	NR		0.590		< 0.02		NR [×]	
MW-2	10/13/2004	17.80	7049.73	6.5	63	11.4				2.2	<0.1	10	<1	96	0.03		0.020		0.110		3.0	
MW-2	8/11/2005	3.82	7063.71	6.2	50	11.9	11	1.1	54	<1	<0.1	2	<1	140	<0.03	5.5	0.310	1.8	0.040	1.0	2.0	25
MW-2	9/15/2005	8.00	7059.53	7.1	51	12.3	99	NS	56	<1	0.1	2	0.5	130	<0.03	6.1	0.680	2.1	0.010	2.0	3.0	30
MW-2	10/13/2005	8.35	7059.18	6.8	59	10.0	1	9.4	67	<1	<0.1	<1	<1	110	<0.03	6.4	0.280	2.2	0.010	2.0	3.0	25

Well	Date	Depth To GW (ft)	GW Elev. (ft, NAVD88)	Field pH	Field EC (µS/cm)	Temp. (C)	ORP (mV)	Dissolved Oxygen (mg/L)	Lab SC (μS/cm)	CI (mg/L)	NO3-N (mg/L)	TKN (mg/L)	Ammo nia as N	TDS (mg/L)	B (mg/L)	Ca (mg/L)	Fe (mg/L)	Mg (mg/L)	Mn (mg/L)	K (mg/L)	Na (mg/L)	HCO3 as CaCO3 (mg/L)
MW-2	6/29/2006	0.50	7067.03	7.9	45	12.5	133	0.6	48	<1	<0.1	<1	<1	93	<0.03	4.6	0.100	1.5	<0.01	<1	2.0	20
MW-2	8/2/2006	7.24	7060.29	7.8	45	13.1	37	1.8	53	<1	<0.1	<1	<1	100	<0.03	5.0	0.070	1.7	0.060	2.0	4.0	20
MW-2	10/10/2006	7.30	7060.23	6.8	66	7.9	160	7.6	75	2.3	<0.1	<1	<1	130	<0.03	8.0	0.440	2.8	0.020	<1	4.0	25
MW-2	7/12/2007	8.10	7059.43	6.8	41	15.9	229	8.5	49	1.1	<0.1	0.7	<1	43	<0.03	5.5	1.200	1.7	0.049	2.0	3.0	25
MW-2	8/29/2007	8.70	7058.83	7.3	67	16.0	150	6.4	75	1.9	0.1	<1	<1	100	<0.03	7.8	0.970	2.2	0.100	2.2	3.0	35
MW-2	9/26/2007	10.30	7057.23	6.7	54	11.0	-121	12.0	65	2.0	0.1	<1	<1	130	<0.03	5.2	0.023	1.7	0.015	2.0	3.0	30
MW-2	7/8/2008	2.90	7064.63	6.6	45	13.8	137	4.1	49	<1	<0.1	<1	<1	130	<0.03	5.0	0.450	2.0	0.020	1.0	2.0	25
MW-2	9/18/2008	7.95	7059.58	6.7	115	13.1	764	13.1	99	6.8	0.2	3	<1	86	<0.03	5.2	0.510	1.7	0.010	2.0	7.0	25
MW-2	10/16/2008	8.78	7058.75	7.5	52	18.3	214	7.6	56	1.6	0.2	<0.1	<1	97	<0.03	5.7	0.220	1.7	0.010	1.0	3.0	25
MW-2	7/7/2009	6.30	7061.23	6.9	44	9.4	363	8.5	48	<0.2	<0.1	<1	<1	330	<0.03	6.1	0.910	1.8	0.020	1.0	3.0	25
MW-2	9/30/2009	8.70	7058.83	6.0	59	8.4	85	0.0	61	0.9	<0.1	<1	<1	47	<0.03	6.9	0.620	1.6	0.020	2.0	3.0	30
MW-2	10/26/2009	7.85	7059.68	6.1	47	9.0	480	4.2	61	1.8	0.5	<1	<1	54	<0.03	6.8	0.520	1.9	0.040	2.0	3.0	25
MW-2	7/13/2010	0.80	7066.73	6.1	43	9.3	134	0.3	43	1.4	<0.1	<1	<1	61	<0.03	4.7	0.200	1.5	<0.01	<1	2.0	20
MW-2	8/24/2010	8.34	7059.19	6.3	47	9.8	136	7.9	47	0.5	<0.1	<1	<1	90	<0.03	4.7	<0.02	1.5	<0.01	<1	2.0	22
MW-2	11/4/2010	0.70	7066.83	5.8	57	9.5	201	4.0	57	1.9	<0.1	3	<1	49	<0.03	6.4	0.080	1.8	0.010	<1	3.0	25
MW-2	7/21/2011	0.40	7067.13	6.2	42	7.2	179	0.4	42	<0.2	<0.1	<1	<1	59	< 0.03	4.5	0.116	1.4	0.200	0.8	1.8	22
MW-2	9/8/2011	4.40	7063.13	6.4	56	10.2	77	1.7	56	0.6	<0.1	2	<1	70	< 0.03	5.3	1.540	2.1	0.014	1.0	2.6	27
MW-2	10/20/2011	3.30	7064.23	6.1	67	10.8	121	2.1	67	1.0	<0.1	1	<1	60	< 0.03	6.5	0.034	2.0	< 0.01	1.0	2.5	33
MW-2	6/26/2012	2 95	7064.58	6.2	40	9.9	70	0.7	40	0.3	<0.1	2	<1	53	<0.03	6.0	<0.02	1.9	<0.01	0.9	2.5	30
MW-2	7/31/2012	4 75	7062 78	6.3	74	9.7	139	0.9	74	0.8	<0.7	<1	<1	67	<0.00	84	0.054	27	<0.01	1.0	3.7	35
MW/-2	10/9/2012	11 24	7056.29	59	100	9.0	691	2.6	100	8.7	<0.2	<1	<1	81	<0.00	7.0	0.004	2.7	0.01	1.0	8.6	30
M\\/_2	5/30/2013	1 00	7066 53	6.1	/3	8.3	150	2.0	/3	0.7	<0.2	<1	<1	53	<0.00	1.0	<0.020	1 /	<0.01	0.8	2.1	18
M\\/_2	8/21/2013	7.00	7060.53	5.2	50	11.8	231	2.2		0.4	<0.2	<1	<1	160	<0.00	5.8	0.02	1.4	0.168	1 /	3.0	28
NIN/ 2	10/15/2013	12.00	7055 12	5.6	50	0.6	571	2.2	56	0.0	<0.2	~1	<1	97	<0.03	J.0	0.197	1.0	0.022	1.4	3.0	20
NIN/ 2	6/12/2014	1 5/	7065.00	5.0	47	9.0 7 7	83	J.1	47	0.7	<0.2	<1	<1	65	<0.03	4.5	<0.044	1.4	<pre>0.023</pre>	0.0	2.2	18
NIN/ 2	8/12/2014	7.04	7050.59	6.7	47 54	111	155	4.1	47 54	0.3	<0.2	~1	<1	05 85	<0.03	4.J	<0.02	1.2	<0.01 0.022	0.9 5.9	2.5	20
	10/14/2014	10.20	7053.58	5.0	55	10.4	616	4.1	55	0.3	<0.2	~1	~1	120	<0.03	5.5 7 1	<0.02 0.101	1.7	0.025	1.1	2.0	20
	6/17/2015	10.20	7065 50	0.9 7 7	33 47	0.1	70	2.0	55 47	0.7	<0.2	<1 <1	<1 <1	120	<0.03	7.1 7.0	<0.02	2.1 1.5	0.115 <0.01	1.1	3.Z	24
	0/1//2015	1.94	7003.39	1.1	47 50	9.2	70	0.4	47 50	0.3	<0.2	<1 <1	<1	40	<0.03	4.0 5.1	<0.02	1.0	<0.01 0.042	1.0	2.4	30
	9/9/2015	10.31	7050.72	0.9	50	11.0	201	2.1	00	0.0	<0.2	< 1 < 1	< 1 < 1	70	<0.03	5.1 5.0	<0.03	1.0	0.042	1.0	2.0	40
IVIVV-Z	11/13/2015	0.01	1000.12	0.1	60	12.1	349		60	0.9	<0.2	<	< 1	90	<0.03	5.9	<0.03	1.9	0.023	1.0	2.4	20
MW-3	10/30/2002	6.38	7049 99	6.3						74 0	<0.050	NR ¹		256	<0.10 ^T		63 ^T		0 92 ^T		32 ^T	
MW-3	7/29/2003	0.00	1010100	6.4	98	6.9				NR ³	0.3	1		60	NR ³		NR ³		NR ³		NR ³	
MW-3	11/13/2003	6.30	7050.07	6.3		0.0				8.6	0.06*	NR ¹			< 0.10 ^T		46 ^T		0.73 ^T		10.7 ^T	
MW-3	6/22/2004	2.45	7053.92	6.1	94	4.2				NR ³	0.52	2		122	NR ³		0.650		< 0.02		NR ³	
MW-3	9/1/2004	4.75	7051.62	6.6	100	7.2				NR ³	0.63	<1.0		124	NR ³		0.380		< 0.02		NR ³	
MW-3	10/13/2004	6.59	7049.78	6.1	85	8.9				6.5	0.3	<1	<1	100	0.04		< 0.02		< 0.01		7.0	
MW-3	8/11/2005	3.12	7053.25	6.3	70	7.5	59	4.4	75	5.0	0.5	<1	<1	88	< 0.03	6.2	0.040	1.7	<0.01	<1	6.0	20
MW-3	9/15/2005	2.97	7053.40	6.1	78	10.8	100	9.1	70	7.7	<0.1	<1	<1	82	<0.03	5.9	0.070	1.5	<0.02	2.0	6.0	25
MW-3	10/13/2005	3.48	7052.89	6.8	NM	10.1	84	4.4	92	11	0.4	2	<1	80	<0.03	7.3	0.030	2.2	0.040	2.0	7.0	20
MW-3	6/29/2006	2.02	7054.35	7.6	50	6.3	180	2.7	56	3	<0.1	<1	<1	49	<0.03	4.3	0.030	1.2	<0.01	<1	4.0	20

		Depth To GW	GW Elev. (ft,	Field	Field EC	Temp.	ORP	Dissolved Oxygen	Lab SC	CI	NO3-N	TKN	Ammo nia as	TDS	в	Са	Fe	Mg	Mn	к	Na	HCO3 as CaCO3
Well	Date	(ft)	NAVD88)	рΗ	(µS/cm)	(C)	(mV)	(mg/L)	(µS/cm)	(mg/L)	(mg/L)	(mg/L)	Ν	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
MW-3	8/2/2006	2.75	7053.62	7.7	88	7.9	70	3.6	68	5	0.2	<1	<1	72	<0.03	5.4	<0.02	1.5	<0.01	2.0	6.0	20
MW-3	10/10/2006	3.15	7053.22	6.4	76	8.7	169	2.6	82	7.4	<0.1	2	<1	82	<0.03	6.6	<0.02	2.0	<0.01	<1	6.0	20
MW-3	7/12/2007	3.17	7053.20	6.2	59	10.4	249	4.2	66	4.3	0.2	<1	<1	91	<0.03	5.9	0.053	1.6	<0.01	2.0	8.0	28
MW-3	8/29/2007	3.40	7052.97	6.4	89	13.6	176	4.5	97	11.0	<0.1	<1	<1	71	<0.03	7.5	0.024	1.8	<0.01	1.7	6.0	25
MW-3	9/26/2007	5.00	7051.37	5.8	89	10.9	-109	7.8	96	11.0	0.1	<1	<1	90	< 0.03	7.5	< 0.02	2.1	< 0.01	2.0	7.0	30
MW-3	7/8/2008	2.50	7053.87	6.4	47	8.8	218	2.5	66	5.3	0.1	<1	<1	72	< 0.03	5.0	0.210	2.0	< 0.01	1.0	6.0	35
MVV-3	9/18/2008	3.85	7052.52	6.0	93	12.8	681	3.9	97	13.0	<0.1	<1	<1	94	< 0.03	6.8	< 0.02	1.9	< 0.01	2.0	7.0	20
MVV-3	10/16/2008	5.54	7050.83	7.0	101	11.6	109	5.1	110	16.0	<0.1	0.15	<1	94	< 0.03	10.0	< 0.02	2.7	< 0.01	2.0	7.0	30
MVV-3	7/7/2009	2.40	7053.97	6.1	11	6.0	680	1.4	81	11.0	0.5	<1	<1	100	< 0.03	7.1	0.060	1.9	< 0.01	1.0	6.0	20
IVIVV-3	9/30/2009	3.65	7052.72	5.5	106	12.4	211	1.7	110	12.0	<0.1	<1	<1	700	< 0.03	9.3	0.060	2.0	< 0.01	3.0	8.0	40
IVIVV-3	7/12/2010	4.10	7052.27	5.7 6.1	59	10.5	239	0.1	/ / E 0	8.0 2.6	0.9	< 1	< 1	70	< 0.03	4.9	0.100	1.4	< 0.01	2.0	6.U	10
N/N/ 2	8/24/2010	2.10	7053 72	0.1 5.9		J.O 11 Q	152	1.0	50 70	5.0	<0.1	<1	~1	00 97	<0.03	0.0 6.3	0.030 <0.02	0.0 1 Q	<0.01	~1	5.0	20
N/N/ 2	0/24/2010	2.00	7053.72	5.0 5.6	105	0.0	155	0.0	19	12.0	<0.1	3 00	~1	07	<0.03	0.5	<0.0Z	1.0	<0.01	~1	7.0 8.0	21
M/W/-3	7/21/2010	0 00	7055.47	6.2	52	3.6	113	2.3	52	2 /	<0.1	<1	<1	92 56	<0.03	3.0	<0.020	2.2	<0.01	0.0	3.8	25 16
MW-3	9/8/2011	2 45	7053.92	6.1	71	9.5	122	0.5	71	2.7	<0.1	2 00	<1	62	<0.03	5.1	<0.02	1.0	<0.01	1 1	53	22
MW-3	10/20/2011	2.40	7054 23	6.1	76	8.2	123	0.0	76	3.7	<0.1	1.00	<1	68	<0.00	5.7	0.02	1.5	<0.01	1.1	5.5	27
MW-3	6/26/2012	2.14	7054.02	6.0	48	6.3	84	0.0	48	3.8	<0.1	<1	<1	64	<0.00	6.1	<0.02	1.0	<0.01	1.2	6.4	30
MW-3	7/31/2012	2.86	7053.51	6.0	89	12.1	157	0.0	89	6.3	< 0.2	<1	<1	69	< 0.03	7.7	0.330	2.0	0.029	1.4	6.1	35
MW-3	10/9/2012	5.98	7050.39	5.7	85	9.4	436	1.2	85	5.3	< 0.2	<1	<1	72	< 0.03	6.5	0.067	1.8	0.017	1.3	6.2	35
MW-3	5/30/2013	2.20	7054.17	5.9	54	7.0	147		54	3.4	< 0.2	<1	<1	60	< 0.03	4.3	0.039	1.2	0.031	0.9	4.7	20
MW-3	8/21/2013	4.90	7051.47	4.2	73	9.3	359	1.6	73	5.0	< 0.2	<1	<1	68	< 0.03	5.2	0.042	1.4	0.017	1.1	5.3	18
MW-3	10/15/2013	6.11	7050.26	5.4	76	9.4	588	2.2	76	4.8	<0.2	<1	<1	79	< 0.03	6.2	< 0.02	1.5	< 0.01	1.5	6.1	32
MW-3	6/12/2014	2.33	7054.04	5.7	61	5.2	66	0.6	61	3.9	<0.2	<1	<1	65	< 0.03	4.5	<0.02	1.0	<0.01	1.1	5.3	20
MW-3	8/12/2014	4.62	7051.75	5.6	62	10.5	224	2.8	62	7.3	0.3	<1	<1	69	<0.03	5.5	0.072	1.4	0.033	4.6	5.8	20
MW-3	10/14/2014	7.12	7049.25	5.5	70	9.1	187	0.1	70	4.5	<0.2	<1	<1	64	<0.03	5.7	0.052	1.5	0.011	1.2	6.4	22
MW-3	6/17/2015	1.98	7054.39	7.8	68	6.7	197	4.6	68	4.1	0.3	<1	<1	63	<0.03	5.5	<0.02	1.4	<0.01	1.3	5.2	28
MW-3	9/9/2015	4.87	7051.50	7.4	67	9.0	164	3.3	67	3.8	<0.2	<1	<1	75	<0.03	5.1	<0.03	1.4	<0.01	1.6	5.5	42
MW-3	11/13/2015	5.78	7050.59	6.0	68	10.6	243		68	4.1	<0.2	<1	<1	67	<0.03	5.3	<0.03	1.5	<0.01	1.1	5.1	24
												4										
MW-4	10/30/2002	4.30	7050.49	7.0						44.0	<0.050	NR'		294	<0.10'		370'		14.8 [']		42'	
MW-4	7/29/2003			7.2	231	6.0				NR^3	<0.1	<0.5		170	NR ³		NR^3		NR^{3}		NR^{3}	
MW-4	11/13/2003	3.96	7050.83	7.2						5.5	0.05*	NR^1			<0.10 ^T		49 ^T		2.06 ^T		10.5 [⊤]	
MW-4	6/22/2004	2.88	7051.91	6.8	254	4.7				NR ³	0.05	<1.0		172	NR^3		0.110		0.080		NR ³	
MW-4	9/1/2004	12.95	7041.84	6.4	278	7.3				NR ³	<0.050	<1.0		167	NR ³		0.170		0.190		NR ³	
MW-4	10/13/2004	4.38	7050.41	6.8	230	8.8				6.9	<0.1	<1	<1	150	0.03		<0.02		0.580		9.0	
MW-4	8/11/2005	3.22	7051.57	6.7	210	7.0	34	1.3	220	6.1	<0.1	<1	<1	170	< 0.03	25.0	0.110	8.6	0.050	3.0	9.0	96
MW-4	9/15/2005	3.10	7051.69	6.7	230	7.0	112	1.1	240	7.5	0.1	<1	<1	180	< 0.03	26.0	<0.02	8.8	0.390	5.0	10.0	100
MW-4	10/13/2005	3.20	7051.59	7.3	25	7.5	8	9.6	260	8.4	0.2	1	<1	160	<0.03	28.0	0.760	9.2	1.300	4.0	10.0	110
MW-4	6/29/2006	2.65	7052.14	7.2	193	5.0	165	1.5	200	4.8	0.1	<1	<1	130	<0.03	22.0	0.020	7.4	0.030	2.0	8.0	90
MW-4	8/2/2006	3.08	7051.71	8.3	186	8.2	94	0.7	200	5.9	<0.1	<1	<1	150	<0.03	22.0	<0.02	7.4	0.030	5.0	9.0	85
MW-4	10/10/2006	3.00	7051.79	6.9	205	6.9	101	1.5	210	6.1	<0.1	1	<1	160	<0.03	24.0	<0.02	7.9	0.050	<1	10.0	85
MW-4	7/12/2007	3.70	7051.09	7.2	180	10.0	213	1.6	200	6.3	<0.1	0.1	<1	180	<0.03	24.0	0.031	7.5	0.059	4.0	10.0	87
MW-4	8/29/2007	3.30	7051.49	7.0	187	10.1	127	6.6	200	6.7	<0.1	<1	<1	140	<0.03	22.0	0.160	7.3	0.073	4.1	8.0	91
MW-4	9/26/2007	3.60	7051.19	6.8	191	9.5	-106	9.4	210	6.4	<0.1	<1	<1	140	<0.03	21.0	0.067	7.0	0.067	4.0	9.0	86
MW-4	7/8/2008	3.00	7051.79	6.9	203	8.2	216	1.1	220	6.6	<0.1	<1	<1	180	<0.03	24.0	0.060	8.0	0.030	4.0	8.0	86

		Depth	GW Elev.	Field	Field EC	Tomp	OPP	Dissolved		CI		TIZN	Ammo	TDE	Р	6.	Fa	Ма	Min	V	No	HCO3 as
Well	Date	(ft)	(ft, NAVD88)	рівіч	(uS/cm)	(C)	(mV)	(mg/L)	(uS/cm)	(ma/L)	(ma/L)	(ma/L)	nia as N	(mg/L)	в (ma/L)	(mg/L)	ге (ma/L)	(ma/L)	(ma/L)	r. (ma/L)	ma (mg/L)	(mg/L)
MW-4	9/18/2008	3.49	7051.30	7.0	196	9.5	476	2.4	210	6.3	<0.1	<1	<1	160	< 0.03	20.0	< 0.02	6.5	<0.01	4.0	9.0	85
MW-4	10/16/2008	3.75	7051.04	7.7	191	9.5	133	6.2	210	6.3	<0.1	<0.1	<1	170	<0.03	22.0	0.020	7.2	<0.01	4.0	9.0	90
MW-4	7/7/2009	3.35	7051.44	7.0	207	7.3	476	5.6	220	6.6	0.4	2	<1	210	<0.03	25.0	0.040	8.2	0.040	4.0	9.0	95
MW-4	9/30/2009	3.30	7051.49	4.5	199	8.1	243	3.9	200	7.2	<0.1	<1	<1	160	<0.03	23.0	0.080	7.0	<0.01	4.0	9.0	80
MW-4	10/26/2009	3.35	7051.44	6.2	188	8.6	300	4.7	240	8.2	0.3	<1	<1	220	<0.03	25.0	0.030	7.5	0.260	3.0	9.0	90
MW-4	7/13/2010	2.50	7052.29	6.6	227	5.5	105	0.6	230	6.9	<0.1	<1	<1	150	<0.03	25.0	0.030	8.3	<0.01	4.0	9.0	100
MW-4	8/24/2010	3.03	7051.76	6.4	228	6.9	83	0.2	230	7.1	<0.1	<1	<1	180	<0.03	23.0	<0.02	7.6	0.040	3.0	9.0	82
MW-4	11/4/2010	2.15	7052.64	6.5	194	7.8	172	0.1	190	6.9	<0.1	<1	<1	140	<0.03	21.0	<0.02	6.5	0.040	3.0	8.0	75
MW-4	7/21/2011	1.60	7053.19	6.9	208	5.3	104	0.4	210	4.8	<0.1	<1	<1	160	<0.03	21.0	<0.02	7.1	<0.01	3.7	7.4	92
MW-4	9/8/2011	2.85	7051.94	6.9	215	6.6	84	0.2	220	6.2	<0.1	1	<1	150	<0.03	18.4	<0.02	7.2	0.019	3.1	7.8	87
MW-4	10/20/2011	2.30	7052.49	7.0	191	7.3	88	0.2	190	6.1	<0.1	<1	<1	140	<0.03	17.4	<0.02	5.8	0.079	3.2	7.4	70
MW-4	6/26/2012	2.55	7052.24	8.0	125	6.4	94	0.4	130	20.0	<0.1	<1	<1	130	<0.03	22.2	<0.02	7.5	0.022	3.4	9.5	89
MW-4	7/31/2012	3.00	7051.79	6.6	204	6.9	86	0.1	200	6.4	<0.2	2	<1	150	<0.03	22.4	<0.02	7.0	0.012	3.4	8.6	84
MW-4	10/9/2012	4.30	7050.49	5.8	191	8.1	357	1.0	190	6.4	<0.2	<1	<1	140	< 0.03	18.2	0.020	5.9	0.046	3.2	8.3	75
MW-4	5/30/2013	2.30	7052.49	6.4	210	6.1	109		210	6.9	<0.2	<1	<1	150	< 0.03	20.8	< 0.02	7.2	0.027	3.5	7.7	86
MW-4	8/21/2013	3.30	7051.49	6.5	200	8.2	448	0.4	200	6.8	<0.2	<1	<1	140	< 0.03	18.8	<0.02	6.3	0.030	3.4	7.5	89
MVV-4	10/15/2013	4.31	7050.48	6.6	200	8.9	553	0.5	200	6.8	< 0.2	<1	<1	150	< 0.03	21.8	< 0.02	6.5	0.014	4.0	8.2	91
MVV-4	6/12/2014	2.66	7052.13	5.6	227	6.1	129	0.3	230	7.3	<0.2	<1	<1	160	< 0.03	23.1	< 0.02	8.2	< 0.01	4.1	8.5	89
MVV-4	8/12/2014	3.57	7051.22	6.9	208	7.9	213	0.1	210	6.8	<0.2	<1	<1	160	< 0.03	21.8	0.026	6.9	0.068	4.0	8.5	92
IVIVV-4	10/14/2014	4.69	7050.10	6.7	201	9.0	574	0.1	200	6.8	< 0.2	<1	<1	130	< 0.03	18.9	< 0.02	6.8	0.009	3.2	1.1	78
IVIVV-4	6/17/2015	2.41	7052.38	7.1	217	7.1	-/	0.1	220	6.9	<0.2	<1	<1	140	< 0.03	20.7	< 0.02	7.0	< 0.01	3.4	1.1	80
IVIVV-4	9/9/2015	3.12	7051.07	0.7	203	9.1	109	0.2	200	0.8	<0.2	<	< 1	100	0.034	20.1	< 0.03	0.0 5.7	0.024	3.9	0.Z	70
10100-4	11/13/2015	3.10	7051.05	0.0	109	0.9	200		190	1.1	~ 0.2			130	<0.03	10.4	<0.05	5.7	<0.01	11.4	0.2	10
MW-5	9/1/2004	12.95	7190.83	6.6	307	6.4				NR ³	0.064	<1.0		276	NR ³		1.280		0.200		NR ³	
MW-5	10/13/2004	13.74	7190.04	6.2	230	8.9				28.0	<0.1	2	<1	340	0.08		<0.02		0.230		18.0	
MW-5	8/11/2005	11.74	7192.04	6.3	110	15.7	51	4.2	120	5.5	<0.1	2	<1	180	< 0.03	1.0	0.620	4.4	0.060	1.0	6.0	45
MW-5	9/15/2005	12.50	7191.28	7.0	170	11.2	41	NS	120	5.8	0.1	<1	<1	170	<0.03	12.0	0.750	4.6	0.130	3.0	7.0	51
MW-5	10/13/2005	9.27	7194.51	6.5	103	8.8	133	8.5	110	8.5	0.2	<1	<1	120	<0.03	8.9	0.210	3.9	0.040	3.0	6.0	35
MW-5	6/29/2006	12.50	7191.28	7.6	71	14.7	159	6.5	81	4.1	<0.1	<1	<1	120	< 0.03	5.8	0.280	2.5	0.050	2.0	4.0	25
MW-5	8/2/2006	11.49	7192.29	8.4	34	19.8	98	5.0	98	8.0	<0.1	<1	<1	120	<0.03	6.4	0.090	2.5	0.040	3.0	8.0	35
MW-5	10/11/2006	11.89	7191.89	5.8	93	8.4	186	5.7	110	3.6	<0.1	1	<1	170	<0.03	12.0	0.540	4.6	0.060	<1	6.0	45
MW-5	7/12/2007	13.10	7190.68	6.1	142	13.9	226	NS														
MW-5	8/29/2007	13.50	7190.28	Well p	umped dry	before sai	mpling															
MW-5	9/26/2007	13.70	7190.08	6.7	88	11.6	-87	8.9														
MW-5	7/8/2008	13.00	7190.78	7.3	104	15.1	136	NS														
MW-5	9/18/2008	13.80	7189.98	Well p	umped dry	before sa	mpling															
MW-5	10/16/2008	13.95	7189.83	Well p	umped dry	before sai	mpling															
MW-5	7/7/2009	12.80	7190.98	6.7	214	11.0	818	8.1	130	4.8	0.3	<1	<1	230	<0.03	11.0	0.430	3.8	0.100	2.0	10.0	45
MW-5	9/30/2009	13.30	7190.48	6.3	109	8.6	.141	4.6	130	5.3	0.4	NS	NS	NS	0.23	9.9	<0.02	3.4	0.050	2.0	22.0	NS
MW-5	10/26/2009	13.25	7190.53	Well p	umped dry	before sai	mpling	c -	<u>c (</u>					000	.0.00		0.070	o =		0.0		c -
MVV-5	//13/2010	11.50	/192.28	6.0	94	8.0	158	2.5	94	5.1	<0.1	<1	<1	200	< 0.03	8.0	0.270	2.7	0.060	3.0	5.0	35
IVIVV-5	8/24/2010	12.52	/191.26	6.7	95	11.0	129	<i>(</i> .1	95	4.8	<0.1	<1	<1	1/0	< 0.03	7.9	< 0.02	3.3	0.020	1.0	5.0	37
IVIVV-5	11/4/2010	12.15	/191.63	6.1	98	/.4	209	6.5	98	5.5	<0.1	<1	<1	84	0.06	1.5	< 0.02	3.0	0.020	2.0	6.0	41
IVIV-5	7/21/2011	9.15	7194.63	4.9 6.5	/4	5.7	115	4.4	/4	3.0	<0.1	<1	<1	100	< 0.03	5.9	0.121	2.3	0.072	1.9	4.1	27
IVIV-5	9/8/2011	12.50	7191.28	0.5	101	ŏ.U	102	5.7	100	4.0	<0.1] ~4	<1	150	< 0.03	ö.2	2.400	4.0	0.056	2.2	5.1	43
IVIVV-5	10/20/2011	11.58	7192.20	0.0	95	7.0	157	4.5	95	4.5	<0.1	<1	<1	150	<0.03	8.1	0.216	3.0	0.012	2.2	4.1	38

		Depth	GW Elev.					Dissolved					Ammo									HCO3 as
		To GW	(ft,	Field	Field EC	Temp.	ORP	Oxygen	Lab SC	CI	NO3-N	TKN	nia as	TDS	В	Ca	Fe	Mg	Mn	к	Na	CaCO3
Well	Date	(ft)	NAVD88)	рН	(µS/cm)	(C)	(mV)	(mg/L)	(µS/cm)	(mg/L)	(mg/L)	(mg/L)	Ν	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
MW-5	6/26/2012	12.70	7191.08	6.9	26	7.1	58	15.3	120	8.2	0.1	<1	<1	130	0.074	9.5	0.039	3.9	0.054	4.6	6.9	39
MW-5	7/31/2012	11.87	7191.91	6.3	106	9.7	231	5.3	110	4.7	<0.2	<1	<1	120	<0.03	10.2	<0.02	3.7	0.037	2.4	4.8	39
MW-5	10/9/2012	14.64	7189.14	Well p	oumped dry	before sa	mpling															
MW-5	5/30/2013	13.20	7190.58	6.0	85	9.9	390		85	4.7	<0.2	<1	<1	140	<0.03	6.6	0.151	2.7	0.049	1.5	4.8	38
MW-5	8/21/2013	12.99	7190.79	6.0	40	21.8	702	6.2	40	5.1	<0.2	<1	<1	110	<0.03	6.2	0.074	2.3	0.016	1.7	3.9	26
MW-5	10/15/2013	14.06	7189.72	8.1	91	10.2	694	11.6	91	11.0	<0.2	<1	<1	160	<0.03	6.8	<0.02	2.6	<0.01	2.4	10.1	33
MW-5	6/12/2014	13.11	7190.67	5.8	80	11.3	692	7.8	80	5.1	<0.2	<1	<1	240	<0.03	6.9	0.046	3.0	<0.01	2.4	4.3	36
MW-5	8/12/2014	13.01	7190.77	5.6	111	3.3	279	3.3	110	6.0	<0.2	<1	<1	120	<0.03	10.1	0.284	3.9	0.063	3.2	5.4	46
MW-5	10/14/2014	14.23	7189.55	Wel	l pumped di	y before s	sampling															
MW-5	6/17/2015	13.19	7190.59	4.5	106	11.7	418.2	6.9	110	6.4	<0.2	<1	<1	150	0.041	8.7	<0.02	3.5	0.137	2.6	4.8	42
MW-5	9/9/2015	12.44	7191.34	7.0	108	11.8	675.4	5.4	110	6.8	<0.2	<1	<1	220	<0.03	9.6	< 0.03	3.9	0.078	3.3	5.5	46
MW-5	11/12/2015	13.23	7190.55	6.6	108	7.7	200.1		110	6.7	<0.2	<1	<1	220	<0.03	9.5	< 0.03	3.7	0.071	1.4	4.2	42
MW-6	10/30/2002	6.45	7053.04	6.6						59.0	<0.050	NR^1		376	< 0.10 ^T		335 [⊤]		6.89 ^T		36 [⊤]	
MW-6	7/29/2003			7.1	457	7.5				NR ³	<0.1	<0.5		260	NR ³		NR ³		NR ³		NR ³	
MW-6	11/13/2003	6 17	7053 32	70	-	-				6.9	<0.050*	NR ¹			<0 10 ^T		132 ^T		4 78 ^T		18.5^{T}	
	6/22/2004	2 1/	7057 35	7.0	508	15					<0.000	<1.0		280			0.210		1 760			
	0/2/2004	Z. 14 E 40	7057.55	6.0	470	4.5						<1.0		200			0.210		0.400			
	9/1/2004	5.43	7054.00	0.8	479	0.0					<0.050	<1.0		297			0.390		2.190			
MVV-6	10/13/2004	6.39	7053.10	7.1	470	7.5		4 5	500	6.6	<0.1	<1	<1	320	0.03	74.0	< 0.02	40.0	2.100	5.0	16.0	050
MVV-6	8/11/2005	3.21	7056.28	6.9	470	6.9	14	1.5	500	7.0	<0.1	<1	<1	300	< 0.03	71.0	0.650	16.0	2.400	5.0	17.0	250
MVV-6	9/15/2005	4.71	7054.78	6.7	440	7.0	41	<0.2	460	7.1	0.2	1	<1	290	< 0.03	66.0	0.340	15.0	2.200	4.0	17.0	240
MVV-6	10/13/2005	5.15	7054.34	7.1	450	7.3	10	8.8	470	7.0	0.2	<1	<1	290	< 0.03	62.0	0.530	14.0	2.200	4.0	16.0	240
IVIVV-6	6/29/2006	1.11	7058.38	7.5	431	7.6	25	0.6	450	7.4	<0.1	<1	<1	270	< 0.03	62.0	0.290	14.0	2.100	<1	15.0	230
	8/2/2006	3.63	7055.86	7.6	417	8.0	-38	0.5	460	0.7	<0.1	<1	<1	280	< 0.03	62.0	0.300	14.0	2.100	3.0	16.0	230
	10/10/2006	5.60	7053.89	7.3	476	1.1	-12	2.5	500	0.7	<0.1	< 1	<	300	<0.03	70.0	0.310	15.0	2.400	< I C O	17.0	250
	7/1Z/2007 8/20/2007	4.40	7055.09	7.1	404	0.0		2.3	400	0.3	<0.1	< 1 < 1	<1	370	<0.03	00.0 60.0	0.300	15.0	2.400	0.0	17.0	200
	0/29/2007	5.90	7053.59	7.1	401	0.0	40	4.5	490	7.4	<0.1	< 1 < 1	<1	200	<0.03	69.0 65.0	0.430	15.0	2.000	4.3 5.0	17.0	200
	9/20/2007	0.70	7052.79	0.9	473	0.4	-123	9.9	500	1.Z	<0.1	< 1 < 1	<1	200	<0.03	67.0	0.520	15.0	2.300	5.0	10.0	200
	1/0/2000	5.00 6.12	7050.49	7.0	473	0.1	Z I 70	3. I 2. 7	500	0.9 6 7	<0.1	< 1 < 1	<1	330	<0.03	60.0	0.430	10.0	2.300	4.0	15.0	230
	9/10/2000	0.13	7053.30	7.1	490	0.1	10	2.7	510	0.7	<0.1	<0.1	<1	390	<0.03	09.0 70.0	0.220	16.0	2.400	4.0	17.0	270
	7/7/2000	0.00	7052.04	7.3	401	7.1	10	0.3	510	7.0	<0.1	<0.1	~1	320	<0.03	70.0	0.000	10.0	2.700	4.0	16.0	270
N/N/ 6	0/20/2009	2.70	7050.79	7.Z	490	7.3	202	2.0	500	7.1	<0.1	~1	~1	370	<0.03	71.0	0.900	10.0	2.000	4.0 5.0	16.0	200
M/0/ 6	10/26/2009	0.00 5.40	7052.99	6.7	380	7.3	-32	1.0	520	7.5	<0.1	~1	<1	320	<0.03	68.0	1 000	15.0	2.900	5.0 4.0	16.0	200
M/M/ 6	7/13/2010	1 70	7057.70	6.8	309 485	55	2 4 08	0.5	100	7.2	<0.1	~1	<1	310	<0.03	0.00 66 0	0.620	15.0	2.700	4.0	16.0	250
M/M/ 6	8/24/2010	1.70	7054.83	6.7	405	5.5 6.3	-90	0.5	490 500	6.4	<0.1	~1	<1	430	<0.03	64.0	<0.020	15.0	2.000	4.0	10.0	230
M\A/ 6	11/4/2010	1.00	7059.00	6.5	497	6.0	-20	0.5	180	63	<0.1	~1	<1	400	<0.03	63.0	<0.02 0 710	14.0	2.700	2.0	15.0	230
M\A/ 6	7/21/2011	0.70	7058 70	7.0	479	0.9 5.5	-22	0.4	400	6.6	<0.1	~1	<1	320	<0.03	55 1	0.710	14.0	2 160	2.0 1 3	15.0	230
M\A/ 6	0/8/2011	1 33	7055.16	7.0	492 507	63	38	0.5	490 510	6.1	<0.1	~1	<1	280	<0.03	57.3	0.502	14.0	2.100	4.5	13.6	270
M/M/_6	10/2011	1 26	7057 63	6.6	<u>416</u>	6.5	-30	0.4	420	<u>⊿</u> ∩	<0.1	<1	<1	250	<0.03	12 A	0.010	11 0	2.330	37	13.0	100
M/\/_6	6/26/2011	2 60	7056 80	6.8	310	5.2	62	1 1	310	т. 0 6 2	<0.1	<1	<1	200	<0.03	-0.0 66 8	0.793	16.8	2.300 1 000	37	15.5	220
M/\/_6	7/31/2012	2.00 4.65	7054 84	0.0 6 8	516	6.4	20	0.1	520	6.1	<0.1	<1	<1	310	<0.03 <0.03	65 1	0.124	15.0	2 020	3.7 3.8	15.0	260
M/\/_6	10/0/2012	7 80	7051 60	67	525	67	23	1 3	520	6.4	<0.2	<1	<1	340	<0.03 <0.03	60 Q	0.93	15.2	2.320	J.0 ⊿ 1	15.1	200
M\\/_6	5/30/2012	6 4 8	7053.01	65	375	6.2	-3		380	<u> </u>	<0.2	<1	<1	250	<0.00 <0.03	44 N	0 107	10.0	2.200	33	12.0	190
M\\/_6	8/21/2013	5 10	7054 30	65	469	8.5	-5 18	0.5	470	 6 1	<0.2	<1	<1	270	<0.00 <0.03	54.2	0 644	13.4	2 700	3.0	13.0	250
MW-6	10/15/2013	6 71	7052 78	6.3	523	7.5	52	0.8	520	6.4	<0.2	<1	<1	310	<0.03	76.4	0.698	16.2	2,700	44	16.2	270
	10,10,2010	0.1 1		0.0	020		51	0.0	020	0.1	0.2			0.0	0.00		0.000					_, 0

Well	Date	Depth To GW (ft)	GW Elev. (ft, NAVD88)	Field pH	Field EC (µS/cm)	Temp. (C)	ORP (mV)	Dissolved Oxygen (mq/L)	Lab SC (µS/cm)	CI (mg/L)	NO3-N (mg/L)	TKN (mg/L)	Ammo nia as N	TDS (mg/L)	B (mg/L)	Ca (mg/L)	Fe (mg/L)	Mg (mq/L)	Mn (mg/L)	K (mg/L)	Na (mg/L)	HCO3 as CaCO3 (mg/L)
MW-6	6/12/2014	2.60	7056.89	5.9	455	5.9	7	0.4	490	6.2	< 0.2	<1	<1	310	< 0.03	62.1	0.521	15.4	2.780	4.6	14.7	260
MW-6	8/12/2014	4.90	7054.59	5.7	529	7.4	42	0.1	530	6.6	< 0.2	2	<1	370	< 0.03	72.7	0.747	16.0	2.870	4.9	15.7	310
MW-6	10/14/2014	6.96	7052 53	6.5	549	7.5	48	0.5	550	6.8	<0.2	<1	<1	370	<0.03	67.6	0.736	17.5	2.910	4.3	14.9	280
MW-6	6/17/2015	2 12	7057 37	74	342	6.6	49	0.1	340	4 0	0.3	<1	<1	240	0.03	39.3	<0.02	9.5	1.850	24	10.5	190
MW-6	9/9/2015	4 50	7054 99	6.5	457	84	96	0.8	460	52	<0.2	<1	<1	280	0.045	57.2	0.656	13 7	2.710	3.3	14.2	250
MW-6	11/12/2015	0.00	7059 49	6.2	209	8.1	93		210	9.7	<0.2	<1	<1	120	<0.03	23.8	0 176	6.0	0.815	14	7.5	90
	1 11 12/2010	0.00	1000110	0.2	200	0.1	00		210	0.1	0.2			.20	0.00	20.0	•••••	0.0	01010		1.0	00
Discharge Pump	8/11/2005								190	13.0	<0.1	12	8.5	120	< 0.03	6.8	0.630	1.3	0.200	3.0	14.0	40
Discharge Pump	9/15/2005							0.3	250	17.0	1.1	8	6.4	140	0.06	7.5	1.000	1.8	0.050	5.0	23.0	61
Discharge Pump	10/13/2005								290	20.0	1.7	13	11.0	150	0.06	6.8	0.840	1.7	0.040	6.0	24.0	76
Discharge Pump	6/29/2006								180	13.0	<0.1	8	7.0	100	0.04	6.8	2.600	1.4	0.500	7.0	13.0	55
Discharge Pump	8/2/2006								230	17.0	0.1	12	9.0	120	0.05	7.1	0.940	4.5	0.060	6.0	18.0	70
Discharge Pump	10/11/2006								150	16.0	0.7	12	10.0	100	0.06	8.1	0.400	2.0	0.050	<1	23.0	70
Discharge Pump	7/12/2007								170	12.0	<0.1	7	4.3	210	< 0.03	7.2	2.700	1.5	0.400	6.0	17.0	52.8
Discharge Pump	7/8/2008			73	225	20.0	98	31	240	15.0	<0.1	<1	<1	140	0.05	13.0	1.800	3.0	0.460	6.0	18.0	75
Discharge Pump	9/18/2008			8.3	143	18.6	219	8.8	230	22.0	<0.1	<1	<1	230	0.07	3.2	3.000	0.6	0.150	5.0	25.0	28
Discharge Pump	10/16/2008			0.0	110	10.0	2.0	0.0	320	21.0	0.5	4 97	<1	250	0.08	16.0	1.300	34	0.120	7.0	34.0	15
Discharge Pump	7/7/2009								300	19.0	<0.0	14 00	<1	180	0.05	12.0	1 500	2.1	0 290	6.0	23.0	95
Diconargo i amp	1112000								000	10.0	-0.1	11.00		100	0.00	12.0		2.1	01200	0.0	20.0	00
Treatment Pond	8/11/2005								76	3.1	<0.1	14	9.6	120	0.04	7.3	0.170	1.7	0.020	5.0	20.0	30
Treatment Pond	9/15/2005							2.8	260	17.0	2.1	10	8.1	130	0.07	8.5	0.120	1.8	0.030	6.0	24.0	66
Treatment Pond	10/13/2005								290	20.0	1.7	15	11.0	150	0.05	9.8	0.210	2.4	0.090	6.0	22.0	76
Treatment Pond	6/29/2006								180	10.0	0.1	9	8.0	91	0.03	6.1	0.290	1.3	0.040	5.0	22.0	55
Treatment Pond	8/2/2006								230	13.0	0.1	13	9.0	130	<0.03	<0.03	0.580	4.6	0.040	5.0	18.0	75
Treatment Pond	10/11/2006								340	17.0	1.1	19	16.0	150	0.09	10.0	0.620	2.2	0.030	<1	30.0	110
Treatment Pond	7/12/2007								270	16.0	0.2	18	11.6	240	0.042	9.7	0.550	1.9	0.070	8.0	25.0	90.8
Treatment Pond	7/8/2008			7.8	281	26.2	102	3.0	300	16.0	0.4	14	<1	180	0.06	9.0	0.470	2.0	0.040	7.0	25.0	50
Treatment Pond	9/18/2008			7.3	401	16.0	213	7.8	420	20.0	0.7	22	16.0	240	0.08	11.0	0.520	2.0	0.060	10.0	35.0	190
Treatment Pond	10/16/2008								400	21.0	1.4	23	<1	200	0.08	12.0	0.340	2.3	0.020	10.0	36.0	130
Treatment Pond	7/7/2009								250	14.0	1	12	<1	200	0.04	9.9	0.310	1.8	0.050	6.0	20.0	75
Bloods Creek Upstream	8/11/2005								67	2.0	<0.1	2	<1	86	<0.03	6.5	0.360	1.6	0.020	<1	5.0	30
Bloods Creek Upstream	6/20/2006								34	1.2	<0.1	<1	<1	46	<0.03	3.1	<0.02	0.7	<0.01	<1	1.0	10
Bloods Creek Upstream	7/12/2007								57	1.1	<0.1	<1	<1	69	<0.03	6.5	0.210	1.3	0.060	2.0	5.0	25.6
Bloods Creek Upstream	7/8/2008			7.2	66	24.6	204	5.8	51	1.8	<0.1	<1	<1	64	<0.03	5.0	0.170	1.0	0.020	2.0	5.0	24
Bloods Creek Upstream	7/7/2009								56	2.2	<0.1	<1	<1	100	<0.03	5.9	0.280	1.3	0.040	1.0	4.0	15
Bloods Creek Downstream	8/11/2005					-			76	3.2	<0.1	2	<1	100	0.05	7.3	0.160	1.7	0.020	6.0	20.0	81
Bloods Creek Downstream	6/20/2006								40	1.4	<0.1	<1	<1	84	<0.03	3.7	0.050	0.9	<0.01	<1	1.0	15
Bloods Creek Downstream	7/12/2007								71	2.6	<0.1	<1	<1	110	<0.03	7.7	0.340	2.1	0.020	6.0	5.0	30
Bloods Creek Downstream	7/8/2008			7.3	61	25.0	178	6.7	65	2.8	<0.1	<1	<1	98	<0.03	6.0	0.220	2.0	<0.01	1.0	3.0	25
Bloods Creek Downstream	7/7/2009								64	2.9	<0.1	<1	<1	110	<0.03	6.8	0.290	1.6	<0.01	1.0	4.0	30

				Total									
				Alkalinit				Hardness	;			Ammo	
	HCO3 as	CO3 as	OH as	y as			Fecal	as		***Total	Lab pH	nia as	
	HCO3	CaCO3	CaCO3	CaCO3	Sulfate	Total Coliform	Coliform	CaCO3	NO2-N	Nitrogen	(std	NH3	
Well Dat	e (mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(MPN/100ml)	(MPN/100ml)	(mg/l)	(mg/L)	(mg/L)	units)	(mg/L)	
MW-1 9/1/20	004					28	2		NR^2	NR^2	6.9	<0.50	
MW-1 10/13/2	2004					<2	<2		NR^{2}	1.0	7.3		
MW-1 8/11/2	005 87	<1	<1	71	3.7	<2	<2		<0.1	2.0	7.2		
MW-1 9/15/2	005 93	<1	<1	76	3.9	<2	<2		<0.1	<1	6.7		
MW-1 10/13/2	2005 74	<1	<1	61	3.0	2	<2		<0.1	<1	6.8		
MW-1 6/29/2	006 67	<1	<1	55	0.6	<2	<2		<0.1	<1	5.9		
MW-1 8/2/20	006 91	<1	<1	75	3.7	21	8		<0.1	<1	6.8		
MW-1 10/10/2	2006 85	<1	<1	70	3.6	<2	<2		<0.1	<1	6.6		
MW-1 7/12/2	007 107	<1	<1	88	3.7	2	<2		<0.1	<1	7.2		
MW-1 8/29/2	007 117	<1	<1	96	4.5	14	2		<0.1	<1	7.4		
MW-1 9/26/2	007 122	<1	<1	100	4.3	<2	<2		<0.1	<1	7.3		
MW-1 7/8/20	08 79	<1	<1	65	4.0	4	<2		<0.1	<1	7.0		
MW-1 9/18/2	008 116	<1	<1	95	4.3	230	30		<0.1	<1	7.3		
MVV-1 1/16/2	008 109	<1	<1	90	4.5	11	4		<0.1	<1	7.2		
MVV-1 ////20	009 91	<1	<1	/5	5.6	2	<2		<0.2	<1	7.3		
IVIVV-1 9/30/2	009 134	<1	<1	110	4.5	8	4		<0.1	<1	7.0		
IVIVV-1 1U/26/2	2009 122	<1	<1	100	5.1	80	11		<0.1	1.3	7.5		
IVIVV-1 //13/2	010 79	< 1	< 1	00 70	4.4	<2	<2		<0.1	< 1	0.4		
IVIVV-1 8/24/2	010 95	< 1	< 1	/ ð 76	4.7	47	~2		<0.1	< I 6 0	7.U E 0		
IVIVV-I I I/4/2	010 93	<1	<1	70	3.3 2.6	-2	2		<0.1	0.0	5.9 5.6		
	011 93	~1	~1	70	3.0 4.7	<2	~2		<0.1	2.0	5.0 7.0		
M/M/ 1 10/20/	2011 95	<1	~1	87	4.7	~2	<2		<0.1	2.0	6.6		
MW-1 10/20/2	012 66	<1	<1	54	0 3.1	<1.8	<1.8	56.4	<0.1	0.2	6.7		
M\\/_1 7/31/2	012 00	<1	<1	94	3.0	2	<1.0	50.4	<0.1	1.0	7.0		
M\W-1 7/31/2 M\W/-1 10/9/2	012 121	<1	<1	85	5.5 4.4	<1.8	<1.0		<0.1	2.0	6.5		
MW-1 5/30/2	013 98	<1	<1	80	4.3	<1.8	<1.0	60.2	<0.2	<1	6.4		
MW-1 8/21/2	013 104	<1	<1	85	4 4	<1.8	<1.8	65.4	<0.2	<1	6.6		
MW-1 10/15/2	2013 122	<1	<1	100	4.3	<1.8	<1.8	88.6	<0.2	<1	6.4		
MW-1 6/12/2	014 71	<1	<1	58	4.6	<1.8	<1.8	52.7	0.2	·	6.2		
MW-1 8/12/2	014 105	<1	<1	86	4.4	<1.8	<1.8	66.0			7.4		
MW-1 10/14/2	2014 105	<1	<1	86	4.0	<1.8	<1.8	77.6			7.2		
MW-1 6/17/2	015 51	<1	<1	42	3.6	<1.8	<1.8						
MW-1 9/9/20	015 98	<1	<1	80	4.2	<1.8	<1.8	69.2			6.6		
MW-1 11/12/2	2015 83	<1	<1	68	4.2	17	<1.8	62.0			6.5		
MW-2 10/30/2	2002					>2400	NR^2		<0.020	NR ²		<0.50	
MW-2 7/29/2	003					6	4		NR^{2}	NR ²	6.7	<0.2	
MW-2 11/13/2	2003					2	NR ²		<0.050*	NR^{2}	6.7	<0.50	
MW-2 6/22/2	004					2	<2		NR ²	NR^2	6.5	<0.50	
MW 2 0/4/20	04					-2	-2				6.5		
	004 0004					~2	~2			10.0	0.0	~0.00	
	2004			<u> </u>		4	< <u><</u>		INK	10.0	1.1		
MVV-2 8/11/2	005 30	<1	<1	25	<0.5	<2	<2		<0.1	2.0	6.9		
MW-2 9/15/2	005 37	<1	<1	30	0.6	<2	<2		<0.1	2.1	6.5		
MW-2 10/13/2	2005 30	<1	<1	25	<0.5	30	<2		<0.1	<1	6.5		
					Total								
---------	------------	---------	------------	-------	-----------	-------------	----------------	-----------------	----------	-----------------	-----------------	--------	---------------
					Alkalinit				Hardness				Ammo
		HCO3 as	CO3 as	OH as	y as			Fecal	as		***Total	Lab pH	nia as
Well	Date	HCO3	CaCO3	CaCO3	CaCO3	Sulfate	Total Coliform	Coliform	CaCO3	NO2-N	Nitrogen	(std	NH3 (mg/L)
MW-2	6/29/2006	24	<1	<1	20	<0.5	<2	<2	(119/1)	<0 1	<1	5.6	(iiig/L)
MW/-2	8/2/2006	24	<1	<1	20	<0.0	<2	<2		<0.1	<1	6.1	
M\\/_2	10/10/2006	27	<1	<1	25	<0.5	<2	<2		<0.1	<1	6.0	
M\\\/_2	7/12/2000	30	<1	<1	25	<0.5	2	2		<0.1	0.7	6.8	
N/N/ 2	8/20/2007	43	<1	~1	25	1.6	~2	~2		<0.1	-1	7.0	
	0/29/2007	43	~1	~1	20	1.0	~2	<2		<0.1	~1	6.7	
	9/20/2007	20	~1	~1	30 25	1.4 <0.5	2	<2		<0.1	~1	0.7	
	0/19/2008	20	1	~1	20	<0.5 0.6	220	<2		<0.1	2.0	0.0	
	9/18/2008	30	<	<	25	0.0	<2	<2		<0.1	3.2	0.9	
MVV-2	10/16/2008	30	<1	<1	25	0.6	2	<2		<0.1	<1	7.0	
MVV-2	////2009	30	<1	<1	25	0.5	2	<2		<0.2	<1	7.0	
MVV-2	9/30/2009	37	<1	<1	30	<0.5	8	<2		<0.1	<1	6.8	
MW-2	10/26/2009	30	<1	<1	25	<0.5	2200	800		<0.1	0.5	6.7	
MW-2	7/13/2010	24	<1	<1	20	<0.5	11	<2		<0.1	<1	6.1	
MW-2	8/24/2010	27	<1	<1	22	<0.5	23	<2		<0.1	<1	6.3	
MW-2	11/4/2010	30	<1	<1	25	<0.5	500	4		<0.1	3.0	5.8	
MW-2	7/21/2011	27	<1	<1	22	<0.5	13	<2		<0.1	<1	6.2	
MW-2	9/8/2011	33	<1	<1	27	<0.5	2	<2		<0.1	2.0	6.4	
MW-2	10/20/2011	40	<1	<1	33	<0.5	79	<2		<0.1	1.0	6.1	
MW-2	6/26/2012	37	<1	<1	30	<0.5	<1.8	<1.8	22.7	<0.1	2.0	6.2	
MW-2	7/31/2012	43	<1	<1	35	<0.5	23	11		<0.2	<1	6.3	
MW-2	10/9/2012	37	<1	<1	30	0.8	<1.8	<1.8		<0.2	<1	5.9	
MW-2	5/30/2013	22	<1	<1	18	0.5	4.5	<1.8	16.5	<0.2	<1	6.1	
MW-2	8/21/2013	34	<1	<1	28	0.6	4.5	<1.8	21.8	<0.2	<1	5.2	
MW-2	10/15/2013	27	<1	<1	22	0.6	4	<1.8	17.8	<0.2	<1	5.6	
MW-2	6/12/2014	22	<1	<1	18	0.5	4.5	<1.8	16.3			5.9	
MW-2	8/12/2014	34	<1	<1	28	0.6	21	<1.8	20.9			6.7	
MW-2	10/14/2014	29	<1	<1	24	0.6	<1.8	<1.8	26.5			5.9	
MW-2	6/17/2015	36	<1	<1	30	<0.5	<1.8	<1.8				-	
MW-2	9/9/2015	49	<1	<1	40	0.8	<1.8	<1.8	19.5			6.9	
MW-2	11/13/2015	32	<1	<1	26	<0.5	6.8	2	22.5			6.1	
						0.0		_				••••	
MW-3	10/30/2002						>2400	NR ²		<0.020	NR ²		<0.50
MW-3	7/29/2003						1600	80		NR ²	NR ²	6.6	<0.2
MW-3	11/13/2003						9	NR ²		0.06*	NR ²	6.0	**
MW-3	6/22/2004						9	<2		NR ²	NR ²	6.0	<0.50
MW-3	9/1/2004						<2	<2		NR ²	NR^2	6.2	<0.50
MW-3	10/13/2004						<2	<2		NR ²	0.3	6.7	
MW-3	8/11/2005	24	<1	<1	20	1.9	2	<2		<0.1	<1	6.2	
MW-3	9/15/2005	30	<1	<1	25	1.4	30	8		<0.1	<1	5.9	
MW-3	10/13/2005	24	<1	<1	20	1.8	9	<2		<0.1	2.4	6.1	
MW-3	6/29/2006	24	<1	<1	20	1.3	2	<2		<0.1	<1	5.5	

Ī						Total								
						Alkalinit				Hardness	;			Ammo
			HCO3 as	CO3 as	OH as	y as			Fecal	as		***Total	Lab pH	nia as
			HCO3	CaCO3	CaCO3	CaCO3	Sulfate	Total Coliform	Coliform	CaCO3	NO2-N	Nitrogen	(std	NH3
	Well	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(MPN/100ml)	(MPN/100ml)	(mg/l)	(mg/L)	(mg/L)	units)	(mg/L)
	MW-3	8/2/2006	24	<1	<1	20	1.3	<2	<2		<0.1	0.2	5.7	
	MVV-3	10/10/2006	24	<1	<1	20	1.5	13	<2		<0.1	2.0	5.4	
	IVIVV-3	7/12/2007	34	<1	<1	28	1.1	<2	<2		<0.1	0.2	6.5	
	IVIVV-3	8/29/2007	30	<1	<1	25	1.6	800	4		<0.1	<1	6.3	
	IVIVV-3	9/26/2007	37	<1	<1	30	0.5	80	2		< 0.1	<1	6.3	
		7/8/2008	43	<	< 1	30	1.2	2	<2		<0.1	<	0.3	
		9/18/2008	24	< 1	< 1	20	2.0	<2	<2		<0.1	< I 0.15	0.2	
	IVIVV-3	10/10/2000	31 24	<1	<1	30	2.1	2	<2		<0.1	0.15	0.Z	
	IVIVV-3	0/20/2009	24 40	<1	<1	20	ა. ა	4	<2		<0.2	<1	0.0	
	NIN/ 2	9/30/2009	49	~1	~1	40	3.Z	4	~2		<0.1	1	0.0 6.4	
	NIN/ 3	7/13/2010	10	~1	~1	20	3.3 <0.5	22	4		<0.1	0.90	0.4	
	NIN/ 3	8/24/2010	24	~1	~1	20	<0.5	o 2	<2		<0.1	<1	0.1 5.9	
	M/W/ 3	11/4/2010	30	<1	<1	25	<0.5	2 800	~2		<0.1	3 00	5.6	
	M\\/_3	7/21/2010	20	<1	<1	25 16	<0.5	3/	<20		<0.1	<1	6.2	
	M\\/_3	0/8/2011	20	<1	<1	22	<0.5	2	<2		<0.1	2 00	6.1	
	MW-3	10/20/2011	27	<1	<1	22	<0.5	130	11		<0.1	1.00	6.1	
	MW-3	6/26/2011	37	<1	<1	30	1.3	<1.8	<1.8	22.1	<0.1	<1	6.0	
	MW-3	7/31/2012	43	<1	<1	35	1.0	<1.0	<1.0	<i>LL</i> . I	<0.1	<1	6.0	
	MW-3	10/9/2012	43	<1	<1	35	1.5	<1.8	<1.8		<0.2	<1	5.7	
	MW-3	5/30/2013	24	<1	<1	20	2.3	6.8	<1.8	15 7	<0.2	<1	5.9	
	MW-3	8/21/2013	22	<1	<1	18	1.3	<1.8	<1.8	18.7	< 0.2	<1	4.2	
	MW-3	10/15/2013	39	<1	<1	32	1.4	<1.8	<1.8	21.8	< 0.2	<1	5.4	
	MW-3	6/12/2014	24	<1	<1	20	1.3	6.8	<1.8	15.3			5.7	
	MW-3	8/12/2014	24	<1	<1	20	1.2	9.3	<1.8	19.4			5.6	
	MW-3	10/14/2014	27	<1	<1	22	1.3	<1.8	<1.8	20.5			5.5	
	MW-3	6/17/2015	34	<1	<1	28	1.3	<1.8	<1.8					
	MW-3	9/9/2015	51	<1	<1	42	1.4	7.8	7.8	18.7			7.4	
	MW-3	11/13/2015	29	<1	<1	24	1.3	<1.8	<1.8	19.1				
	MW-4	10/30/2002						900	NR^2		<0.020	NR^2		<0.50
	MW-4	7/29/2003						240	<2		NR^{2}	NR ²	6.5	<0.2
	MW-4	11/13/2003						<2	NR^{2}		0.05*	NR ²	6.9	**
	MW-4	6/22/2004						<2	<2		NR^{2}	NR ²	6.8	<0.50
	MW-4	9/1/2004						<2	<2		NR^{2}	NR^2	6.9	<0.50
	M\\/_4	10/13/2004						<2	<2			<11	7 1	0.00
	M\\/_4	8/11/2005	117	<1	<1	96	57	<2	<2		<0.1	<1	69	
	M\\/_4	9/15/2005	122	<1	<1	100	5.8	<2	<2		<0.1	0.1	6.6	
	MW/-4	10/13/2005	134	<1	<1	110	5.0	<2	<2		<0.1	1.2	6.8	
	MW-4	6/29/2006	110	<1	<1	90	4 1	<2	<2		<0.1	0.1	6.2	
	MW-4	8/2/2006	102	<1	<1	85	6.2	<2	<2		<0.1	<1	67	
	MW-4	10/10/2006	104	<1	<1	85	6.0	2	<2		<0.1	10	6.8	
	MW-4	7/12/2007	106	<1	<1	87	6.7	- <2	<2		<0.1	0.1	6.8	
	MW-4	8/29/2007	111	<1	<1	91	6.9	<2	<2		<0.1	<1	7.2	
	MW-4	9/26/2007	105	<1	<1	86	10.0	<2	<2		<0.1	<1	7.0	
	MW-4	7/8/2008	105	<1	<1	86	5.8	<2	<2		<0.1	<1	7.0	

					Total								
					Alkalinit				Hardness				Ammo
		HCO3 as	CO3 as	OH as	v as			Fecal	as		***Total	Lab pH	nia as
		HCO3	CaCO3	CaCO3	CaCO3	Sulfate	Total Coliform	Coliform	CaCO3	NO2-N	Nitrogen	(std	NH3
Well	Date	(ma/L)	(ma/L)	(ma/L)	(ma/L)	(mg/L)	(MPN/100ml)	(MPN/100ml)	(ma/l)	(ma/L)	(ma/L)	units)	(mg/L)
MW-4	9/18/2008	104	<1	<1	85	6.2	<2	<2		<0.1	<1	6.9	
MW-4	10/16/2008	109	<1	<1	90	5.9	2	<2		<0.1	<0.1	6.9	
MW-4	7/7/2009	116	<1	<1	95	7.0	<2	<2		<0.2	2.4	7.1	
MW-4	9/30/2009	98	<1	<	80	6.3	<2	<2		<0.1	<1	6.8	
MW-4	10/26/2009	110	<1	<1	90	5.4	1300	13		<0.1	0.3	7.1	
MW-4	7/13/2010	122	<1	<1	100	5.2	2	<2		<0.1	<1	6.6	
MW-4	8/24/2010	100	<1	<1	82	5.6	<2	<2		<0.1	<1	6.4	
MW-4	11/4/2010	91	<1	<1	75	6.8	50	13		<0.1	<1	6.5	
MW-4	7/21/2011	112	<1	<1	92	4.1	<2	<2		<0.1	<1	6.9	
MW-4	9/8/2011	106	<1	<1	87	5.0	<2	<2		<0.1	1.0	6.9	
MW-4	10/20/2011	85	<1	<1	70	7.3	2	<2		<0.1	<1	7.0	
MW-4	6/26/2012	108	<1	<1	89	7.0	<1.8	<1.8	86.4	<0.1	<1	8.0	
MW-4	7/31/2012	102	<1	<1	84	6.6	6.8	<1.8		<0.2	2.0	6.6	
MW-4	10/9/2012	91	<1	<1	75	6.8	<1.8	<1.8		<0.2	<1	5.8	
MW-4	5/30/2013	105	<1	<1	86	6.1	<1.8	<1.8	81.7	<0.2	<1	6.4	
MW-4	8/21/2013	109	<1	<1	89	6.7	<1.8	<1.8	72.9	<0.2	<1	6.5	
MW-4	10/15/2013	111	<1	<1	91	6.7	<1.8	<1.8	81.2	<0.2	<1	6.6	
MW-4	6/12/2014	109	<1	<1	89	5.9	<1.8	<1.8	91.2			5.6	
MW-4	8/12/2014	112	<1	<1	92	6.0	<1.8	<1.8	82.8			6.9	
MW-4	10/14/2014	95	<1	<1	78	6.5	<1.8	<1.8	75.2			6.7	
MW-4	6/17/2015	105	<1	<1	86	6.0	<1.8	<1.8					
MW-4	9/9/2015	134	<1	<1	110	6.3	2	<1.8	77.4			6.7	
MW-4	11/13/2015	95	<1	<1	78	5.3	<1.8	<1.8	69.5			6.8	
MW-5	9/1/2004						80	17		NR^2	NR^{2}	6.6	<0.50
MW-5	10/13/2004						500	2		NR^{2}	2.0	6.8	
MW-5	8/11/2005	55	<1	<1	45	1.8	2	<2		<0.1	2.0	6.2	
MW-5	9/15/2005	62	<1	<1	51	2.0	<2	<2		<0.1	0.1	7.6	
MW-5	10/13/2005	43	<1	<1	35	1.3	11	<2		<0.1	0.2	6.1	
MW-5	6/29/2006	30	<1	<1	25	0.7	<2	<2		<0.1	<1	5.4	
MW-5	8/2/2006	42	<1	<1	35	1.0	<2	<2		<0.1	<1	6.1	
MW-5	10/11/2006	55	<1	<1	45	1.7	2	<2		<0.1	1.0	6.0	
MW-5	7/12/2007											Well pum	nped dry
MW-5	8/29/2007												
MW-5	9/26/2007											Well pum	nped dry
MW-5	7/8/2008											Well pum	nped dry
MW-5	9/18/2008												. ,
MW-5	10/16/2008												
MW-5	7/7/2009	55	<1	<1	45	2.7	<2	<2		<0.2	<1	6.5	
MW-5	9/30/2009	NS	NS	NS	NS	2.5	NS	NS		0.2	NS	7.5	well pun
MW-5	10/26/2009												
MW-5	7/13/2010	43	<1	<1	35	<0.5	2	<2		<0.1	<1	6.0	
MW-5	8/24/2010	45	<1	<1	37	<0.5	2	<2		<0.1	<1	6.7	
MW-5	11/4/2010	50	<1	<1	41	<0.5	23	<2		<0.1	<1	6.1	
MW-5	7/21/2011	33	<1	<1	27	<0.5	4	<2		<0.1	<1	4.9	
MW-5	9/8/2011	52	<1	<1	43	<0.5	<2	<2		<0.1	1.0	6.5	
MW-5	10/20/2011	46	<1	<1	38	1.7	4.5	<2		<0.1	<1	6.0	

					Total								
					Alkalinit				Hardness	;			Ammo
		HCO3 as	CO3 as	OH as	y as			Fecal	as		***Total	Lab pH	nia as
		HCO3	CaCO3	CaCO3	CaCO3	Sulfate	Total Coliform	Coliform	CaCO3	NO2-N	Nitrogen	(std	NH3
Well	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(MPN/100ml)	(MPN/100ml)	(mg/l)	(mg/L)	(mg/L)	units)	(mg/L)
MW-5	6/26/2012	48	<1	<1	39	1.0	IVS	IVS	39.8	<0.1	0.1	6.9	
MW-5	7/31/2012	48	<1	<1	39	2.1	<1.8	<1.8		<0.2	<1	6.3	
MW-5	10/9/2012												
MW-5	5/30/2013	46	<1	<1	38	0.9	IVS	IVS	27.6	<0.2	<1	6.0	well pun
MW-5	8/21/2013	32	<1	<1	26	0.8	<1.8	<1.8	25.2	<0.2	<1	6.0	
MW-5	10/15/2013	40	<1	<1	33	2.7	<1.8	<1.8	27.3	<0.2	<1	8.1	
MW-5	6/12/2014	44	<1	<1	36	1.0	<1.8	<1.8	29.8			5.8	
MW-5	8/12/2014	56	<1	<1	46	1.2	14	<1.8	41.1			5.6	
MW-5	10/14/2014												
MW-5	6/17/2015	51	<1	<1	42	1.1	<1.8	<1.8					
MW-5	9/9/2015	56	<1	<1	46	1.2	IVS	IVS	39.9			7.0	
MW-5	11/12/2015	51	<1	<1	42	1.0	IVS	IVS	39.1				
MW-6	10/30/2002						240	NR ²		<0.020	NR ²		<0.50
MW-6	7/29/2003						<2	<2		NR^2	NR^2	6.5	<0.2
MW-6	11/13/2003						<2	NR ²		<0.050*	NR^{2}	6.7	**
MW-6	6/22/2004						<2	<2		NR^{2}	NR^2	7.0	<0.50
MW-6	9/1/2004						<2	<2		NR^2	NR^{2}	7.0	<0.50
MW-6	10/13/2004						<2	<2		NR^{2}	<1.1	7.6	
MW-6	8/11/2005	305	<1	<1	250	1.8	<2	<2		<0.1	<1	7.3	
MW-6	9/15/2005	293	<1	<1	240	1.9	<2	<2		<0.1	1.2	7.0	
MW-6	10/13/2005	292	<1	<1	240	1.8	2	<2		<0.1	0.2	7.3	
MW-6	6/29/2006	280	<1	<1	230	1.8	<2	<2		<0.1	<1	6.8	
MW-6	8/2/2006	280	<1	<1	230	1.6	<2	<2		<0.1	<1	6.8	<1
MW-6	10/10/2006	304	<1	<1	250	1.9	<2	<2		<0.1	<1	7.0	
MW-6	7/12/2007	284	<1	<1	233	1.9	<2	<2		<0.1	<1	7.1	
MW-6	8/29/2007	317	<1	<1	260	2.1	50	7		<0.1	<1	7.3	
MW-6	9/26/2007	317	<1	<1	260	1.7	4	<2		<0.1	<1	7.3	
MW-6	7/8/2008	288	<1	<1	236	1.9	<2	<2		<0.1	<1	7.2	
MW-6	9/18/2008	329	<1	<1	270	2.1	<2	<2		<0.1	<1	7.1	
MW-6	10/16/2008	329	<1	<1	270	1.9	<2	<2		<0.1	<0.1	7.7	
MW-6	7/7/2009	317	<1	<1	260	3.2	<2	<2		<0.2	<1	7.2	
MW-6	9/30/2009	317	<1	<1	260	2.6	<2	<2		<0.1	<1	7.0	
MW-6	10/26/2009	305	<1	<1	250	3.2	<2	<2		<0.1	<1	7.6	
MW-6	7/13/2010	305	<1	<1	250	<0.5	2	<2		<0.1	<1	6.8	
MW-6	8/24/2010	280	<1	<1	230	<0.5	<2	<2		<0.1	<1	6.7	
MW-6	11/4/2010	281	<1	<1	230	2.9	<2	<2		<0.1	<1	6.5	
MW-6	7/21/2011	329	<1	<1	270	2.3	<2	<2		<0.1	<1	7.0	
MW-6	9/8/2011	329	<1	<1	270	<0.5	<2	<2		<0.1	<1	7.0	
MW-6	10/20/2011	232	<1	<1	190	<0.5	6.8	<2		<0.1	<1	6.6	
MW-6	6/26/2012	280	<1	<1	230	1.9	<1.8	<1.8	236	<0.1	<1	6.8	
MW-6	7/31/2012	317	<1	<1	260	3.0	4.5	<1.8		<0.2	<1	6.8	
MW-6	10/9/2012	354	<1	<1	290	2.0	<1.8	<1.8		<0.2	<1	6.7	
MW-6	5/30/2013	232	<1	<1	190	2.8	<1.8	<1.8	154	<0.2	<1	6.5	
MW-6	8/21/2013	305	<1	<1	250	2.0	<1.8	<1.8	191	<0.2	<1	6.5	
MW-6	10/15/2013	329	<1	<1	270	3.1	2	<1.8	257	<0.2	<1	6.3	

					Total								_
					Alkalinit				Hardness				Ammo
		HCO3 as	CO3 as	OH as	y as	Cultote	Total California	Fecal	as			Lab pH	nia as
Well	Date	HCO3 (mg/L)	(mg/L)			Suitate	(MPN/100ml)	(MPN/100ml)		(mg/L)	(mg/l)	(Sta units)	(ma/L)
MW-6	6/12/2014	317	<1	<1	260	3.0	<1.8	<1.8	218	(ing/L)	(119/1)	5.9	(119/1)
MW-6	8/12/2014	378	<1	<1	310	3.1	<1.8	<1.8	248			5.7	
MW-6	10/14/2014	341	<1	<1	280	2.0	<1.8	<1.8	241			6.5	
MW-6	6/17/2015	231	<1	<1	190	1.6	<1.8	<1.8					
MW-6	9/9/2015	305	<1	<1	250	1.8	<1.8	<1.8	199			6.5	
MW-6	11/12/2015	110	<1	<1	90	0.8	<1.8	<1.8	84			6.2	
Discharge Pump	8/11/2005	49	<1	<1	40	3.6	23	<2		<0.1	12.0	6.7	
Discharge Pump	9/15/2005	74	<1	<1	61	6.0	>16000	1700		0.8	9.9	6.9	
Discharge Pump	10/13/2005	93	<1	<1	76	7.2	800	22		0.3	15.0	7.2	
Discharge Pump	6/29/2006	67	<1	<1	55	3.4	8	<2		<0.1	8.0	6.4	
Discharge Pump	8/2/2006	85	<1	<1	70	4.2	<2	<2		< 0.1	12.1	6.9	
Discharge Pump	10/11/2006	85	<1	<1	70	5.6	23	4		0.1	12.8	7.1	
Discharge Pump	7/12/2007	64	<1	<1	52.8	3.6	500	2		<0.1	6.5	7.2	
Discharge Pump	7/8/2008	91	<1	<1	75	4.9	22	6		<0.1	<1	7.3	
Discharge Pump	9/18/2008	34	<1	<1	28	6.7	230	30		<0.1	<1	8.9	
Discharge Pump	10/16/2008	18	<1	<1	15	85.0	1300	13		<0.1	5.5	7.9	
Discharge Pump	7/7/2009	116	<1	<1	95	7.3	50	11		<0.2	14.0	7.2	
Treatment Pond	8/11/2005	37	<1	<1	30	1.0	>3000	1300		<0.1	14.0	8.5	
Treatment Pond	9/15/2005	81	<1	<1	66	6.1	>16000	>3000		0.8	12.9	7.1	
Treatment Pond	10/13/2005	93	<1	<1	76	7.2	2400	1300		0.3	17.0	7.3	
Treatment Pond	6/29/2006	67	<1	<1	55	3.7	170	17		<0.1	9.1	6.9	
Treatment Pond	8/2/2006	91	<1	<1	75	4.2	>16000	700		0.1	13.2	7.2	
Treatment Pond	10/11/2006	134	<1	<1	110	6.7	16000	2800		0.2	20.3	7.3	
Treatment Pond	7/12/2007	111	<1	<1	90.8	4.4	16000	1100		0.1	18.4	7.6	
Treatment Pond	7/8/2008	61	<1	<1	50	5.4	5000	30		0.2	14.6	7.8	
Treatment Pond	9/18/2008	231	<1	<1	190	6.8	16000	16000		0.4	23.1	8.0	
Treatment Pond	10/16/2008	159	<1	<1	130	7.7	9000	2400		0.1	24.5	7.6	
Treatment Pond	7/7/2009	91	<1	<1	75	6.8	9000	700		0.7	13.7	7.9	
Bloods Creek Upstream	8/11/2005	37	<1	<1	30	0.5	170	80		<0.1	2.0	7.0	
Bloods Creek Upstream	6/20/2006	12	<1	<1	10	<0.5	<2	<2		<0.1	<1	6.3	
Bloods Creek Upstream	7/12/2007	31	<1	<1	25.6	0.5	14	8		<0.1	<1	7.0	
Bloods Creek Upstream	7/8/2008	29	<1	<1	24	<0.5	130	13		<0.1	<1	7.1	
Bloods Creek Upstream	7/7/2009	18	<1	<1	15	2.1	500	50		<0.2	<1	6.8	
Bloods Creek Downstream	8/11/2005	99	<1	<1	81	1.0	>16000	130		<0.1	2.0	6.8	
Bloods Creek Downstream	6/20/2006	18	<1	<1	15	<0.5	17	2		<0.1	<1	6.3	
Bloods Creek Downstream	7/12/2007	37	<1	<1	30	0.7	>16000	50		<0.1	<1	6.9	
Bloods Creek Downstream	7/8/2008	30	<1	<1	25	0.6	500	130		<0.1	<1	7.1	
Bloods Creek Downstream	7/7/2009	37	<1	<1	30	2.2	170	13		<0.2	<1	7.2	