Monitoring Report Submittal Transmittal Form

Attn: Ms. Mary Boyd

Central Valley Regional Water Quality Control Board

11020 Sun Center Drive #200 Rancho Cordova, CA 95670-6114

Discharger: Bear Valley Water District

Name of Facility: Bear Valley Wastewater Treatment and Disposal Facility

WDRs Order Number: **5-01-208**County: Alpine County

Regulator Program: <u>Waste Discharge to Land (Non15)</u>

Unit: CIWQS Place ID: Compliance 209035

The <u>Bear Valley Water District</u> is hereby submitting to the Regional Water Quality Control Board ("RWQCB") the following information:

Check all that apply:

Annual Monitoring Report for the year
1 st /2 nd (circle one) Semi-annual Monitoring Report for the year
1 st /2 nd (circle one) Tri-Annual Monitoring Report for the year of 2019
Monthly Monitoring Report for the month of

During the monitoring period, there were / were not (circle one) violations of the WDR'S

1. The violations were:

See Attached Report

2. The actions to correct the violations were:

See Attached Report

Certification Statement

"I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment."

Signature: Phone: (209) 753-2112

Printed Name: Jeff Gouveia Date: November 18, 2019

BVWD General Manager

November 18, 2019

Mr. Jeff Gouveia Bear Valley Water District PO Box 5027 Bear Valley, California 95223

RE: Bear Valley Water District – Third Tri-Annual 2019 Groundwater Monitoring Report, WDRs Order No. 5-01-208 and R5-2005-0139.

Dear Mr. Gouveia:

Please find an electronic copy of the <u>Third Tri-Annual 2019 Groundwater Monitoring Report</u> as required by the revised Monitoring and Reporting Requirements of Order No. 5-01-208. Board staff have requested that all monitoring reports be submitted electronically and have a transmittal letter signed and dated by the discharger. Accordingly, please sign (and date) the attached form and re-attach to this report before emailing to the Regional Board by the **February 1**st deadline. The report should be emailed to centralvalleysacramento@waterboards.ca.gov.

Note that historical and third tri-annual 2019 groundwater monitoring data have been reviewed and analyzed in the preparation of this groundwater monitoring report.

Please contact me at your earliest convenience should you have any questions regarding the content of this report.

Sincerely, STANTEC

Thomas W. Butler PG, CEG, CHG Senior Hydrogeologist/Geochemist

Attachment – Third Tri-Annual 2019 Groundwater Monitoring Report (e-copy)

Bear Valley Water District – Third Tri-Annual 2019 Groundwater Monitoring Report

Prepared for:
Bear Valley Water District
PO Box 5027
Bear Valley, California 95223

Prepared by: Stantec Consulting Services Inc. 1340 Treat Boulevard, Suite 300 Walnut Creek, California 94597

Table of Contents

1.0	EXECUTIVE	SUMMARY	1.1
2.0	INTRODUC	TION AND BACKGROUND	2. 1
2.1	INTRODUC	TION	2.1
2.2	BACKGRO	UND	2.3
2.3	GEOLOGY		2.3
2.4	SOILS		2.3
	2.4.1	Ridge Top	2.4
	2.4.2	Ridge Side	2.4
		Valley Floor	
	2.4.4	Field Observations	2.4
3.0		ATER REGULATORY REQUIREMENTS	
3.1	WATER QU	ALITY OBJECTIVES AND BASIN PLAN REQUIREMENTS	3.1
3.2	ANTIDEGR.	ADATION POLICY	3.1
3.3	BEAR VALL	EY WATER DISTRICT WASTE DISCHARGE REQUIREMENTS	3.2
4.0	GROUNDW	ATER MONITORING RESULTS	4 .1
4.1		ng summary	
4.2	GROUNDV	VATER ELEVATIONS, GRADIENTS, AND FLOW DIRECTION	4.2
4.3	GROUNDV	VATER QUALITY	4.4
	4.3.1	Compliance Monitoring Well MW-1	4.5
	4.3.2	Background Monitoring Well MW-2	4.5
	4.3.3	Compliance Monitoring Well MW-3	4.6
	4.3.4	Compliance Monitoring Well MW-4	4.6
		Compliance Monitoring Well MW-5	
	4.3.6	Compliance Monitoring Well MW-6	4.7
5.0	BACKGRO	UND GROUNDWATER QUALITY SUMMARY	5.1
5.1		L ANALYSIS INTRODUCTION	
5.2		valysis	
5.3		Y TEST	
5.4		TIC GROUNDWATER LIMITATIONS	
5.5	ANTI-DEGR	RADATION ASSESSMENT	5.4
6.0	SUMMARY	AND CONCLUSIONS	6.1
7.0	PROFESSIO	NAL SEALS AND CERTIFICATIONS	7.1
LIST C	OF TABLES		
Table	1 Regional	Board Interim Groundwater Limitations	3.3
		ater Monitoring Requirements	
		nnual 2019 Groundwater Quality Summary	
		ater Elevation Summary	

Table 5 2019 St	atistical Assessment of Background Groundwater Quality	5.3
	ecommended Site Specific Groundwater Limitations	
	roundwater Monitoring Compliance Summary	
LIST OF FIGURE	S	
Figure 1 Third T	ri-Annual 2019 Groundwater Elevation Contour Map	2.2
	dwater Elevation Time Series Chart	
Figure 3 TDS Tir	ne Series Chart	4.4
Figure 4 Chloric	de Time Series Chart	4.5
LIST OF APPEN	DICES	
APPENDIX A	GROUNDWATER MONITORING PROTOCOL	
APPENDIX B	THIRD TRI-ANNUAL 2019 ANALYTICAL RESULTS AND FIELD LOGS	I
APPENDIX C	HISTORICAL GROUNDWATER ELEVATIONS AND QUALITY	

Executive Summary November 18, 2019

1.0 Executive Summary

- Groundwater elevation monitoring during the third tri-annual monitoring event of 2019 indicates flow that was roughly perpendicular to site topography and generally towards the northwest at a horizontal gradient ranging from 0.072 to 0.077;
- Groundwater quality monitoring indicates pH (MW-2 and MW-3), iron (MW-1, MW-2, MW-3, and MW-6), and manganese (MW-1, MW-2, and MW-6) exceeded water quality goals for agricultural and/or potable use during the third tri-annual monitoring event. MW-5 did not contain sufficient water to allow sampling.
- Revised background statistics were computed, and the site-specific groundwater limitations updated as part of this Third Tri-Annual 2019 Groundwater Monitoring Report. Of all the constituents assessed tri-annually in 2019, only manganese (MW-1 and MW-6) was present at concentrations that may be considered above water quality objectives, at statistically significant levels. Conditions that naturally favor iron and manganese mobilization are present in shallow groundwater in the area, including acidic soils and naturally low pH. Thus, these exceedances should not be considered as irrefutable proof that an impact do to wastewater disposal has occurred. The background statistics will again be updated as part of the Third Tri-Annual 2020 Groundwater Monitoring Report.
- Statistical analysis indicates that all of the remaining parameters assessed in 2019, including: nitrate, ammonia, pH, boron, chloride, sodium, iron, and total coliform were in compliance with site specific groundwater limitations, indicating further compliance with State's Anti-Degradation Policy;
- Only one background well exists and thus computed 2019 background statistics could
 not reasonably account for natural special variations in water chemistry common in
 shallow groundwater systems. Furthermore, surface water from a nearby stream may
 influence (likely through dilution) groundwater quality due to its close proximity to the
 shallow background monitoring well; and,
- Lack of a groundwater monitoring network that adequately accounts for spatial
 variations in background groundwater quality remains the most significant monitoring
 deficiency at the wastewater treatment and disposal facility. Should additional
 information be required regarding spatial changes in background water chemistry
 additional background well should be installed.

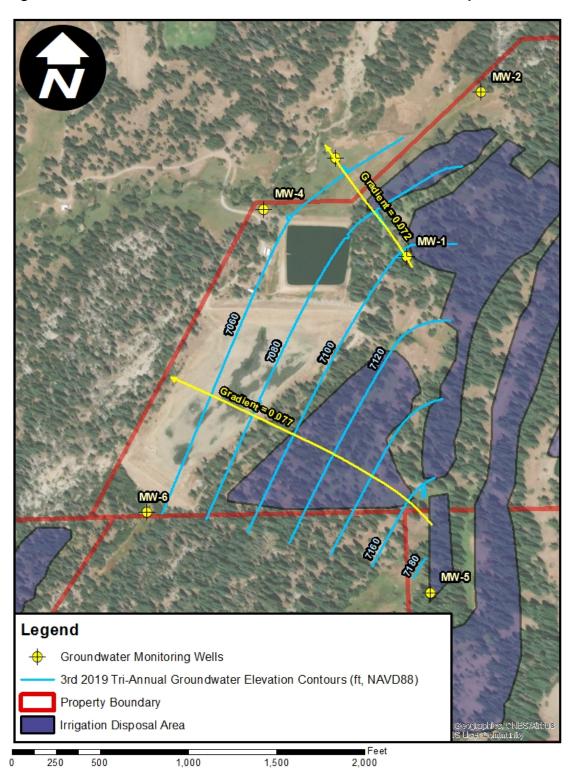
Stantec

Introduction and Background November 18, 2019

2.0 Introduction and Background

2.1 INTRODUCTION

The Bear Valley Water District (District) provides sanitary sewer collection, treatment and disposal for approximately 600 residential and commercial connections in the Alpine County community of Bear Valley, including the Lake Alpine basin area and the Mt. Reba Ski Area. The District's service area is primarily north of State Highway 4 serving the developed private lands in the Bear Valley village area and US Forest Service campgrounds and special use permitted areas. The District wastewater treatment and disposal facility (WWTF) is regulated by the Central Valley Regional Water Quality Control Board (Regional Board) and the Regional Board's Waste Discharge Requirements Order No. R5-2005-0139 and Order No. 5-01-208 (WDRs). The WWTF is located south of Highway 4 and is shown in Figure 1.


The District's WDRs contain monitoring and reporting requirements, which include tri-annual monitoring of groundwater. This report presents groundwater monitoring data obtained during the third tri-annual monitoring event, which was conducted on October 2nd and 3rd, 2019 and satisfies the Tri-Annual Groundwater Monitoring Report reporting requirements as specified in the District's Revised Monitoring and Reporting Program for WDR Order No. R5-2005-0139 (MRP). The revised MRP states that groundwater monitoring reports shall be submitted "by the 1st day of February, July, and September of each year", corresponding to combined *annual/third tri-annual*, *first tri-annual*, *and second tri-annual reporting* periods, respectively. It should be noted that these reporting periods do not correspond to climate and related environmental conditions that prohibit site access and well sampling during certain times of the year and therefore the actual report submittal may vary from that which is stipulated in the MRP.

Regional Board staff's recognition of these climate controls was memorialized in the *July 31*, *2012* email correspondence. In summary, that correspondence stated that Regional Board staff will not recommend enforcement to the Executive Officer so long as the 1st and 2nd tri-annual monitoring reports are submitted by September 1st and November 1st of each year, respectively, instead of the dates currently required in the MRP. The 3rd tri-annual report will remain due by February 1st. Although Regional Board staff have informally agreed to extend tri-annual monitoring report due dates by not seeking enforcement (provided the 1st and 2nd tri-annual reports are submitted by September 1st and November 1st, respectively), we further recommend that Regional Board staff formally memorialize these changes in the MRP at their earliest convenience, in order to assure further violations and potential related enforcement actions against the District do not occur.

Introduction and Background November 18, 2019

Figure 1 Third Tri-Annual 2019 Groundwater Elevation Contour Map

Introduction and Background November 18, 2019

2.2 BACKGROUND

A daily average influent flow of 0.069 million gallons per day (MGD) entered the District WWTF during the 2017 – 2018 water year, which was then treated in a series of aerated treatment ponds where the biodegradable constituents are consumed and/or sequestered. Effluent from the aerated ponds was then stored in a 106 MG reservoir (effluent storage pond) or applied directly to land (summer months only). During the summer months, the stored effluent may be disposed of through spray irrigation to approximately 120 acres of permitted land, including approximately 80 acres of leased land and approximately 40 acres of land authorized by a Special Use Permit from the US Forest Service. Of the 120 gross acres of land, approximately 80 acres (40 from each disposal area) are currently suitable and/or used for effluent disposal purposes. The leased disposal area and permitted US Forest Service land have been in service before the installation of the groundwater monitoring wells (approximately 25 years for the leased land) at the site.

Effluent disposal via spray irrigation involves the disbursement of the effluent through low impact sprinklers upon soils and vegetation within the disposal area. The water is allowed to percolate into the soil and evapotranspirate into the atmosphere. The WDRs currently limit influent flow to 0.1 MGD (annual average basis) and limit application of wastewater to reasonable rates considering soil, climate and the irrigation management system.

2.3 GEOLOGY

The District's WWTF is located west of the Sierra crest along Bloods Creek, a tributary of the North Fork of the Stanislaus River. The elevations range from 7080 ft (msl) at the treatment pond to 7480 ft (msl) at the ballast pond on top of the ridge, east of the treatment and storage ponds. The geologic map for the Sacramento quadrangle (Wagner, Jennings, Bedrossian and Bortugno, 1981) indicates that Mesozoic granites underlie the area. This was confirmed by the presence of numerous granite outcrops in the meadows and at the base of the ridge. The map also shows traces of the Tertiary Mehrten Formation, described as an andesitic conglomerate, sandstone, and breccia. Although a competent outcrop of andesitic rock was not observed, the ridge does contain numerous andesitic fragments, produced by parent rock weathering. Just below the eastern side of the ridge crest are numerous large granite boulders, potentially representing glacial transport and deposition.

2.4 SOILS

The following soil descriptions are taken from the 1981 U.S. Forest Service soil survey of the Stanislaus National Forest. The descriptions are in agreement with field observations at the site and include the following:

Introduction and Background November 18, 2019

2.4.1 Ridge Top

The soil along the southern end of the ridge top is classified as a lithic cryumbrept. This soil is described as a tan, moderately acid, loam about 5 inches thick, and containing no substantive subsoil. Rock content can range up to 60 percent from the substratum of fractured hard andesitic tuff or tuff-breccia. The soil has excessive drainage with moderately rapid permeability and a very high maximum erosion hazard. The soil supports basin sagebrush, mule's ear, perennial grasses, and scattered lodgepole pine.

2.4.2 Ridge Side

The soil along the disposal area, on the west side of the ridge, is classified as a gerle family generally found on 5 to 35 percent slopes. The surface soil is described as a dark gray, slightly acid, sandy loam, about 10 inches thick. The subsoil is described as a moderately acid, light brownish gray, sandy loam. The substratum is extremely stony (rock content can exceed 35%) consisting of glacial debris derived from granitic parent rocks. Additionally, the soil has excessive drainage, rapid permeability, and a moderate to high maximum erosion hazard, typically supporting mixed conifer forests.

2.4.3 Valley Floor

The valley floor soil, north of and below the treatment pond, is classified as an entic cryumbrept and described as a brown, moderately acid loam, sandy loam, and loamy sand, about 40 inches in thickness. The substratum is recent alluvium from granitic rocks and is well drained with moderately rapid to rapid permeability. It supports annual grasses, perennial grasses or sedge, and brush.

2.4.4 Field Observations

There is a good correlation between the topography of the disposal area and soil development and thickness. Mass wasting and in place weathering/deposition created a soil continuum that one can easily recognize and follow from the ridge top to the valley floor. Starting at the top of the ridge the soil is thin and scarcely present. What soil exists is very shallow, poorly developed, poorly sorted, contains no appreciable organic matter, and has a large percentage of andesitic rock fragments. The thickness of the soil increases as one moves down slope with more organic content being observed, correlating well with increased vegetation. Although the soil is still poorly sorted, it increasingly becomes more uniform towards a sandy loam with granitics composing more of the parent material. On the valley floor the soil contains organic material and is at its maximum development and thickness within the disposal area. The alluvial substratum is well-sorted sand with the parent material consisting of mostly granitic rock, with only a minor andesitic contribution. The granitic origin is marked by numerous small mica flakes, found within the soil profile.

Groundwater Regulatory Requirements November 18, 2019

3.0 Groundwater Regulatory Requirements

Discharge at the Bear Valley Water District WWTF is subject to requirements contained in the wastewater permit (Waste Discharge Requirements, or WDRs), Standard Provisions and Reporting Requirements for Waste Discharge Requirements 1 March 1991, the Water Quality Control Plan for the California Regional Water Quality Control Board, Central Valley Region and associated documents (Basin Plan). These requirements and policies are discussed below as they relate to discharges to land and the groundwater limitations at the WWTF.

3.1 WATER QUALITY OBJECTIVES AND BASIN PLAN REQUIREMENTS

The Central Valley Basin Plan contains water quality objectives for groundwater. These water quality objectives apply to all groundwater in the San Joaquin River Basin, though they do not require improvement over naturally occurring background concentrations. The groundwater objectives are:

- Bacteria total coliform organisms shall be less than 2.2 MPN/100ml over any sevenday period.
- Groundwater shall not contain chemical constituents that adversely affect beneficial uses.
- At a minimum, groundwater designated for municipal use shall not contain chemical constituents in concentrations greater than the maximum contaminant levels (MCLs) contained in Title 22 of the California Code of Regulations. To protect all beneficial uses, the Regional Board may apply limits more stringent than the MCLs.
- At a minimum, groundwater designated for municipal use shall not contain concentrations of radionuclides in excess of the MCLs contained in Title 22 of the California Code of Regulations.
- Groundwater shall not contain taste or odor constituents that cause nuisance or adversely affect beneficial uses.
- Groundwater shall be maintained free of toxic substances in concentrations that produce detrimental physiological response...

In conjunction with the Basin Plan groundwater objectives, the Regional Board has compiled water quality goals in the Regional Board staff report *A Compilation of Water Quality Goals*, updated in July of 2008. This report is intended to assist interpretation of the above narrative water quality objectives.

3.2 ANTIDEGRADATION POLICY

In 1968, the State Water Resources Control Board adopted Resolution No. 68-16, Statement of Policy with Respect to Maintaining High Quality of Waters in California, or the State

Groundwater Regulatory Requirements November 18, 2019

Antidegradation Policy. The Antidegradation policy requires that whenever the quality of waters is better than the water quality standards or water quality objectives, and a discharge does or reasonably has the potential to degrade the high quality water, then such degradation must:

- Not unreasonably affect beneficial uses, i.e., cause the water to exceed water quality standards or water quality objectives; and
- Be consistent with the best practicable treatment and control technology such that the highest water quality is maintained consistent with the maximum benefit to the people of the State.

The Antidegradation Policy applies to surface water and groundwater.

3.3 BEAR VALLEY WATER DISTRICT WASTE DISCHARGE REQUIREMENTS

The current District WDRs (Order No. 5-01-208 section D) have groundwater limitations that state:

- 1. Release of waste constituents from any storage or treatment component associated with the WWTF shall not cause groundwater under and beyond the storage or treatment component, as determined by an approved monitoring network, to:
 - a. Contain any of the constituents (identified in Table 1) in concentrations greater than as listed or greater than background quality, whichever is greater.
 - b. Contain any constituent identified in Groundwater Limitation D.1.a in concentrations greater than background quality (whether chemical, physical, biological, bacteriological, radiological, or some other property of characteristic).
 - c. Exhibit a pH of less than 6.5 or greater than 8.5 pH Units.
 - d. Impart taste, odor, or color that creates nuisance or impairs any beneficial use.
- 2. a. Release of waste constituents from any land disposal area associated with the WWTF shall not cause groundwater under and beyond the land disposal area to contain waste constituents in concentrations statistically greater than background water quality, except for coliform bacteria. For coliform bacteria, increases shall not cause the most probable number of total coliform organisms to exceed 2.2 MPN/100ml of any 7-day period.
 - b. If groundwater monitoring shows that waste constituents are present in concentrations greater than background, then upon the request of the Executive Officer, the Discharger shall complete the report described in Provision F.3.

Stantec

Groundwater Regulatory Requirements November 18, 2019

Table 1 Regional Board Interim Groundwater Limitations

Parameter	Units	Interim Limitation*
рН	Std. units	6.5 – 8.4**
Boron	mg/l	0.6
Chloride	mg/l	142
Iron	mg/l	0.3
Manganese	mg/l	0.05
Sodium	mg/l	69
Total Coliform Organisms	MPN/100ml	Non-Detect
Total Dissolved Solids	mg/l	450
Total Nitrogen	mg/l	10
Nitrite as N	mg/l	1
Nitrate as N	mg/l	10
Ammonia as N	mg/l	0.5

^{*} From Waste Discharge Requirements Order No. 5-01-208

^{**}From a Compilation of Water Quality Goals, July 2008

Groundwater Monitoring Results November 18, 2019

4.0 Groundwater Monitoring Results

4.1 MONITORING SUMMARY

The third tri-annual groundwater monitoring event occurred on October 2nd and 3rd, 2019 with sampling being performed by District staff and analytical activities being performed by Alpha Analytical Laboratories Inc. The sampling procedure utilized in monitoring the District's wells is included as Appendix A of this report for reference. Field measurements of depth to groundwater, electrical conductivity (EC), pH, and temperature were conducted in addition to the laboratory analysis of the parameters identified in Table 2 and according to the revised Monitoring and Reporting Program (MRP) No. 5-01-208, dated June 20, 2002. A summary of the third tri-annual water quality monitoring data is provided in Table 3. The field logs and laboratory results for the third tri-annual sampling event are included as Appendix B of this report.

Table 2 Groundwater Monitoring Requirements

Parameter	Units	Frequency ¹
Total Dissolved Solids	mg/l	3 times per year
Nitrate as Nitrogen	mg/l	3 times per year
рН	pH units	3 times per year
Total Coliform Organisms ²	MPN/100ml	3 times per year
Ammonia	mg/l	3 times per year
Total Kjeldahl Nitrogen	mg/l	3 times per year
General Minerals ³	mg/l	1 time per year

^{1.} Immediately after snowmelt, in the middle of the summer, and in the fall (shortly before wells become inaccessible due to snow cover.)

^{2.} Method No. 9221E, using a minimum of three dilutions of 15 tubes.

^{3.} General minerals include boron, chloride, iron, manganese, and sodium, collected during the fall

Groundwater Monitoring Results November 18, 2019

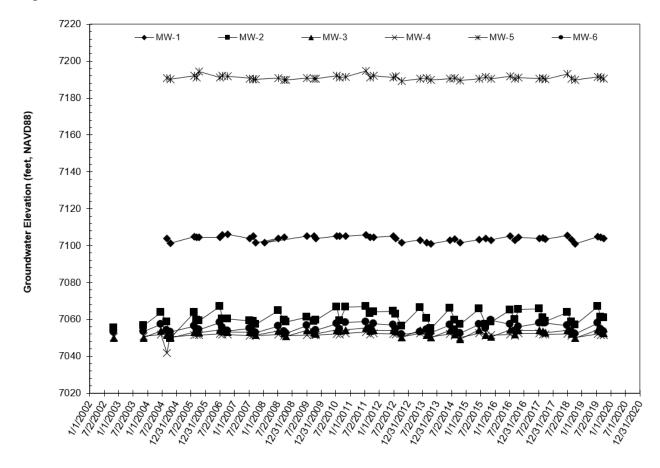
Table 3 Third Tri-Annual 2019 Groundwater Quality Summary

Parameter	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6
Field pH	6.9	6.3	5.9	6.7	IVS	7.1
Field EC (μS/cm)	175	68.8	84	232		608
Temp. (C)	4.9	11.1	10.9	7.1		5.7
NO3-N (mg/L)	<0.2	<0.2	<0.2	<0.2		<0.2
TKN (mg/L)	<1	<1	<1	<1		<1
Ammonia as N	<0.2	<0.02	<0.02	<0.02		<0.2
TDS (mg/L)	130	66	61	130		320
Total Coliform (MPN/100ml)	<1.8	<1.8	<1.8	<1.8		<1.8
B (mg/L)	<0.2	<0.2	<0.2	<0.2		<0.2
Fe (mg/L)	0.39	16.0	1.3	0.21		6.4
Mn (mg/L)	0.22	0.17	0.025	<0.02		3.6
Na (mg/L)	6.1	4.7	6.0	8.3		17.0
CI (mg/L)	1.0	1.2	4.8	7.1		7.8

Bold data indicates and simple exceedance of a water quality goal, not to be confused with a statistically significant exceedances. IVS – Insufficient volume of water available to sample.

4.2 GROUNDWATER ELEVATIONS, GRADIENTS, AND FLOW DIRECTION

Depth to groundwater was measured on October 2nd and 3rd, 2019 relative to the surveyed top north quadrant of the PVC well casing. Groundwater elevations were subsequently calculated for the third tri-annual monitoring event and summarized in Table 4 below. Table 4 also contains groundwater elevations from the three previous monitoring events and provides the computed change in elevation at each well (in parentheses) relative to the previous monitoring event, illustrating recent temporal variability in groundwater elevation at the WWTF. Calculated groundwater elevations for the third tri-annual 2019 monitoring event were utilized to construct a contour map (Figure 1), which was subsequently used to estimate both groundwater flow direction and horizontal gradient. Interpreted groundwater flow direction during the third tri-annual monitoring was found to be roughly perpendicular to site topography and generally towards the northwest at a horizontal gradient ranging from 0.072 to 0.077 (Figure 1). Historical groundwater elevations are provided as Appendix C, while a time series plot for computed groundwater elevations is provided as Figure 2, for further reference.

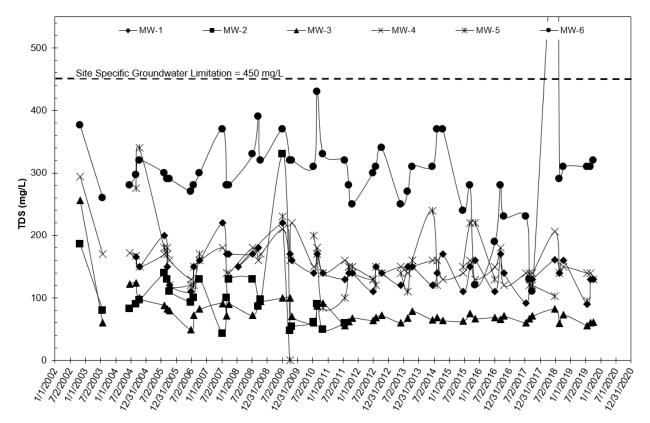


Groundwater Monitoring Results November 18, 2019

Table 4 Groundwater Elevation Summary

B. B. a. a. 24 a. a. 25 a. a. a.	Reference	Groundwater Elevation (feet , NAVD88)						
Monitoring Well	Point Elevation (ft, NAVD88)	Third 2018	First 2019	Second 2019	Third 2019			
MW-1	7114.08	7100.97 (-2.30)	7104.73 (+3.76)	7104.67 (-0.06)	7103.75 (-0.92)			
MW-2	7067.53	7056.96 (-1.77)	7066.93 (+9.97)	7061.31 (-5.62)	7060.90 (-0.41)			
MW-3	7056.37	7049.83 (-2.24)	7054.57 (+4.74)	7053.46 (-1.11)	7052.36 (-1.10)			
MW-4	7054.79	7050.38 (-0.96)	7052.29 (+1.91)	7051.64 (-0.65)	7051.64 (0.00)			
MW-5	7203.78	7189.82 (-0.83)	7191.53 (+1.71)	7191.17 (-0.36)	7190.37 (-0.80)			
MW-6	7059.49	7052.06 (-1.43)	7058.14 (+6.08)	7054.74 (-3.40)	7053.48 (-1.26)			

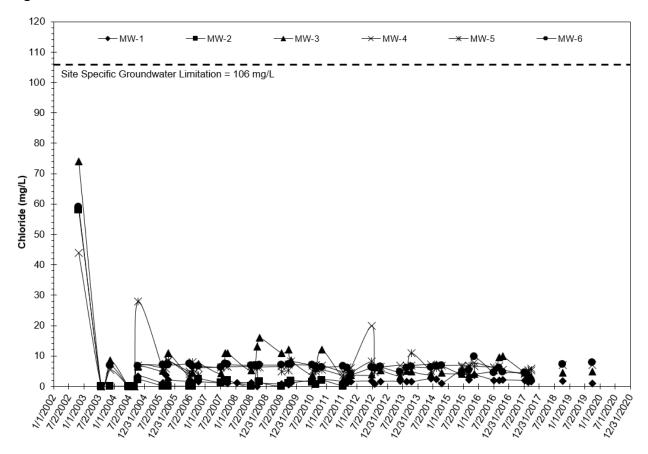
Figure 2 Groundwater Elevation Time Series Chart



Groundwater Monitoring Results November 18, 2019

4.3 GROUNDWATER QUALITY

Groundwater samples for the third tri-annual monitoring event were collected on October 2nd and 3rd, 2019. A summary of the lab and field results for this monitoring event are provided above in Table 3, while historical groundwater quality data are provided in Appendix C for further reference. Historical and third tri-annual data were compiled in time series plots for TDS (Figure 3) and chloride (Figure 4) to illustrate temporal variations in groundwater salinity at the site.


Figure 3 TDS Time Series Chart

Groundwater Monitoring Results November 18, 2019

Figure 4 Chloride Time Series Chart

4.3.1 Compliance Monitoring Well MW-1

Monitoring well MW-1 is generally located hydrogeologically down gradient of wastewater disposal operations and hydrogeologically up gradient of the eastern portion of the treatment pond (Figure 1). Field pH, field EC, and laboratory determined TDS measured during the third tri-annual monitoring event were reported at values of 6.9, 175 μ S/cm, and 130 mg/l, respectively. Nitrate, TKN, and ammonia were not detected above their respective laboratory reporting limits, while iron and manganese were detected at concentrations of 0.39 and 0.22 mg/l, respectively. Furthermore, total coliform organisms were not detected above the laboratory reporting limit of 1.8 MPN/100ml.

Additional parameters monitored during the third tri-annual monitoring event of 2019 are summarized in Table 3 for reference.

4.3.2 Background Monitoring Well MW-2

Monitoring well MW-2 is located hydrogeologically up gradient of the disposal areas and serves as the background monitoring well for the WWTF (Figure 1). Field pH, field EC, and laboratory

Groundwater Monitoring Results November 18, 2019

determined TDS measured during the third tri-annual monitoring event were reported at values of 6.3, 68.8 μ S/cm, and 66 mg/l, respectively. Nitrate, TKN, and ammonia were not detected above their respective laboratory reporting limits, while iron and manganese were detected at concentrations of 16 and 0.17 mg/l, respectively. Furthermore, total coliform organisms were not detected above the laboratory reporting limit of 1.8 MPN/100ml.

Additional parameters monitored during the third tri-annual monitoring event of 2019 are summarized in Table 3 for reference.

4.3.3 Compliance Monitoring Well MW-3

Monitoring well MW-3 is located hydrogeologically down gradient of wastewater disposal operations, near the northwestern portion of the WWTF property (Figure 1). Field pH, field EC, and laboratory determined TDS measured during the third tri-annual monitoring event were reported at values of 5.9, 84 μ S/cm, and 61 mg/l, respectively. Nitrate, TKN, and ammonia were not detected above their respective laboratory reporting limits, while iron and manganese were detected at concentrations of 1.3 and 0.025 mg/l, respectively. Furthermore, total coliform organisms were not detected above the laboratory reporting limit of 1.8 MPN/100ml.

Additional parameters monitored during the third tri-annual monitoring event of 2019 are summarized in Table 3 for reference.

4.3.4 Compliance Monitoring Well MW-4

Monitoring well MW-4 is located hydrogeologically down gradient of wastewater disposal operations and the wastewater treatment pond, near the northwestern portion of the WWTF property (Figure 1). Field pH, field EC, and laboratory determined TDS measured during the third tri-annual monitoring event were reported at values of 6.7, 232 μ S/cm, and 130 mg/l, respectively. Nitrate, TKN, ammonia, and manganese were not detected above their respective laboratory reporting limits, while iron was detected at a concentration of 0.21 mg/l, respectively. Furthermore, total coliform organisms were not detected above the laboratory reporting limit of 1.8 MPN/100ml.

Additional parameters monitored during the third tri-annual monitoring event of 2019 are summarized in Table 3 for reference.

4.3.5 Compliance Monitoring Well MW-5

Monitoring well MW-5 is located hydrogeologically down gradient of wastewater disposal operations, near the south-central portion of the WWTF property (Figure 1). There was insufficient water available to collect samples for field or laboratory analysis.

Additional parameters monitored during the third tri-annual monitoring event of 2019 are summarized in Table 3 for reference.

Groundwater Monitoring Results November 18, 2019

4.3.6 Compliance Monitoring Well MW-6

Monitoring well MW-6 is located hydrogeologically down to cross gradient of wastewater disposal operations and down gradient/adjacent to the effluent storage pond, near the southwestern portion of the WWTF property (Figure 1). Field pH, field EC, and laboratory determined TDS measured during the third tri-annual monitoring event were reported at values of 7.1, 608 μ S/cm, and 320 mg/l, respectively. Nitrate, TKN, and ammonia were not detected above their respective laboratory reporting limits, while iron and manganese were detected at concentrations of 6.4 and 3.6 mg/l, respectively. Furthermore, total coliform organisms were not detected above the laboratory reporting limit of 1.8 MPN/100ml.

Additional parameters monitored during the third tri-annual monitoring event of 2019 are summarized in Table 3 for reference.

Background Groundwater Quality Summary November 18, 2019

5.0 Background Groundwater Quality Summary

5.1 STATISTICAL ANALYSIS INTRODUCTION

On behalf of the District, ECO:LOGIC Engineering (now Stantec) submitted a <u>Groundwater Characterization Report</u> (GCR), in <u>January 2005</u>. This report was submitted in accordance with the District's WDRs and the Regional Board's <u>July 8, 2004 Technical Report Review and Comments</u> letter requesting a statistical determination of background groundwater quality, pursuant to Title 27, Section 20415(e)(10) of the California Code of Regulations. The report compared actual COPC concentration at each of the compliance wells to both the Regional Board's Interim Groundwater Limitations and calculated background COPC using the 95% Confidence Limit (CL). As part of the <u>2006 Annual Report</u>, the statistical assessment was revised via an alternative methodology utilizing the 99% upper prediction limit (UPL) for parametrically distributed data, combined with alternative tests for non-parametric data. The background groundwater quality assessment has been updated annually since 2006. The analysis provided below represents the most current update to the statistical assessment of background groundwater quality, utilizing data collected through the *third* tri-annual monitoring event of *2019*.

The following provides a summary of the assumptions used to compute the 99% UPL of background groundwater quality:

- Statistical analysis performed annually;
- Statistical test performed for the parameters TDS, nitrate, ammonia, pH, total coliform, boron, chloride, iron, sodium, and manganese;
- Data collected during the year of 2003 and earlier were not assessed due in part to several factors including the influence of well drilling activities and lack of filtration for metals. All data following 2003 were included in the statistical analysis;
- A pass 1 of 3 re-sampling strategy was employed; and,
- Maximum reported value, not reflective of an unreasonable anomaly, was used to represent background groundwater quality for non-parametric data.

5.2 OUTLIER ANALYSIS

Prior to the evaluation of background groundwater quality, all background data (MW-2) were reviewed using Dixon's test (where n is between 3 and 25) or Rosner's test (for n > 25) for statistically significant outliers at the 99% confidence limit. The following provides a summary of the identified outliers and any actions taken.

Background Groundwater Quality Summary November 18, 2019

Field pH: No outliers identified.

TDS: One statistical outlier was identified during the 7/7/09 monitoring event. The results are anomalously high and do not correspond with the reported EC values, suggesting a laboratory error. The reported outlier was subsequently removed.

Nitrate as N: Four outliers were identified and were reviewed and found to be close or at the reporting limit. The outliers were thus determined to be reasonable and subsequently retained for further analysis.

Ammonias as N: Ten outliers were identified and were reviewed and found to be close to the reporting limit. The outliers were thus determined to be reasonable and subsequently retained for further analysis.

Total Coliform: Four outliers were identified and during the 7/8/208, 10/26/09, 11/4/10, and 8/24/17 monitoring events. The outliers were reviewed, determined to be representative of the range of detected values, and thus retained for further analysis.

Boron: One outlier was identified and found to be at an alternative reporting limit. The outlier was retained for further analysis.

Chloride: Two statistical outlier were identified and during the 9/18/08 and 10/9/2012 monitoring events. These data were reviewed and no anthropogenic cause could be attributed to the anomalies. Accordingly, they were retained for further analysis.

Iron: One outlier was identified; however no anthropogenic cause could be attributed to its detection. Accordingly, the outlier was retained for further analysis

Sodium: Two statistical outliers were identified and during 9/18/08 and 10/9/12 monitoring events. These outliers were reviewed and no anthropogenic cause could be attributed to the anomalies. Accordingly, they were retained for further analysis.

Manganese: Eight statistical outliers were identified during the 10/13/04, 8/29/07, 7/21/11, 10/9/12, 8/21/13, 10/14/14, and 7/13/17 monitoring events. These outliers were reviewed and no anthropogenic cause could be attributed to the anomalies. Accordingly, they were retained for further analysis.

5.3 NORMALITY TEST

Following the outlier analysis a normality test was performed using Shapiro-Wilks Test at the 99% level of confidence. If the background monitoring data were normally distributed, or could be made normal through an appropriate transformation, parametric tests were applied. Alternatively, if the data were found to be non-parametrically distributed, non-parametric statistical tests were used. Following the initial data review, as summarized above, 99%

Background Groundwater Quality Summary November 18, 2019

background UPLs were computed, based on inclusion of the *2019* monitoring data the results of which are summarized in Table 5.

Table 5 2019 Statistical Assessment of Background Groundwater Quality

сорс	Background 99% UPL	Data Distribution/Method	Data Points
TDS (mg/l)	121	Parametric UPL (Natural Log Transformed)	46
Nitrate as N (mg/l)	0.5	Non-Parametric UPL	47
Ammonia as N (mg/l)	1	Non-Parametric UPL	47
рН	5.7 – 7.2	Parametric UPL	47
Total Coliform (MPN/100ml)	2200	Non-Parametric UPL	47
Boron (mg/l)	0.2	Non-Parametric UPL	41
Chloride (mg/l)	2.5	Parametric UPL (Natural Log Transformed)	41
Iron (mg/l)	16	Non-Parametric UPL	43
Sodium (mg/l)	8.6	Non-Parametric UPL	41
Manganese (mg/l)	0.22	Non-Parametric UPL	43

Bold data indicate an exceedance of the Regional Board's Interim Groundwater Limitations

5.4 SITE SPECIFIC GROUNDWATER LIMITATIONS

For COPC's where the background 99% UPL or non-parametric statistics are greater than the Regional Board's Interim Groundwater Limitation, the background statistic should be used for facility compliance. Of the COPCs analyzed, computed background (MW-2) statistics for iron, manganese, and total coliform exceeded the Regional Board's Interim Groundwater Limitations of 0.3 mg/l, 0.05 mg/l, and non-detect, respectively. Furthermore, background pH values were statistically lower than the lower limit of the groundwater goal of 6.5. Conversely, where an Interim Groundwater Limitation is greater than the background statistic, the Interim Groundwater Limitation should be used to assess facility compliance, as was the case for all the remaining parameters, provided the facility is implementing best practicable treatment and control measures for the constituent of potential concern. It should be noted however, that the WDR Interim Groundwater Limitations for boron and chloride are inconsistent with agricultural water quality goals and were revised accordingly. Table 6 presents the recommended site specific groundwater limitations for the facility.

Background Groundwater Quality Summary November 18, 2019

Table 6 2019 Recommended Site-Specific Groundwater Limitations

COPC	Site Specific Groundwater Limitation	Basis for Limitation	Compliance Assessment Methodology
TDS (mg/l)	450	Agricultural Water Quality Goal	99% LCL
Nitrate as N (mg/l)	10	Primary Maximum Contaminant Level	Not to exceed
Ammonia as N (mg/l)	1.5	Taste and Odor Threshold	99% LCL
рН	5.7 – 8.4	STAT Parametric UPL/Agricultural Water Quality Goal	Pass 1 of 3/ 99% LCL
Total Coliform (MPN/100ml)	2200	STAT Non-Parametric UPL	Not to exceed
Boron (mg/l)	0.7	Agricultural Water Quality Goal	99% LCL
Chloride (mg/l)	106	Agricultural Water Quality Goal	99% LCL
Iron (mg/l)	16	STAT Non-Parametric UPL	Not to exceed
Sodium (mg/l)	69	Agricultural Water Quality Goal	99% LCL
Manganese (mg/l)	0.22	STAT Non-Parametric UPL	Not to exceed

Bold data indicate an exceedance of the Regional Board's Interim Groundwater Limitations

5.5 ANTI-DEGRADATION ASSESSMENT

In evaluating facility compliance, the UPL methodology is not appropriate for statistically assessing compliance with water quality goals based on MCLs or agricultural limitations (such as those used in determining Interim Groundwater Limitations) because many of these goals are based on long term averages of water quality. Accordingly, the 99% lower confidence interval (LCL) about the mean is recommended (99% LCL for two-tailed test for pH) and is appropriate for assessing compliance with the parameters TDS, ammonia, upper pH, boron, chloride, and sodium, which were based on unrestricted agricultural use or taste and odor thresholds. However, where a parametric 99% UPL serves as the site specific groundwater limitation, the pass 1 of 3 re-sampling should be used to assess compliance (that is if one sample of the past three is less than the limitation, no statistically significant impact is noted). Alternatively, for non-parametric tests, a simple exceedance of the site specific groundwater limitation may indicate a statistically significant impact. Table 7 summarizes the results of the compliance assessment.

Background Groundwater Quality Summary November 18, 2019

Table 7 2019 Groundwater Monitoring Compliance Summary

СОРС	Site Specific Groundwater Limitation	Compliance Assessment Methodology	2019 Statistically Significant Exceedance
TDS (mg/l)	450	99% LCL	None
Nitrate as N (mg/l)	10	Not to Exceed	None
Ammonia as N (mg/l)	1.5	99% LCL	None
рН	5.7 – 8.4	Pass 1 of 3/ 99% LCL	None
Total Coliform (MPN/100ml)	2200	Not to Exceed	None
Boron (mg/l)	0.7	99% LCL	None
Chloride (mg/l)	106	99% LCL	None
Iron (mg/l)	16	Not to Exceed	None
Sodium (mg/l)	69	99% LCL	None
Manganese (mg/l)	0.22	Not to Exceed	MW-1 and MW-6

Of the parameters assessed, only manganese was detected in groundwater at levels that statistically exceed site specific groundwater limitations during 2019. The exceedances occurred at monitoring wells MW-1 and MW-6. Both iron and manganese are elements that forms pH and redox sensitive minerals in the subsurface, which can become mobile under reducing conditions and in groundwater with low pH, both of which are not uncommon in alpine groundwater environments. For instance, the dilute nature and lack of buffering capacity of alpine groundwater (primarily snowmelt) and presences of acidic surface soils bode well for low pH groundwater, a condition that naturally favors manganese mobilization. Coliform another parameter that is sometimes detected is ubiquitous on the surface of the earth and can be present in groundwater where a conduit, such as a fracture connected to the surface, exists. Furthermore, coliform can be introduced during sampling from contaminated equipment, introduced water, or windblown sediment/colonies. Therefore, the presence of iron, manganese or coliform in groundwater should not in of themselves be considered irrefutable proof of wastewater impacts.

Caution should also be exercised when evaluating computed "background" groundwater values to that of down gradient monitoring locations as the computed background statistics only consider one datum (MW-2) and thus, does not account for natural spatial variations in groundwater quality in the area. Spatial variability of the quality of shallow groundwater is more the norm than the exception and can be attributed to a host of issues including, but not limited to, soil column thickness, soil composition, bedrock composition, grain size distribution, organic matter content, groundwater elevation, acidity/alkalinity, land use, and redox potential. As such quantitative interpretation or comparison of groundwater data collected at "down gradient" monitoring locations to only one background location for the purpose of assessing facility compliance is not recommended. The computed background statistics and site specific

Background Groundwater Quality Summary November 18, 2019

groundwater goals should thus be used only to identify areas which *may have* been impacted with current or historic wastewater disposal practices. If improved background statistics are required, additional monitoring wells should be installed at locations up and cross gradient of the waste discharge.

All of the parameters assessed, with the potential exception of manganese and coliform, were in compliance with the site specific groundwater limitations, indicating further compliance with regards to the State's Anti-Degradation Policy.

Summary and Conclusions November 18, 2019

6.0 Summary and Conclusions

Groundwater was assessed during the third tri-annual monitoring event, pursuant to the District's WDRs and MRP, issued by the Regional Board. During the third tri-annual monitoring event, reported water quality values for the following constituents exceeded water quality goals for agricultural and/or potable use at the locations indicated, including:

pH (below the lower limit): MW-2 and MW-3;

Iron: MW-1, MW-2, MW-3, and MW-6; and,

• Manganese: MW-1, MW-3, and MW-6.

A revised 2019 annual statistical analysis indicates statistically significant exceedances of site-specific groundwater limitations occurred for only manganese and at MW-1 and MW-6. Dissolved iron and manganese are both commonly spatially transient and can be influenced by variables other than the disposal of effluent. It should be noted that the current groundwater monitoring network contains only one background monitoring well (MW-2) making it impossible to incorporate potential spatial variations into the background statistics. Accordingly, a statistically significant impact should not be considered irrefutable proof that the impact originated as a result of the discharge. Regardless, a revised statistical assessment will be conducted as part of the Third Tri-Annual 2020 Groundwater Monitoring Report, which will also include a revised assessment of background groundwater quality.

Professional Seals and Certifications November 18, 2019

7.0 Professional Seals and Certifications

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment.

Thomas W. Butler, PG, CHG, CEG Senior Hydrogeologist/Geochemist

Appendix A Groundwater Monitoring Protocol November 18, 2019

Appendix A Groundwater Monitoring Protocol

Bear Valley Water District Groundwater Monitoring Well Sampling Procedures

- 1) The covers of the monitoring wells were opened and loose material cleared from the edged. A propane torch was used to briefly burn the frame of the cover and any debris inside the box and around the well casing (i.e., eliminating potential contamination of samples from ants). The wells are 2-in PVC approximately 13.5 to 23.5 feet deep with the lower 10 to 15 feet screened. The compression cap was removed and placed top down on the well cover.
- 2) Water surface depth was measured to within 0.01 feet by lowering an electronic tape into the well while passing it through a cloth soaked in hypochlorite solution (the tape was cleaned and disinfected in the lab prior to bringing it to the field). The water depth was measured relative the top of the north quadrant of the PVC well casing. More than three well volumes were purged from the wells until pH, EC and temperature stabilized. The volume to purge was calculated based on the well casing diameter (area) times the water column height (well depth from well logs minus depth to water surface times three. no annular space estimate was included).
- 3) Dedicated 12V submersible plastic pumps (ES 60) with a vinyl discharge hose were used for purging and sampling the wells. The pump, hose and cord were decontaminated prior to transport to the field in deionized (D.I.) water plus detergent, and then rinsed three times in D.I. water (running the pump during each to flush water through the impeller and hose) and finally the pump and appurtenances were placed in a dilute hypochlorite solution (running the pump to flush the solution through the impeller and hose). The pump and hose were removed from sealed bins and lowered into the well, avoiding pump or hose touching the cover frame, ground etc. The technician used rubber gloves during sampling and changed them each time anything "dirty" was touched. New gloves were rinsed in chlorine solution prior to handling equipment.
- 4) After priming and pumping a small amount of water through the hose (to remove and remaining liquid in the hose), the discharge rate was measured, by measuring the time to fill a one-gallon container. This time was them multiplied by the well purge volume as calculated in step 2) above. The time to purge three volumes was rounded up by approximately 5 minutes.
- 5) The pump was started and time recorded while it discharged. Approximately every three minutes a roughly 200 ml sample was collected in a glass container from the discharge pump hose and pH, EC and Temperature were measured with a multimeter. All wells stabilized with regards to pH EC, and Temperature.
- 6) Prelabled sample bottles, were introduced into the discharge stream of the pump after pumping 3-well volumes and stabilized pH, EC and Temperature. These were sealed and placed in an ice chest on ice for shipment to the lab.

- 7) The pump was shut off and all equipment was removed, the well cap was rinsed with dilute chlorine solution and replaced and the well cover replaced on the well.
- 8) After measurement, the measuring tape was rolled onto the reel while it was wiped.

Appendix B Third Tri-Annual 2019 Analytical Results and Field Logs November 18, 2019

Appendix B Third Tri-Annual 2019 Analytical Results and Field Logs

	10-3-19				Tech. N		west	
Well No:	1	27	20		Referen	ce Point: 75	yds below C	irassy Roa
Fotal Well Depth of Depth to Water (Wasing Diameter:			97	ft. ft. in.	Well Diameter (In.)	Convers Factor (CV) ga	Up	ded
Water Column He	ight (TWD -	WD): 1/e	9/.	ft.	2"	0.163	0.17	
Purge/Sampling N			. 10		1			
16.96	x 0.17	= 2.	8	3	X	3	= 9	gals
Water column	Gal per linear l	J. ISS.		ge vol, rounded up to		casing volumes	Total Purge	
					7			
Time	Volume	pН	EC	Temp	Turbidity	Color	Odor	Pumped
	Purged (gal)	(SU)	(μS/cm)	(°C)				Dry
0750	0	6.86	445	5.200	Clear	Clear	none	nò
0753	3	6.88	197.3	5.3°C	Clear	Clear	none	no
0757	3	4.82	177.2	5.2°C	CLEAV	CLEAT	none	no
0803	3	4.87	175.1	4.90€	Trace	Cloudy	none	no
PURGING DAT	ΓA: (For 0 ga	llons purge jus	t enough wat	ter to record	Clear,	Clear,	None,	Yes/No
pH, EC, and temp	perature)				trace,	cloudy,	faint,	
					light,	yellow,	moderate,	
					moderate,	brown	strong	

	DVVVD	District	Jour	iuwa	tel Moi	illoring i	leiu Da	ala Sile	5 L
Date:	10-2-	19				Tech. N	lame:	west	
Well No	: 2					Referen	ice Point: N	orthmost Orv	is Meadow
Total Well De	epth (TWD):	17.	90	ft.		Well	Convene	ion Roun	dad
Depth to Wate	er (WD):	6	.63	ft.		Well Conversion Rough Diameter Factor Up			ied
Casing Diame	ter:		2	in.		(In.)	(CV) ga		
Water Column	Height (TWD	– WD)://	.27	ft.		2"	0.163	0.17	
Purge/Samplir	ng Method: Pur	mp / Grab							
11.27	x 0.17	=	9		2	. O x	3	=	gals
Water column	Gal per linea	r Ft. 1 purge vo	olume	Purge vo	l, rounded up to	nearest .5 # of	f casing volumes	Total Purge	Volume
Time	Volume	рН	EC		Temp	Turbidity	Color	Odor	Pumped
	Purged (gal)	(SU)	(μS/cr	n)	(°C)				Dry
0902	0	4.33	23	1	7.2°c	Clear	Clear	none	no
0905	2	6.32	96	. [10.4°C	light	Cloudy	none	no
0910	2	6-28	67.	9	10.9°C	moderate	Clovey	none	no
0914	2	6.29	48.	8	11.1°C	moderate	brown	none	no
PURGING I	DATA: (For 0 g	allons purge jus	t enoug	h water t	o record	Clear,	Clear,	None,	Yes/No
	temperature)	, , ,				trace,	cloudy,	faint,	
1						light,	yellow,	moderate,	
						moderate,	brown	strong	16
						heavy			LITTE OF
Notes:									
							-		
									7
								· · · · · · · · · · · · · · · · · · ·	
									- 1 - 1

Total Well Depth (TW Depth to Water (WD) Casing Diameter: Water Column Height Casing Volume: Purge Volume: Purge Rate: 9.55 X	: (TWD – gal =	WD): 9. Water Column Casing Volum	0 / 2 5 5 n Heigh			Well Diameter (In.) 2"	Conversi	Up	
Depth to Water (WD) Casing Diameter: Water Column Height Casing Volume: Purge Volume: Purge Rate: 9.55 X	: (TWD – gal = gal = gal/n	WD): 9. Water Column	0 / 2 5 5 n Heigh	ft. in. ft.		Diameter (In.)	Factor (CV) gal	/ft Up	led
9.55 x		nin		volumes		D/C!!	- Mathada		
	0.17					Purge/Samplii	ng Method:	Pump / Grab	
Water column Ga	0.1 /	=	ĺe		2:0	x	3	= <u>C</u> e	gals
	l per linear F	t. 1 purge vo	lume	Purge vol	, rounded up to	nearest .5 # of	casing volumes	Total Purge	Volume
,									
F	olume Purged (gal)	pH (SU)	EC (μS/c	em)	Temp (°C)	Turbidity	Color	Odor	Pumped
0830	0	6.12	325		10.1°c	dight	Cloudy	none	no
0834 2	.0	5.99	103	3.8	10.4°c	Clear	Clear	none	no
0837 2	.0	5.99	96.1		10-60	Clear	CLEAR	none	no
0842 2	.Ò	5.92	84.	0	10.9°C	Clear	Clear	pone	no
PURGING DATA: (For 0 gallons purge just enough water to record pH, EC, and temperature)						Clear, trace, light, moderate,	Clear, cloudy, yellow, brown	None, faint, moderate, strong	Yes/No

Date:	10-2	2-19				Tech. N	ame: _	west	
Well No:		1				Referen	ce Point: O	rvis Meadow	Below EH
Total Well Dep Depth to Water Casing Diamete Water Column Casing Volume	(WD): er: Height (TW	_		ft. ft. in. ft. t x CV		Well Diameter (In.) 2"	Convers Factor (CV) ga 0.163	Up	ded
Purge Volume: Purge Rate:		gal = Casing Vo gal/min	lume x 3 (v	volumes re		Purge/Samplin	ng Method:	Pump / Grab	
13.95 Water column	X 0.1		volume	Purge vol, ro	2. a	X nearest .5 # of	3 casing volume	= 7.5	
Time	Volume Purged (gal)	pH (SU)	EC (μS/cm)		remp °C)	Turbidity	Color	Odor	Pumped Dry
0807	0	le.46	343		6.2°C	Clear	Clear	none	10
0810	2.5	6.54	288		7.0°C	Trace	cloudy	none	no
0814	2.5	4.64	222		7.73	Clear	Clear	pone	no
0817	2.5	4.68	232		7.1°	Clear	Clear	pone	no
PURGING DATA: (For 0 gallons purge just enough water to record pH, EC, and temperature)						Clear, trace, light, moderate,	Clear, cloudy, yellow, brown	None, faint, moderate, strong	Yes/No
Notes:									

BVWD District Groundwater Monitoring Field Data Sheet

Date:	10	5				Tech. N	lame:	We	254	
Well No	:	5				Referen	ce Point: F	S land b	elow Gr	een Machi
Total Well De Depth to Wate Casing Diame	er (WD): ter:	/	0.19 3.41 2	ft. in.		Well Diameter (In.)	Conve Factor (CV) g		Round Up	led
		WD – WD):					0.103		0.17	
	:	_ gal = Water Colu _ gal = Casing Vol _ gal/min			required)	Purge/Sampli	ng Method	: <u>Pum</u> p	/ Grab	
Water column		0.17 =	15 volume	Purge vo		to nearest .5 # or			4.5 otal Purge	
Time	Volume Purged (gal)	pH (SU)	EC (μS/cm)	Temp (°C)	Turbidity	Color	Odo	or	Pumped Dry
0903	0									
pH, EC, and		or 0 gallons purge jumps purged				Clear, trace, light, moderate, heavy	Clear, cloudy, yellow, brown	None faint, mode stron	erate,	Yes/No
Notes:										

BVWD District Groundwater Monitoring Field Data Sheet

Date:	10	6			Tech. N	Name:	west	7
Well N	0:	6			Referen	nce Point: B	elow South da	am of PR
Total Well I	Depth (TWD		22.59	ft.	Well	Convers	ion Roun	ded
Depth to Wa	ater (WD):	_	6.01	ft.	Diamete		Up	1
Casing Dian		-	2	in.	(In.)	(CV) ga		N.
Water Colu	nn Height (TWD – WD):	16.58	ft.	2"	0.163	0.17	
Casing Volu	ıme:	gal = Water 0	Column Heig	ht x CV			113	12
Purge Volur	ne:	gal = Casing	Volume x 3 (volumes required)				7,
Purge Rate:	-	gal/min			Purge/Sampl	ing Method:	Pump / Grab	
14.5	5€ x	0.17 =_	2.8	3.0	x	3	= 9	gals
Water column		er linear Ft. 1 p	urge volume	Purge vol, rounded up to	o nearest .5 # o	of casing volumes	s Total Purge	Volume
Time	Volume	рН	EC	Temp	Turbidity	Color	Odor	Pumped
	Purged	(SU)	(µS/cm)	(°C)				Dry
	(gal)							
0822	0	4.98	746	4.7° c	trace	Clovey	none	no
0825	3	7.01	624	6.000	Clear	Clear	none	no
0829	3	7.03	402	6.0°C	Clear	CleAV	none	no
0834	3	7.07	608	5.7° c	Clear	Clear	none	no
PURGINO	G DATA: (F	or 0 gallons pur	ge just enoug	h water to record	Clear,	Clear,	None,	Yes/No
pH, EC, an	d temperatu	re)			trace,	cloudy,	faint,	
					light,	yellow,	moderate,	
					moderate,	brown	strong	
					heavy			
Notes:			-				157	

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

11 October 2019

Bear Valley Water District

Attn: Guy West

PO Box 5027

Bear Valley, CA 95223

RE: Water Quality

Work Order: 19J0451

Enclosed are the results of analyses for samples received by the laboratory on 10/02/19 21:46. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jeanette L. Poplin For Karen L. Lantz

Jeanette Popli

Project Manager

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Bear Valley Water District

Project Manager: Guy West

P O Box 5027

Project: Water Quality

Bear Valley, CA 95223

Project Number: MW 1

Reported:

10/11/19 13:00

Bay Area: 262 Rickenbacker Circle | Livermore, CA 94551 | T: 925-828-6226 | F: 925-828-6309 | ELAP# 2728 Central Valley: 9090 Union Park Way Suite 113 | Elk Grove, CA 95624 | T: 916-686-5190 | F: 916-686-5192 | ELAP# 2922 North Bay: 110 Liberty Street | Petaluma, CA 94952 | T: 707-769-3128 | F: 707-769-8093 | ELAP# 2303 San Diego Service Center: 2722 Loker Avenue West Suite A | Carlsbad, CA 92010 | T: 760-930-2555 | F: 760-930-2510

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Well #2	19J0451-01	Water	10/02/19 09:14	10/02/19 21:46
Well #3	19J0451-02	Water	10/02/19 08:42	10/02/19 21:46
Well #4	19J0451-03	Water	10/02/19 08:17	10/02/19 21:46

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Bear Valley Water District Project Manager: Guy West

P O Box 5027 Project: Water Quality

Bear Valley, CA 95223 Project Number: MW 1

Reported: 10/11/19 13:00

	Result	Reporting Limit	Dilution	Batch	Prepared	Analyzed	ELAP#	# Method	Note
Well #2 (19J0451-01)		Sample Type:	Water		Sampleo	d: 10/02/19 09:1	4		
Conventional Chemistry Parameters by AF	PHA/EPA Methods								
Ammonia as N	ND mg/L	0.020	1	AJ93242	10/03/19 10:00	10/03/19 15:30) 1551	SM4500NH3B,C	
Total Dissolved Solids	66 mg/L	10	1	AJ93526	10/07/19 12:25	10/09/19 09:05	5 2922	SM2540C	
Total Kjeldahl Nitrogen	ND mg/L	1.0	1	AJ93261	10/04/19 11:42	10/09/19 11:22	2 1551	SM4500-Norg B	
Anions by EPA Method 300.0									
Nitrate as N	ND mg/L	0.20	1	AJ93595	10/03/19 18:21	10/03/19 18:21	2922	EPA 300.0	
Microbiological Parameters by APHA Stan	ndard Methods								
Total Coliforms	ND MPN/100mL	1.8	1	AJ93385	10/02/19 15:10	10/04/19 13:55	5 2922	SM9221B,C	
Well #3 (19J0451-02)		Sample Type:	Water		Sampleo	d: 10/02/19 08:4	2		
Conventional Chemistry Parameters by AF	PHA/EPA Methods								
Ammonia as N	ND mg/L	0.020	1	AJ93242	10/03/19 10:00	10/03/19 15:30) 1551	SM4500NH3B,C	
Total Dissolved Solids	61 mg/L	10	1	AJ93526	10/07/19 12:25	10/09/19 09:05	5 2922	SM2540C	
Total Kjeldahl Nitrogen	ND mg/L	1.0	1	AJ93261	10/04/19 11:42	10/09/19 11:22	2 1551	SM4500-Norg B	
Anions by EPA Method 300.0									
Nitrate as N	ND mg/L	0.20	1	AJ93595	10/03/19 18:52	10/03/19 18:52	2 2922	EPA 300.0	
Microbiological Parameters by APHA Stan	dard Methods								
Total Coliforms	ND MPN/100mL	1.8	1	AJ93385	10/02/19 15:00	10/04/19 13:55	5 2922	SM9221B,C	
Well #4 (19J0451-03)		Sample Type:	Water		Sampleo	d: 10/02/19 08:1	7		
Conventional Chemistry Parameters by AF	PHA/EPA Methods								
Ammonia as N	ND mg/L	0.020	1	AJ93242	10/03/19 10:00	10/03/19 15:30) 1551	SM4500NH3B,C	
Total Dissolved Solids	130 mg/L	10	1	AJ93526	10/07/19 12:25	10/09/19 09:05	5 2922	SM2540C	
Total Kjeldahl Nitrogen	ND mg/L	1.0	1	AJ93261	10/04/19 11:42	10/09/19 11:22	2 1551	SM4500-Norg B	

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Bear Valley Water District

Project Manager: Guy West

P O Box 5027

Project: Water Quality

Bear Valley, CA 95223

Reported: Project Number: MW 1 10/11/19 13:00

	Result	Reporting Limit D	ilution	Batch	Prepared	Analyzed	ELAP#	Method	Note
Well #4 (19J0451-03)		Sample Type: Wa	ater		Sampled:	10/02/19 08:1	7		
Anions by EPA Method 300.0 Nitrate as N	ND mg/L	0.20	1	AJ93595	10/03/19 15:45	10/03/19 15:45	5 2922 I	EPA 300.0	
Microbiological Parameters by APHA Standard Metho Total Coliforms	ND MPN/100mL	1.8	1	AJ93385	10/02/19 15:00	10/06/19 13:10	2922 5	SM9221B,C	

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Bear Valley Water District

Project Manager: Guy West

P O Box 5027

Project: Water Quality

Bear Valley, CA 95223

Reported: Project Number: MW 1 10/11/19 13:00

Notes and Definitions

ND Analyte NOT DETECTED at or above the reporting limit

Sample results reported on a dry weight basis dry

RPD Relative Percent Difference

alpha

Corporate Laboratory 208 Mason Street, Ukiah CA 95482 707-468-0401 F) 707-468-5267

Bay Area Laboratory 262 Rickenbacker Circle, Livermore, CA 94551 925-828-6226 F) 925-828-6309

Chain of Custody - Work Order

Elk Grove temp: SAMPLE 3 TIMES YEARLY ž Temp upon Receipt °C 2,90 If "Y" please enter the Source Number(s) in the column above Dublin temp: Ukiah temp: CDPH Source Numbers: Reports and Invoices delivered by email in PDF format Sample Notes or Signature below authorizes work under terms stated on reverse side. FAXED ₹ JUNE, AUG, SEPT Yes Lab preapproval required Pg. Standard days 10 days CDPH Write On EDT Transmission? TAT Standard 5 days 48 hours Other: × 19T015 State System Number: **Analysis Request** Lab No Time 'N-EHN × × × × 'N-E0N × **TDS** ΛO Central Valley Laboratory 9090 Union Park Way #113, Elk Grove CA 95624 916-686-5190 F) 916-686-5192 TC 15 WW × × 61.501 CΛ Date Total Number of Containers per Sample ID က က က Ofher Matrix lioS Project Information Water WW × × PuoN _ **≥** Internal Lab Use: Preservative × × Na2S2O3 PO Number Project No: × × **+**0SZ⊦ Project ID: HAO3 Received by HCI Other Sleeve Container ELAP Certifications Ukiah 1551 / Dublin 2728 / Elk Grove 2922 Class × × × Роју email: clientservices@alpha-labs.com Invoice to (if different) 40ml Vial 12 1/2 1/2 C 7.1.50 Time 32 Halog Sampling 7170 mail address: Date hone/Fax: Address: ontact: Field Sampler - Printed Name & Signature: 720767 Analytical Laboratories Inc Sample Identification Relinquished by WATERS, SEDIMENTS, SOLIDS www.alpha-labs.com Report to Bear Valley Water District Bear Valley, CA 95223

209-753-2112

mail Address:

Well #1

Well #3 Mel #

Well #2

Aet #D ******

PO Box 5027

ŝ

Mail Hardcopy to DDW-?

632

61+0

Hardcopy to UUVV attn:

ravel and Site Time:

10-2-19 21:46 18-2-19 18:37

Misc. Supplies:

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

11 October 2019

Bear Valley Water District

Attn: Guy West

PO Box 5027

Bear Valley, CA 95223

RE: Water Quality

Work Order: 19J0660

Enclosed are the results of analyses for samples received by the laboratory on 10/03/19 21:50. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jeanette L. Poplin For Karen L. Lantz

Jeanette Popli

Project Manager

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Bear Valley Water District

Project Manager: Guy West

P O Box 5027

Project: Water Quality

Bear Valley, CA 95223

Project Number: MW 1

Reported:

10/11/19 16:34

Bay Area: 262 Rickenbacker Circle | Livermore, CA 94551 | T: 925-828-6226 | F: 925-828-6309 | ELAP# 2728 Central Valley: 9090 Union Park Way Suite 113 | Elk Grove, CA 95624 | T: 916-686-5190 | F: 916-686-5192 | ELAP# 2922 North Bay: 110 Liberty Street | Petaluma, CA 94952 | T: 707-769-3128 | F: 707-769-8093 | ELAP# 2303 San Diego Service Center: 2722 Loker Avenue West Suite A | Carlsbad, CA 92010 | T: 760-930-2555 | F: 760-930-2510

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Well #1	19J0660-01	Water	10/03/19 08:03	10/03/19 21:50
Well #6	19J0660-02	Water	10/03/19 08:34	10/03/19 21:50

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Bear Valley Water District Project Manager: Guy West

P O Box 5027 Project: Water Quality

Reported: Bear Valley, CA 95223 Project Number: MW 1 10/11/19 16:34

	Result	Reporting Limit	Dilution	Batch	Prepared	Analyzed	ELAP#	# Method	Note
Well #1 (19J0660-01)		Sample Type:	Water		Sampled	: 10/03/19 08:0	3		
Conventional Chemistry Parameters by APHA/E	EPA Methods								
Ammonia as N	ND mg/L	0.20	1	AJ93578	10/10/19 09:30	10/10/19 13:30	1551	SM4500NH3B,C	
Total Dissolved Solids	130 mg/L	10	1	AJ93638	10/09/19 13:25	10/10/19 15:15	5 2922	SM2540C	
Total Kjeldahl Nitrogen	ND mg/L	1.0	1	AJ93323	10/09/19 10:56	10/10/19 10:53	3 1551	SM4500-Norg B	
Anions by EPA Method 300.0									
Nitrate as N	ND mg/L	0.20	1	AJ93604	10/04/19 13:34	10/04/19 13:34	1 2922	EPA 300.0	
Microbiological Parameters by APHA Standard	Methods								
Total Coliforms	ND MPN/100mL	1.8	1	AJ93594	10/03/19 14:45	10/07/19 12:40	2922	SM9221B,C	
Well #6 (19J0660-02)		Sample Type:	Water		Sampled	: 10/03/19 08:3	4		
Conventional Chemistry Parameters by APHA/E	EPA Methods								
Ammonia as N	ND mg/L	0.20	1	AJ93578	10/10/19 09:30	10/10/19 13:30	1551	SM4500NH3B,C	
Total Dissolved Solids	320 mg/L	10	1	AJ93638	10/09/19 13:25	10/10/19 15:15	5 2922	SM2540C	
Total Kjeldahl Nitrogen	ND mg/L	1.0	1	AJ93323	10/09/19 10:56	10/10/19 10:53	3 1551	SM4500-Norg B	
Anions by EPA Method 300.0									
Nitrate as N	ND mg/L	0.20	1	AJ93604	10/04/19 13:50	10/04/19 13:50	2922	EPA 300.0	
Microbiological Parameters by APHA Standard	Methods								
Total Coliforms	ND MPN/100mL	1.8	1	AJ93594	10/03/19 14:45	10/07/19 12:40	2922	SM9221B,C	

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Bear Valley Water District

Project Manager: Guy West

P O Box 5027

Project: Water Quality

Bear Valley, CA 95223

Project Number: MW 1

Reported:

10/11/19 16:34

Notes and Definitions

ND Analyte NOT DETECTED at or above the reporting limit

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

WATERS, SEDIMENTS, SOLIDS

Corporate Laboratory 208 Mason Street, Ukiah CA 95482 707-468-0401 F) 707-468-5267 email: clientservices@alpha-labs.com

ELAP Certifications Ukiah 1551 / Dublin 2728 / Elk Grove 2922 Bay Area Laboratory 262 Rickenbacker Circle, Livermore, CA 94551 925-828-6226 F) 925-828-6309

Central Valley Laboratory 9090 Union Park Way #113, Elk Grove CA 95624 916-686-5190 F) 916-686-5192

Chain of Custody - Work Order

Reports and Invoices delivered by email in PDF format

10/	, man are profittat
Lab No. 1950660	
Lab No_1100WWO	Pa

Report to		Invoice to (if	diffe	ren	t)		T	F	roje	ct	Info	rmat	ion	_	Γ-			Sig	naturo bol			_	_	<u> </u>		01
Company:	Contact:						Pi	roje	_		—			_	┝	1		Sig	nature per	ow au	Inoriz	es w	ork u	nder	terms stated on rev	erse side.
Bear Valley Water District							r		_	_	4144			_		1			Analysis	s Re	ques	st	•		TAT	Temp upon
Aur:	Email address	s:					L				√W I	<u> </u>					T	\Box		\neg	\top	7	Т	\top	Standard	Receipt °C
Address:	Address:						Pi	rojec	t No	o:						1	1	1 1	- 1 [- 1		1			10 days	<u>-</u>
PO Box 5027	Audicos.						j								e ID	İ		Ιİ	- 1 1	- }		1	1	İ		Ukiah temp:
Bear Valley, CA 95223									_					[Sample ID	ı	1	П	11	- 1		}				3.60
Phone/Fax:	Phone/Fax:						٦,	O Nu	ımb	er:				ı		ı	12		11	ſ	1	ľ	ł		Standard 👨	3.60
209-753-2112							ı								per	l	250mL	1						}	5 days	Dublin temp:
Email Address:				_	_		In	terna	al La	ab l	Jse:		-	ᅱ	ntainers	ı	4	H	1 1					ł	χ g	
											569			I	ıtair	ı	ြ	1 1							48 hours 📆	
Field Sampler - Printed Name & Signatur			L	Co	ntain	er	$oldsymbol{\mathbb{L}}$	Pres	erv	ativ	/e	M	latrix		ပ္ပ	I≷	Ë		11	ł	ł		1		Other:	Elle Cream I
GuyWest 12	10 V	7												٦	r of	15 WW	Z	2							Other: of control of c	Elk Grove temp:
OUNUS (_		-	1	1	1				>		- [Total Number	5	- N03-N,	X X X							Lab p	4.88
		npling	40ml Vial		_s	ہ ا		ا س	H2S04	203		Water WW	1.	. [N	ည	ž	NH3-N,	11		1				ا ت.	
Sample Identification	Date	Time	ᅙ	हे	Slas	He le	ᅙ	HN03	30	a2S	lone	Vate	Soil	ige	otal	S C	S.	오	11	ł					Sample	
Well #1	10-3-19	£353	\Box	×	+	7	+	┼	Σ X	z x			<u>" </u>	4					-+-	-	∔_	<u> </u>	<u> </u>		CDPH Source	e Numbers:
₩ell #2		0 30-2	\vdash	$\hat{\parallel}$	\dashv	╁	╀	\vdash	Ĥ	$\hat{\dashv}$	X	X	+	-	3	X	X/	X	$\bot\bot$		1_					
Well #3	 		П	$\stackrel{\sim}{-}$	4	T	1		×			*	#	#	3	×	×	<u> </u>								
				×	士	_	上		-×-	-x-	-×-	-×- -	-		-3-	-×-	-x-	_x.	十十							
Wéll #4	<u> </u>		H	-×	+	- -	╂╌	\vdash	×	×	×	×-		4	3	-X-	-x-	-x-	+-	\top	t-		_	\vdash	SAMPLE 3 TIM	EC VEADLY
Well#5	10319			\downarrow	_	#			×			<u> </u>	+	T	ᇻ		J		$\rightarrow -+$	+	\vdash	\vdash	-	_		
Well #6	103-19	0834	\vdash	$\frac{1}{x}$	+	+	╁╴	╂┤		$\frac{1}{2}$	\exists	7	7	7				"	++ =	+-	-			_	JUNE, AUG, SE	PT
	10311	10757	H	Ĥ	+	╁	┢	Н	×	<u> </u>	Х	<u> </u>	\perp	4	3	Х	×	×								
	 	ļ	Ц	4	\perp	\perp	$oldsymbol{ol{ol{ol}}}}}}}}}}}}}}}$			\perp	\perp	\perp							11					\Box		
										-	- 1			Τ			\neg			1		一		-4	FAX	5 <i>D</i>
	1			T	Т	Т	П		7	T	T		\top	1	T	7	7	$\neg +$	++-	╁		\dashv	-4)	
			\Box	7	+	十	H	H	\dashv	\forall	+	+	+	+	┰	\dashv	-+		- - -	┼—	├─┤			4		
Relinquished by		- J			-L	eive		ᆛ					+	ㅗ		4	يــــ		4	<u></u>						
				7	1.60	CIVE	u by	_	-				┿		ate	_		ime	CDPH	Write	e On	ED1	ΓTra	เทรท	nission?	es No
(2 ×) (4 / C#)		<u> </u>		Ļ,	_								Λ	<u>٤3</u>	19	<u> </u>	119	10	State S	ystem	Num	ıber:				į
<u> </u>				\mathcal{X}	\bigcirc			11		\			10	3	.19		141	10	If "	Y" ple:	ase ei	nte _{r t}	he S	ource	Number(s) in the c	olumn sheve
and an		Mil		19	Z		1	1			_		Ť.	$\overline{\tau}$	110	\exists			-			_			Ye	
Frank Shaff		1 / 402			<u> </u>	611	24	7	<u>5</u> _				10/	7	17 - i	_		43								es No
Line of the	m							V	1-				ci		3[l	1	18:	30	Hardc	opy t	o DL)VV ;	attn			
									0	1			10	~~	ولار	2	111	_	Travel and	Site Tin	10:	N	Aileage	i . 1 . 1	Misc. Supplies:	

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

11 October 2019

Bear Valley Water District

Attn: Guy West

PO Box 5027

Bear Valley, CA 95223

RE: Water Quality

Work Order: 19J0452

Enclosed are the results of analyses for samples received by the laboratory on 10/02/19 21:46. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jeanette L. Poplin For Karen L. Lantz

Jeanette Popli

Project Manager

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Bear Valley Water District

Project Manager: Guy West

P O Box 5027

Project: Water Quality

Bear Valley, CA 95223

Project Number: MW II

Reported:

10/11/19 12:58

Bay Area: 262 Rickenbacker Circle | Livermore, CA 94551 | T: 925-828-6226 | F: 925-828-6309 | ELAP# 2728 Central Valley: 9090 Union Park Way Suite 113 | Elk Grove, CA 95624 | T: 916-686-5190 | F: 916-686-5192 | ELAP# 2922 North Bay: 110 Liberty Street | Petaluma, CA 94952 | T: 707-769-3128 | F: 707-769-8093 | ELAP# 2303 San Diego Service Center: 2722 Loker Avenue West Suite A | Carlsbad, CA 92010 | T: 760-930-2555 | F: 760-930-2510

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Well #2	19J0452-01	Water	10/02/19 09:14	10/02/19 21:46
Well #3	19J0452-02	Water	10/02/19 08:42	10/02/19 21:46
Well #4	19J0452-03	Water	10/02/19 08:17	10/02/19 21:46

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Bear Valley Water District

Project Manager: Guy West

Project Number: MW II

P O Box 5027

Project: Water Quality

Bear Valley, CA 95223

Reported: 10/11/19 12:58

	Result	Reporting Limit	Dilution	Batch	Prepared	Analyzed	ELAP#	# Method	Note
Well #2 (19J0452-01)		Sample Type:	Water		Sampled	l: 10/02/19 09:1	14		
Metals by EPA 200 Series Methods									
Boron	ND mg/L	0.20	1	AJ93240	10/04/19 08:50	10/09/19 15:0	5 1551	EPA 200.7	
Iron	16 mg/L	0.10	1	AJ93240	10/04/19 08:50	10/09/19 15:0	5 1551	EPA 200.7	
Manganese	0.17 mg/L	0.020	1	AJ93240	10/04/19 08:50	10/09/19 15:0	5 1551	EPA 200.7	
Sodium	4.7 mg/L	1.0	1	AJ93240	10/04/19 08:50	10/09/19 15:0	5 1551	EPA 200.7	
Anions by EPA Method 300.0									
Chloride	1.2 mg/L	0.50	1	AJ93595	10/03/19 18:21	10/03/19 18:2	1 2922	EPA 300.0	
Well #3 (19J0452-02)		Sample Type:	Water		Sampled	l: 10/02/19 08:4	12		
Metals by EPA 200 Series Methods									
Boron	ND mg/L	0.20	1	AJ93240	10/04/19 08:50	10/09/19 15:0	8 1551	EPA 200.7	
Iron	1.3 mg/L	0.10	1	AJ93240	10/04/19 08:50	10/09/19 15:0	8 1551	EPA 200.7	
Manganese	0.025 mg/L	0.020	1	AJ93240	10/04/19 08:50	10/09/19 15:0	8 1551	EPA 200.7	
Sodium	6.0 mg/L	1.0	1	AJ93240	10/04/19 08:50	10/09/19 15:0	8 1551	EPA 200.7	
Anions by EPA Method 300.0									
Chloride	4.8 mg/L	0.50	1	AJ93595	10/03/19 18:52	10/03/19 18:5	2 2922	EPA 300.0	
Well #4 (19J0452-03)		Sample Type:	Water		Sampled	l: 10/02/19 08:1	17		
Metals by EPA 200 Series Methods									
Boron	ND mg/L	0.20	1	AJ93240	10/04/19 08:50	10/09/19 15:1	2 1551	EPA 200.7	
Iron	0.21 mg/L	0.10	1	AJ93240	10/04/19 08:50	10/09/19 15:1	2 1551	EPA 200.7	
Manganese	ND mg/L	0.020	1	AJ93240	10/04/19 08:50	10/09/19 15:1	2 1551	EPA 200.7	
Sodium	8.3 mg/L	1.0	1	AJ93240	10/04/19 08:50	10/09/19 15:1	2 1551	EPA 200.7	

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Bear Valley Water District

Bear Valley, CA 95223

Project Manager: Guy West

P O Box 5027

Project: Water Quality

Project Number: MW II

Reported:

10/11/19 12:58

Well #4 (19J0452-03)

Chloride

Reporting Limit Dilution

Sample Type: Water

Sampled: 10/02/19 08:17

Analyzed

Note

Anions by EPA Method 300.0

7.1 mg/L

Result

0.50

AJ93595 10/03/19 15:45

Prepared

Batch

10/03/19 15:45 2922 EPA 300.0

ELAP#

Method

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Bear Valley Water District

Project Manager: Guy West

P O Box 5027

Project: Water Quality

Bear Valley, CA 95223 Project Number: MW II

Reported: 10/11/19 12:58

Notes and Definitions

E The concentration indicated for this analyte is an estimated value above the calibration range of the instrument. This value is considered an estimate.

ND Analyte NOT DETECTED at or above the reporting limit

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

WATERS, SEDIMENTS, SOLIDS

Corporate Laboratory
208 Mason Street, Ukiah CA 95482
707-468-0401 F) 707-468-5267
email: clientservices@alpha-labs.com

ELAP Certifications Ukiah 1551 / Dublin 2728 / Elk Grove 2922

Bay Area Laboratory 262 Rickenbacker Circle, Livermore, CA 94551 925-828-6226 F) 925-828-6309

Central Valley Laboratory 9090 Union Park Way #113, Elk Grove CA 95624 916-686-5190 F) 916-686-5192

Chain of Custody - Work Order

Reports and Invoices delivered by email in PDF format

Pg Lab No 19 10457

Report to	Invoice to (if different)	Project Information	-	, one io		Fg	of
Company:	Contact:	Period III	<u>-</u>	Signal	Signature below authorizes work under terms stated on reverse side.	terms stated on reve	se side.
Bear Valley Water District		Project ID:		Ā	Analysis Request	TAT	Tome
Attn:	Email address:	II MW				3	Receipt of
		Project No:	Ţ			Standard	5
Address:	Address:		ai			lo days	Ukiah temp:
PO Box 5027			əld				0 7
Bear Valley, CA 95223		PO Number:	sm				31.40
Phone/Fax:	Phone/Fax:		S 16	<u> </u>		Standard d)
209-753-2112			ed s	u			Dublin temp:
Email Address:		Internal Lab Use:	nənist	109		48 hours re	
Field Sampler - Printed Name & Signature:	e: Container	L	_			obro	
	\		Jo 1	-		S	EIK Grove temp:
JAN 00	y //c>t			_			5,0
Sample Identification	eve ss	04 2SO 90 90 90 90	al N	์ ม		Sample Notes	otos or
	Pol	Mor MSS HSS HMC	Oth JoT	CI		CDPH Source Numbers:	Numbers:
Well #1	×	× ×	X Z	k			
Well #2	12-19 Of14 ×	× ×	2 ×	×			
Welr#3	x 7/20 51-20	× × ×	2 ×	×			
Well #4	10-2-12 68.7 ×	× ×	2 ×	×		DUE ANNUALLY IN	N
Well #5	*	* *	* C!	*		SEPTEMBER	
	*	*	2 ×	*			
							XED
Relinquished by	Receive	ved by	Date	Time	CDPH Write On EDT Transmission?	mission? Yes	s No
Guy Mex			102-19	(100)	State System Number:		
			60-19	1990	If "Y" please enter the Source Number(s) in the column above	ce Number(s) in the c	lumn above
			2/01	1632	Mail Hardcopy to DDW-?	Yes	s No
		7	10-2-19	18:37	Hardcopy to DUVV attn:		
6	31		01.16 21.46	21:46	Travel and Site Time: Mileage:	Misc. Supplies:	

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

11 October 2019

Bear Valley Water District

Attn: Guy West

PO Box 5027

Bear Valley, CA 95223

RE: Water Quality

Work Order: 19J0662

Enclosed are the results of analyses for samples received by the laboratory on 10/03/19 21:50. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jeanette L. Poplin For Karen L. Lantz

Jeanette Popli

Project Manager

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Bear Valley Water District

Project Manager: Guy West

P O Box 5027

Project: Water Quality

Bear Valley, CA 95223

Project Number: MW II

Reported: 10/11/19 16:36

Bay Area: 262 Rickenbacker Circle | Livermore, CA 94551 | T: 925-828-6226 | F: 925-828-6309 | ELAP# 2728 Central Valley: 9090 Union Park Way Suite 113 | Elk Grove, CA 95624 | T: 916-686-5190 | F: 916-686-5192 | ELAP# 2922

North Bay: 110 Liberty Street | Petaluma, CA 94952 | T: 707-769-3128 | F: 707-769-8093 | ELAP# 2303 San Diego Service Center: 2722 Loker Avenue West Suite A | Carlsbad, CA 92010 | T: 760-930-2555 | F: 760-930-2510

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Well #1	19J0662-01	Water	10/03/19 08:03	10/03/19 21:50
Well #6	19J0662-02	Water	10/03/19 08:34	10/03/19 21:50

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Bear Valley Water District Proje

P O Box 5027

Project Manager: Guy West

Project: Water Quality

Bear Valley, CA 95223 Project Number: MW II

Reported: 10/11/19 16:36

	Result	Reporting Limit	Dilution	Batch	Prepared	Analyzed	ELAP#	Method	Note
Well #1 (19J0662-01)		Sample Type:	Water		Sampled	l: 10/03/19 08:	03		
Metals by EPA 200 Series Methods									
Boron	ND mg/L	0.20	1	AJ93389	10/07/19 17:00	10/10/19 18:0)5 1551	EPA 200.7	
Iron	0.39 mg/L	0.10	1	AJ93389	10/07/19 17:00	10/10/19 18:0)5 1551	EPA 200.7	
Manganese	0.22 mg/L	0.020	1	AJ93389	10/07/19 17:00	10/10/19 18:0)5 1551	EPA 200.7	
Sodium	6.1 mg/L	1.0	1	AJ93389	10/07/19 17:00	10/10/19 18:0	5 1551	EPA 200.7	
Anions by EPA Method 300.0									
Chloride	0.97 mg/L	0.50	1	AJ93604	10/04/19 13:34	10/04/19 13:3	34 2922	EPA 300.0	
Well #6 (19J0662-02)		Sample Type:	Water		Sampled	l: 10/03/19 08:	34		
Metals by EPA 200 Series Methods									
Boron	ND mg/L	0.20	1	AJ93389	10/07/19 17:00	10/10/19 18:0	08 1551	EPA 200.7	
Iron	6.4 mg/L	0.10	1	AJ93389	10/07/19 17:00	10/10/19 18:0	08 1551	EPA 200.7	
Manganese	3.6 mg/L	0.020	1	AJ93389	10/07/19 17:00	10/10/19 18:0	08 1551	EPA 200.7	
Sodium	17 mg/L	1.0	1	AJ93389	10/07/19 17:00	10/10/19 18:0	08 1551	EPA 200.7	
Anions by EPA Method 300.0									
Chloride	7.8 mg/L	0.50	1	AJ93604	10/04/19 13:50	10/04/19 13:5	50 2922	EPA 300.0	

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Bear Valley Water District

Project Manager: Guy West

Project Number: MW II

P O Box 5027

Project: Water Quality

Bear Valley, CA 95223

Reported: 10/11/19 16:36

Notes and Definitions

E The concentration indicated for this analyte is an estimated value above the calibration range of the instrument. This value is

considered an estimate.

QM-01 The spike recovery for this QC sample is outside of established control limits possibly due to a sample matrix interference.

ND Analyte NOT DETECTED at or above the reporting limit

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

Analytical Laboratories Inc. www.alpha-labs.com

WATERS, SEDIMENTS, SOLIDS

Corporate Laboratory 208 Mason Street, Ukiah CA 95482 707-468-0401 F) 707-468-5267 email: clientservices@alpha-labs.com

ELAP Certifications Ukiah 1551 / Dublin 2728 / Elk Grove 2922

Bay Area Laboratory 262 Rickenbacker Circle, Livermore, CA 94551 925-828-6226 F) 925-828-6309

Central Valley Laboratory 9090 Union Park Way #113, Elk Grove CA 95624

Chain of Custody - Work Order

Reports and Invoices delivered by email in PDF format

1950662 916-686-5190 F) 916-686-5192 Lab No Report to Invoice to (if different) **Project Information** Signature below authorizes work under terms stated on reverse side. Contact: Project ID: **Analysis Request** Bear Valley Water District TAT Temp upon II WM Emall address: Receipt °C Standard Project No: 10 days Address: Address: Ukiah temp: PO Box 5027 Sample Bear Valley, CA 95223 PO Number: Phone/Fax: Standard Phone/Fax: per 5 days 209-753-2112 Dublin temp: of Containers Email Address: Х Internal Lab Use: 48 hours 570 Field Sampler - Printed Name & Signature: Container Preservative Matrix mase-Na Other: Elk Grove temp: days **Total Number** Mn, Fe, Sampling Sample Identification Sample Notes or Date Time മ് ᄗ **CDPH Source Numbers:** Well #1 5080 10-3-19 Х х Well #2 Well#3. Well#4 DUE ANNUALLY IN Well #5 SEPTEMBER Well #6 0834 2 Х Relinquished by Received by Date Time CDPH Write On EDT Transmission? No State System Number: If "Y" please enter the Source Number(s) in the column above Mail Hardcopy to DDW-? Yes No Hardcopy to DDVV attn: Travel and Site Time: Misc. Supplies:

BEAR VALLEY WATER DISTRICT – THIRD TRI-ANNUAL 2019 GROUNDWATER MONITORING REPORT

Appendix C Historical Groundwater Elevations and Quality November 18, 2019

Appendix C Historical Groundwater Elevations and Quality

		Depth	GW Elev.						Ammo									Dissolved			
		To GW	(ft,		Field EC	Temp.	NO3-N	TKN	nia as	TDS	Total Coliform	В	Fe	Mn	Na	CI	ORP	Oxygen	Lab SC	Ca	Mg
Well	Date	(ft)	NAVD88)	Field pH	(μS/cm)	(C)	(mg/L)	(mg/L)	N	(mg/L)	(MPN/100ml)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mV)	(mg/L)	(μS/cm)	(mg/L)	(mg/L)
MW-1	9/1/2004	10.29	7103.79	6.7	221	4.8	<0.050	<1.0		166	28	NR^3	0.940	0.370	NR^3	NR^3					
MW-1	10/13/2004	12.73	7101.35	6.9	180	6.2	<0.1	1	<1	150	<2	0.05	< 0.02	0.350	7.0	3.4					
MVV-1	8/11/2005	9.32	7104.76	6.5	150	6.4	<0.1	2	<1	200	<2	< 0.03	0.210	0.280	6.0	1.2	71	5.5	160	19.0	5.2
MW-1	9/15/2005	9.54	7104.54	7.0	150	6.4	<0.1	<1	<1	150	<2	< 0.03	0.730	0.300	6.0	3.6	56	7.9	160	20.0	5.3
MW-1	10/13/2005	9.50	7104.58	6.6	1482	7.1	<0.1	<1	<1	120	2	0.03	0.150	0.260	6.0	2.2	138	7.5	170	18.0	4.8
MW-1	6/29/2006	9.60	7104.48	6.9	125	5.1	<0.1	<1	<1	110	<2	<0.03	0.060	0.140	5.0	1.6	103	1.7	140	14.0	3.9
MW-1	8/2/2006	8.25	7105.83	7.7	156	6.9	<0.1	<1	<1	150	21	<0.03	<0.02	0.280	7.0	1.4	65	4.3	170	20.0	5.0
MW-1	10/10/2006	8.08	7106.00	6.8	171	5.9	<0.1	<1	<1	160	<2	< 0.03	0.130	0.360	7.0	1.5	70	2.7	180	22.0	5.7
MW-1	7/12/2007	10.10	7103.98	7.0	173	7.0	<0.1	<1	<1	220	2	< 0.03	0.130	0.370	6.0	1.2	110	6.7	180	23.0	5.8
MW-1	8/29/2007	9.00	7105.08	7.1	180	7.7	<0.1	<1	<1	170	14	0.037	0.340	0.430	6.0	1.5	-2	4.9	200	25.0	5.8
MW-1	9/26/2007	12.30	7101.78	7.2	189	7.4	<0.1	<1	<1	170	<2	< 0.03	0.140	0.380	6.7	1.0	-121	4.7	200	23.0	6.0
MW-1	7/8/2008	10.25	7103.83	7.2	168	7.4	<0.1	<1	<1	170	4	< 0.03	0.060	0.270	6.0	1.1	141	1.9	180	21.0	6.0
MW-1	9/18/2008	9.70	7104.38	7.3	189	6.9	<0.1	<1	<1	180	230	< 0.03	0.060	0.330	7.0	<1.0	156	7.4	200	22.0	5.1
MW-1	1/16/2008	12.30	7101.78	7.6	180	6.4	<0.1	<0.1	<1	150	11	< 0.03	0.180	0.360	11.0	1.2	78	7.1	190	26.0	7.7
MW-1	7/7/2009	8.95	7105.13	7.2	168	6.8	<0.1	<1	<1	220	2	< 0.03	0.140	0.260	7.0	0.8	469	6.2	180	23.0	5.8
MW-1	9/30/2009	9.00	7105.08	6.2	194	6.8	<0.1	<1	<1	170	8	< 0.03	0.120	0.420	7.0	0.6	52	1.9	190	25.0	5.5
MW-1	10/26/2009	10.30	7103.78	2.7	142	6.3	0.3	1	<1	160	80	< 0.03	0.110	0.280	9.0	1.1	281	1.0	190	23.0	6.2
MW-1	7/13/2010	8.80	7105.28	6.4	150	6.0	<0.1	<1	<1	140	<2	< 0.03	0.040	0.220	6.0	1.9	402	1.7	150	19.0	4.7
MW-1	8/24/2010	9.03	7105.05	7.0	185	6.1	<0.1	<1	<1	170	2	< 0.03	< 0.02	0.300	7.0	0.9	43	0.9	190	20.0	5.4
MW-1	11/4/2010	8.80	7105.28	5.9	173	6.3	<0.1	6	<1	140	17	< 0.03	< 0.02	0.310	6.0	2.2	132	2.0	170	18.0	4.3
MW-1	7/21/2011	8.10	7105.98	5.6	148	5.7	<0.1	<1	<1	130	<2	< 0.03	0.017	0.200	4.6	1.6	101	1.1	150	14.7	4.1
MW-1	9/8/2011	9.54	7104.54	7.0	177	6.2	<0.1	2	<1	140	<2 4.5	< 0.03	0.040	0.272	5.7	1.1	38	1.3	180	17.2	5.1
MW-1 MW-1	10/20/2011 6/26/2012	9.44 9.00	7104.64	6.6	167	5.7	<0.1		<1 -1	140	4.5	<0.03	0.060 <0.02	0.280 0.190	5.4	1.6	61	1.5	170	17.3	4.3
MW-1	7/31/2012	10.30	7105.08 7103.78	6.7 7.0	93 197	5.4 9.5	0.2 <0.1	<1 1	<1 <1	110 150	<1.8 2	<0.03 <0.03	0.02	0.190	5.6 6.6	1.7 0.7	63 103	2.1 0.1	93 200	15.9 23.9	4.1 5.9
MW-1	10/9/2012	12.40	7103.78	6.5	184	8.5 5.8	<0.1	2	<1	140	<1.8	<0.03	0.001	0.203	6.5	1.6	87	1.5	180	20.4	5.8 5.0
MW-1	5/30/2013	11.00	7101.08	6.4	153	6.1	<0.2	<1	<1	120	<1.8	<0.03	<0.02	0.322	5.3	1.7	198	1.5	150	16.7	5.0 4.5
MW-1	8/21/2013	12.39	7103.66	6.6	177	8.1	<0.2	<1	<1	150	<1.8	<0.03	0.080	0.143	5.3	1.5	276	2.3	180	18.6	4.6
MW-1	10/15/2013	12.95	7101.03	6.4	193	7.1	<0.1	<1	<1	150	<1.8	<0.03	0.000	0.300	6.8	1.5	514	1.3	190	25.7	5.9
MW-1	6/12/2014	11.04	7101.13	6.2	130	6.4	<0.2	<1	<1	120	<1.8	<0.03	<0.033	0.052	5.0	2.6	266	2.9	130	14.4	4.1
MW-1	8/12/2014	10.67	7103.41	7.4	157	6.7	<0.2	<1	<1	140	<1.8	<0.03	<0.02	0.206	5.6	2.4	258	2.3	160	18.9	4.6
MW-1		12.39	7103.41	7.2	189	6.7	<0.2	<1	<1	170	<1.8	<0.03	<0.02	0.299	6.2	1.0	264	0.3	190	21.8	5.6
MW-1	6/17/2015	10.72	7103.36	7.2	138	6.8	<0.2	<1	<1	110	<1.8	< 0.03	< 0.02	0.046	4.6	5.2	306	1.8	140	12.5	3.7
MW-1	9/9/2015	10.19	7103.89	6.6	165	6.7	<0.2	<1	<1	150	<1.8	0.034	< 0.03	0.203	5.9	2.2	241	2.7	170	19.4	5.0
MW-1	11/12/2015	11.00	7103.08	6.5	161	8.3	<0.2	<1	- <1	160	17	<0.03	< 0.03	0.205	5.1	3.7	270		160	17.3	4.6
MW-1	7/7/2016	8.89	7105.19	6.1	154	8.6	<0.2	<1	<1	110	<1.8	< 0.03	< 0.03	0.108	5.4	2.0			150	17.7	4.6
MW-1	9/8/2016	11.11	7102.97	6.4	168	6.9	<0.1	0.62	<0.1	170	<1.8	<0.03	< 0.03	0.196	5.5	1.9				19.1	4.8
MW-1	10/20/2016	9.48	7104.60	6.4	172	6.5	<0.1	0.31	0.19	140	230	< 0.03	0.043	0.236	5.8	2.1				20.5	5.1
MW-1	7/13/2017	10.09	7103.99	7.6	88	7.3	<0.4	<1	<1	92	5400	< 0.03	< 0.03	0.016	4.5	1.9			88	8.9	2.7
MW-1	8/24/2017	9.85	7104.23	6.1	154	6.5	<0.4	<1	<1	130	490	< 0.03	< 0.03	0.128	5.5	1.3			150	15.0	4.6
MW-1	9/28/2017	10.45	7103.63	6.1	152	5.8	<0.4	<1	<1	130	1.8	< 0.03	< 0.03	0.148	5.7	1.6			150	16.5	4.3
MW-1	6/29/2018	8.70	7105.38	6.7	233	5.6	<0.2	<1	<0.2	161	<1.8				=	-				- · -	-
MW-1	8/23/2018	10.81	7103.27	6.8	185	5.5	<0.2	<1	<0.2	140	<1.8										
MW-1	10/10/2018	13.11	7100.97	6.7	198	5.1	2.8	<1	<0.2	160	<1.8	<0.2	14	1.400	9.3	1.7					
MW-1	7/18/2019	9.35	7104.73	6.0	90	7.1	<0.2	<1	<0.2	90	<1.8										
MW-1	8/29/2019	9.41	7104.67	6.6	173	6.4	<0.2	<1	<0.2	130	<1.8										
MW-1	10/3/2019	10.33	7103.75	6.9	175	4.9	<0.2	<1	<0.2	130	<1.8	<0.2	0.39	0.220	6.1	1.0					

Well	Doto	Depth To GW	(ft,	Field all	Field EC	Temp.	NO3-N	TKN	Ammo nia as	TDS	Total Coliform	B	Fe	Mn (mg/L)	Na (mar/l)	CI (man/l)	ORP	Dissolved Oxygen	Lab SC	Ca	Mg
Well	Date	(ft)	NAVD88)	Field pH	(μS/cm)	(C)	(mg/L)	(mg/L)	N	(mg/L)	(MPN/100ml)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mV)	(mg/L)	(μS/cm)	(mg/L)	(mg/L)
 MW-2	10/30/2002	12.25	7055.28	6.7			<0.050	NR ¹	<0.4	186	>2400	<0.10 ^T	79 ^T	1.13 ^T	19.8 ^T	58.0					
MW-2	7/29/2003			7.1	112	9.2	<0.1	1	< 0.2	80	6	NR^3	NR^3	NR^3	NR^3	NR^3					
MW-2	11/13/2003	10.95	7056.58	7.7			<0.050*	NR^1	<0.4		2	<0.10 ^T	37 ^T	0.82^{T}	5.7 ^T	<1.0					
MW-2	6/22/2004	3.76	7063.77	6.7	70	4.8	<0.050	2	<0.4	82	2	NR^3	0.920	< 0.02	NR^3	NR^3					
MW-2	9/1/2004	8.86	7058.67	6.9	68	7.2	<0.050	1	< 0.4	90	<2	NR^3	0.590	< 0.02	NR^3	NR^3					
MW-2	10/13/2004	17.80	7049.73	6.5	63	11.4	<0.1	10	<1	96	4	0.03	0.020	0.110	3.0	2.2					
MW-2	8/11/2005	3.82	7063.71	6.2	50	11.9	<0.1	2	<1	140	<2	<0.03	0.310	0.040	2.0	<1	11	1.1	54	5.5	1.8
MW-2	9/15/2005	8.00	7059.53	7.1	51	12.3	0.1	2	0.5	130	<2	<0.03	0.680	0.010	3.0	<1	99	NS	56	6.1	2.1
MW-2	10/13/2005	8.35	7059.18	6.8	59	10.0	<0.1	<1	<1	110	30	<0.03	0.280	0.010	3.0	<1	1	9.4	67	6.4	2.2
MW-2	6/29/2006	0.50	7067.03	7.9	45	12.5	<0.1	<1	<1	93	<2	<0.03	0.100	<0.01	2.0	<1	133	0.6	48	4.6	1.5
MW-2	8/2/2006	7.24	7060.29	7.8	45	13.1	<0.1	<1	<1	100	<2	<0.03	0.070	0.060	4.0	<1	37	1.8	53	5.0	1.7
MW-2	10/10/2006	7.30	7060.23	6.8	66	7.9	<0.1	<1	<1	130	<2	< 0.03	0.440	0.020	4.0	2.3	160	7.6	75	8.0	2.8
MW-2	7/12/2007	8.10	7059.43	6.8	41	15.9	<0.1	0.7	<1	43	2	< 0.03	1.200	0.049	3.0	1.1	229	8.5	49	5.5	1.7
MW-2	8/29/2007	8.70	7058.83	7.3	67	16.0	0.1	<1	<1	100	<2	< 0.03	0.970	0.100	3.0	1.9	150	6.4	75	7.8	2.2
MW-2	9/26/2007	10.30	7057.23	6.7	54	11.0	0.1	<1	<1	130	2	< 0.03	0.023	0.015	3.0	2.0	-121	12.0	65	5.2	1.7
MW-2	7/8/2008	2.90	7064.63	6.6	45	13.8	<0.1	<1	<1	130	220	< 0.03	0.450	0.020	2.0	<1	137	4.1	49	5.0	2.0
MW-2	9/18/2008	7.95	7059.58	6.7	115	13.1	0.2	3	<1	86	<2	< 0.03	0.510	0.010	7.0	6.8	764	13.1	99	5.2	1.7
MW-2	10/16/2008	8.78	7058.75	7.5	52	18.3	0.2	<0.1	<1	97	2	<0.03	0.220	0.010	3.0	1.6	214	7.6	56	5.7	1.7
MW-2	7/7/2009	6.30	7061.23	6.9	44	9.4	<0.1	<1	<1	330	2	< 0.03	0.910	0.020	3.0	<0.2	363	8.5	48	6.1	1.8
MW-2	9/30/2009	8.70	7058.83	6.0	59	8.4	<0.1	<1	<1	47	8	< 0.03	0.620	0.020	3.0	0.9	85	0.0	61	6.9	1.6
MW-2	10/26/2009	7.85	7059.68	6.1	47	9.0	0.5	<1	<1	54	2200	< 0.03	0.520	0.040	3.0	1.8	480	4.2	61	6.8	1.9
MW-2	7/13/2010	0.80	7066.73	6.1	43	9.3	<0.1	<1	<1	61	11	< 0.03	0.200	< 0.01	2.0	1.4	134	0.3	43	4.7	1.5
MW-2	8/24/2010	8.34	7059.19	6.3	47	9.8	<0.1	<1	<1	90	23	< 0.03	<0.02	< 0.01	2.0	0.5	136	7.9	47	4.7	1.5
MW-2	11/4/2010	0.70	7066.83	5.8	57	9.5	<0.1	3	<1	49	500	<0.03	0.080	0.010	3.0	1.9	201	4.0	57	6.4	1.8
MW-2	7/21/2011	0.40	7067.13	6.2	42	7.2	<0.1	<1	<1	59	13	< 0.03	0.116	0.200	1.8	<0.2	179	0.4	42	4.5	1.4
MW-2	9/8/2011	4.40	7063.13	6.4	56	10.2	<0.1	2	<1	70	2	< 0.03	1.540	0.014	2.6	0.6	77	1.7	56	5.3	2.1
MW-2	10/20/2011	3.30	7064.23	6.1	67	10.8	<0.1	1	<1	60	79	< 0.03	0.034	<0.01	2.5	1.0	121	2.1	67	6.5	2.0
MW-2	6/26/2012	2.95	7064.58	6.2	40	9.9	<0.1	2	<1	53	<1.8	< 0.03	<0.02	<0.01	2.5	0.3	70	0.7	40	6.0	1.9
MW-2	7/31/2012	4.75	7062.78	6.3	74	9.7	<0.2	<1	<1	67	23	< 0.03	0.054	<0.01	3.7	0.8	139	0.9	74	8.4	2.7
MW-2	10/9/2012	11.24	7056.29	5.9	100	9.0	<0.2	<1	<1	81	<1.8	< 0.03	0.029	0.220	8.6	8.7	691	2.6	100	7.0	2.1
MW-2	5/30/2013	1.00	7066.53	6.1	43	8.3	<0.2	<1	<1	53	4.5	< 0.03	<0.02	<0.01	2.1	0.4	150		43	4.3	1.4
MW-2	8/21/2013	7.00	7060.53	5.2	50	11.8	<0.2	<1	<1	160	4.5	< 0.03	0.197	0.168	3.0	0.8	231	2.2	50	5.8	1.8
MW-2	10/15/2013	12.41	7055.12	5.6	56	9.6	<0.2	<1	<1	87	4	< 0.03	0.044	0.023	3.2	0.7	571	3.1	56	4.9	1.4
MW-2	6/12/2014	1.54	7065.99	5.9	47	7.7	<0.2	<1	- <1	65	4.5	<0.03	<0.02	<0.01	2.3	0.3	83	4.1	47	4.5	1.2
MW-2	8/12/2014	7.94	7059.59	6.7	54	11.4	<0.2	<1	<1	85	21	< 0.03	<0.02	0.023	2.6	0.3	155	4.1	54	5.5	1.7
MW-2	10/14/2014	10.28	7057.25	5.9	55	10.1	<0.2	<1	<1	120	<1.8	< 0.03	0.101	0.115	3.2	0.7	616	2.6	55	7.1	2.1
MW-2	6/17/2015	1.94	7065.59	7.7	47	9.2	<0.2	<1	<1	45	<1.8	< 0.03	<0.02	<0.01	2.4	0.3	78	0.4	47	4.8	1.5
MW-2	9/9/2015	10.31	7057.22	6.9	50	11.6	<0.2	<1	<1	70	<1.8	< 0.03	< 0.03	0.042	2.8	0.6	201	2.7	50	5.1	1.6
MW-2	11/13/2015	8.81	7058.72	6.1	60	12.1	<0.2	<1	<1	90	6.8	< 0.03	< 0.03	0.023	2.4	0.9	349		60	5.9	1.9
IVIVV-Z	11/13/2013	0.01	1030.12	0.1	00	14.1	~∪.∠	\ 1	\ 1	90	0.0	~ 0.03	~ 0.03	0.023	۷.4	0.9	348		00	5.8	1.9

		Depth				_			Ammo			_	_					Dissolved			
Well	Date	To GW (ft)	(ft, NAVD88)	Field pH	Field EC (µS/cm)	Temp. (C)	NO3-N (mg/L)	TKN (mg/L)	nia as N	TDS (mg/L)	Total Coliform (MPN/100ml)	B (mg/L)	Fe (mg/L)	Mn (mg/L)	Na (mg/L)	CI (mg/L)	ORP (mV)	Oxygen (mg/L)	Lab SC (μS/cm)	Ca (mg/L)	Mg (mg/L)
MW-2	7/7/2016	2.29	7065.24	5.7	49	11.2	<0.2	<1	<1	54	<1.8	<0.03	<0.03	<0.01	2.3	0.3			49	5.9	1.5
MW-2	9/8/2016	7.63	7059.90	6.3	70	10.6	<0.1	0.40	<0.1	180	<1.8	< 0.03	< 0.03	<0.01	2.7	1.3				7.1	2.2
MW-2	10/20/2016	2.04	7065.49	5.8	64.5	10.3	0.2	0.35	0.14	54	170	< 0.03	< 0.03	<0.01	3.2	2.2				6.9	2.1
MW-2	7/13/2017	1.83	7065.70	7.2	46	10.7	<0.4	<1	<1	54	<1.8	<0.03	0.077	0.160	3.0	0.3			46	7.1	2.0
MW-2	8/24/2017	6.57	7060.76	6.0	57	12.9	<0.4	<1	<1	55	1300	<0.03	<0.03	0.022	2.9	0.6			57	5.2	1.8
MW-2	9/28/2017	8.45	7059.08	5.8	57	12.6	<0.4	1	<1	67	2	<0.03	<0.03	0.022	2.8	0.7	 	 	57 57	6.1	1.8
			7063.93					-1 -1				~ 0.03	~ 0.03	0.041	2.0	0.7			31	0.1	1.0
MW-2	6/28/2018	3.60		6.5	77	8.9	<0.2	<1	<0.2	54	<1.8										
MW-2	8/22/2018	8.80	7058.73	5.3	64.7	8.7	<0.2	2.50	<0.2	65	79										
MW-2	10/10/2018	10.57	7056.96	IVS																	
MW-2	7/17/2019	0.60	7066.93	6.3	48.1	11.0	<0.2	<1	<0.2	50	2										
MW-2	8/28/2019	6.22	7061.31	6.3	56.1	11.0	<0.2	<1	<0.2	56	<1.8										
MW-2	10/2/2019	6.63	7060.90	6.3	68.8	11.1	<0.2	<1	< 0.02	66	<1.8	<0.2	16	0.170	4.7	1.2					
MW-3	10/30/2002	6.38	7049.99	6.3			<0.050	NR^1		256	>2400	<0.10 ^T	63 ^T	0.92^{T}	32 ^T	74.0					
MW-3	7/29/2003			6.4	98	6.9	0.3	1	_	60	1600	NR^3	NR^3	NR^3	NR^3	NR^3					
MW-3	11/13/2003	6.30	7050.07	6.3			0.06*	NR^1			9	<0.10 ^T	46 ^T	0.73^{T}	10.7^{T}	8.6					
MW-3	6/22/2004	2.45	7053.92	6.1	94	4.2	0.52	2		122	9	NR^3	0.650	<0.02	NR^3	NR^3					
MW-3	9/1/2004	4.75	7051.62	6.6	100	7.2	0.63	<1.0		124	<2	NR^3	0.380	<0.02	NR^3	NR^3					
MW-3	10/13/2004	6.59	7049.78	6.1	85	8.9	0.3	<1	<1	100	<2	0.04	< 0.02	<0.01	7.0	6.5					
MW-3	8/11/2005	3.12	7053.25	6.3	70	7.5	0.5	<1	<1	88	2	< 0.03	0.040	<0.01	6.0	5.0	59	4.4	75	6.2	1.7
MW-3	9/15/2005	2.97	7053.40	6.1	78	10.8	<0.1	<1	<1	82	30	<0.03	0.070	< 0.02	6.0	7.7	100	9.1	70	5.9	1.5
MW-3	10/13/2005	3.48	7052.89	6.8	NM	10.1	0.4	2	<1	80	9	<0.03	0.030	0.040	7.0	11	84	4.4	92	7.3	2.2
MW-3	6/29/2006	2.02	7054.35	7.6	50	6.3	<0.1	<1	<1	49	2	<0.03	0.030	<0.01	4.0	3	180	2.7	56	4.3	1.2
MW-3	8/2/2006	2.75	7053.62	7.7	88	7.9	0.2	<1	<1	72	<2	< 0.03	< 0.02	<0.01	6.0	5	70	3.6	68	5.4	1.5
MW-3	10/10/2006	3.15	7053.22	6.4	76	8.7	<0.1	2	<1	82	13	< 0.03	< 0.02	< 0.01	6.0	7.4	169	2.6	82	6.6	2.0
MW-3	7/12/2007	3.17	7053.20	6.2	59	10.4	0.2	<1	<1	91 71	<2	< 0.03	0.053	< 0.01	8.0	4.3	249	4.2	66 07	5.9	1.6
MW-3 MW-3	8/29/2007 9/26/2007	3.40 5.00	7052.97 7051.37	6.4 5.8	89 89	13.6 10.9	<0.1 0.1	<1 <1	<1 <1	71 90	800 80	<0.03 <0.03	0.024 <0.02	<0.01 <0.01	6.0 7.0	11.0 11.0	176 -109	4.5 7.8	97 96	7.5 7.5	1.8 2.1
MW-3	7/8/2008	2.50	7051.37	5.6 6.4	47	8.8	0.1	<1	<1	72	2	<0.03	0.210	<0.01	6.0	5.3	218	2.5	96 66	7.3 5.0	2.1
MW-3	9/18/2008	3.85	7052.52	6.0	93	12.8	<0.1	<1	<1	94	<2	< 0.03	<0.02	< 0.01	7.0	13.0	681	3.9	97	6.8	1.9
MW-3	10/16/2008	5.54	7050.83	7.0	101	11.6	<0.1	0.15	<1	94	2	< 0.03	<0.02	<0.01	7.0	16.0	109	5.1	110	10.0	2.7
MW-3	7/7/2009	2.40	7053.97	6.1	77	6.0	0.5	<1	<1	100	4	< 0.03	0.060	<0.01	6.0	11.0	680	1.4	81	7.1	1.9
MW-3	9/30/2009	3.65	7052.72	5.5	106	12.4	<0.1	<1	<1	100	4	< 0.03	0.060	<0.01	8.0	12.0	211	1.7	110	9.3	2.0
MW-3	10/26/2009	4.10	7052.27	5.7	61	10.5	0.9	<1	<1	70	22	< 0.03	0.100	<0.01	6.0	8.6	239	6.1	77	4.9	1.4
MW-3	7/13/2010	2.10	7054.27	6.1	58	3.8	<0.1	<1	<1	60	8	< 0.03	0.030	<0.01	5.0	3.6	116	1.8	58	3.8	0.6
MW-3	8/24/2010	2.65	7053.72	5.8	79	11.8	<0.1	<1	<1	87	2	< 0.03	< 0.02	<0.01	7.0	6.1	153	8.0	79	6.3	1.8
MW-3	11/4/2010	2.10	7054.27	5.6	105	9.8	<0.1	3.00	<1	92	800	<0.03	0.020	<0.01	8.0	12.0	157	0.7	110	8.5	2.2
MW-3	7/21/2011	0.90	7055.47	6.2	52	3.6	<0.1	<1	<1	56	34	<0.03	< 0.02	<0.01	3.8	2.4	113	2.3	52	3.9	1.0
MW-3	9/8/2011	2.45	7053.92	6.1	71	9.5	<0.1	2.00	<1	62	2	< 0.03	< 0.02	<0.01	5.3	3.1	122	0.5	71	5.1	1.6
MW-3	10/20/2011	2.14	7054.23	6.1	76	8.2	<0.1	1.00	<1	68	130	< 0.03	0.032	<0.01	5.5	3.7	123	0.9	76	5.7	1.5
MW-3	6/26/2012	2.35	7054.02	6.0	48	6.3	<0.1	<1	<1	64	<1.8	< 0.03	< 0.02	<0.01	6.4	3.8	84	0.4	48	6.1	1.7
MW-3	7/31/2012	2.86	7053.51	6.0	89	12.1	<0.2	<1	<1	69 70	<1.8	< 0.03	0.330	0.029	6.1	6.3	157	0.0	89	7.7	2.0
MW-3	10/9/2012	5.98	7050.39	5.7	85	9.4	<0.2	<1	<1	72	<1.8	< 0.03	0.067	0.017	6.2	5.3	436	1.2	85 54	6.5	1.8
MW-3	5/30/2013	2.20	7054.17	5.9	54	7.0	<0.2	<1	<1	60	6.8	<0.03	0.039	0.031	4.7	3.4	147		54	4.3	1.2

		Depth	GW Elev.						Ammo									Dissolved			
		To GW			Field EC	Temp.	NO3-N	TKN	nia as	TDS	Total Coliform	В	Fe	Mn	Na	CI	ORP	Oxygen	Lab SC	Ca	Mg
Well	Date	(ft)	NAVD88)	Field pH	(μS/cm)	(C)	(mg/L)	(mg/L)	N	(mg/L)	(MPN/100ml)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mV)	(mg/L)	(μS/cm)	(mg/L)	(mg/L)
MW-3	8/21/2013	4.90	7051.47	4.2	73	9.3	<0.2	<1	<1	68	<1.8	< 0.03	0.042	0.017	5.3	5.0	359	1.6	73	5.2	1.4
MW-3	10/15/2013	6.11	7050.26	5.4	76	9.4	<0.2	<1	<1	79	<1.8	< 0.03	<0.02	<0.01	6.1	4.8	588	2.2	76	6.2	1.5
MW-3	6/12/2014	2.33	7054.04	5.7	61	5.2	<0.2	<1	<1	65	6.8	< 0.03	<0.02	<0.01	5.3	3.9	66	0.6	61	4.5	1.0
MW-3	8/12/2014	4.62	7051.75	5.6	62	10.5	0.3	<1	<1	69	9.3	<0.03	0.072	0.033	5.8	7.3	224	2.8	62	5.5	1.4
MW-3	10/14/2014	7.12	7049.25	5.5	70	9.1	<0.2	<1	<1	64	<1.8	< 0.03	0.052	0.011	6.4	4.5	187	0.1	70	5.7	1.5
MW-3	6/17/2015	1.98	7054.39	7.8	68	6.7	0.3	<1	<1	63	<1.8	< 0.03	<0.02	<0.01	5.2	4.1	197	4.6	68	5.5	1.4
MW-3	9/9/2015	4.87	7051.50	7.4	67	9.0	<0.2	<1	<1	75 27	7.8	< 0.03	< 0.03	<0.01	5.5	3.8	164	3.3	67	5.1	1.4
MW-3	11/13/2015	5.78	7050.59	6.0	68	10.6	<0.2	<1	<1	67	<1.8	< 0.03	< 0.03	< 0.01	5.1	4.1	243		68	5.3	1.5
MW-3	7/7/2016	2.08	7054.29	5.7	68	5.7	<0.2	<1	<1	69	<1.8	<0.03	<0.03	0.022	4.9	5.3			68	6.1	1.5
MW-3	9/8/2016	4.62	7051.75	5.5	87	12.7	<0.1	0.35	<0.1	66	230	< 0.03	< 0.03	0.041	5.4	9.6				7.4	1.9
MW-3	10/20/2016	2.37	7054.00	5.8	88	9.1	<0.1	0.35	<0.1	71	<1.8	< 0.03	< 0.03	<0.01	6.1	9.9				7.4	2.0
MW-3	7/13/2017	2.19	7054.18	7.6	68	4.6	<0.4	<1	<1	60	2	< 0.03	< 0.03	<0.01	4.9	4.5			68	5.3	1.4
MW-3	8/24/2017	2.82	7053.55	6.0	79 70	11.7	<0.4	<1	<1	67	330	< 0.03	< 0.03	<0.01	5.3	4.3			79 70	6.0	1.8
MW-3	9/28/2017	3.53	7052.84	5.5	79	12.0	<0.4	2	<1	71	7.8	<0.03	<0.03	<0.01	5.0	3.1			79	6.8	1.8
MW-3	6/28/2018	2.20	7054.17	6.1	117	5.4	<0.2	<1	<0.2	82	<1.8										
MW-3	8/22/2018	4.30	7052.07	6.2	74	10.2	<0.2	<1	<0.2	59	4.5			0.004							
MW-3	10/10/2018	6.54	7049.83	6.1	81.4	7.2	<0.2	<1	<0.2	73	<1.8	<0.2	0.96	0.021	6.2	4.5					
MW-3	7/17/2019	1.80	7054.57	6.2	80.5	5.5	<0.2	<1	<0.2	56	7.8										
MW-3	8/28/2019	2.91	7053.46	6.1	84.1	8.5	<0.2	<1	<0.2	60	2					4.0					
MW-3	10/2/2019	4.01	7052.36	5.9	84	10.9	<0.2	<1	<0.02	61	<1.8	<0.2	1.3	0.025	6.0	4.8					
 MW-4	10/30/2002	4.30	7050.49	7.0			<0.050	NR ¹		294	900	<0.10 ^T	370 ^T	14.8 ^T	42 ^T	44.0					
MW-4	7/29/2003			7.2	231	6.0	<0.1	<0.5		170	240	NR^3	NR^3	NR^3	NR^3	NR^3					
MW-4	11/13/2003	3.96	7050.83	7.2			0.05*	NR^1			<2	< 0.10 ^T	49 ^T	2.06 ^T	10.5 ^T	5.5					
MW-4	6/22/2004	2.88	7051.91	6.8	254	4.7	0.05	<1.0	•	172	<2	NR^3	0.110	0.080	NR^3	NR^3					
MW-4	9/1/2004	12.95	7041.84	6.4	278	7.3	<0.050	<1.0		167	<2	NR^3	0.170	0.190	NR^3	NR^3					
MW-4	10/13/2004	4.38	7050.41	6.8	230	8.8	<0.1	<1	<1	150	<2	0.03	< 0.02	0.580	9.0	6.9					
MW-4	8/11/2005	3.22	7051.57	6.7	210	7.0	<0.1	<1	<1	170	<2	< 0.03	0.110	0.050	9.0	6.1	34	1.3	220	25.0	8.6
MW-4	9/15/2005	3.10	7051.69	6.7	230	7.0	0.1	<1	<1	180	<2	< 0.03	< 0.02	0.390	10.0	7.5	112	1.1	240	26.0	8.8
MW-4	10/13/2005	3.20	7051.59	7.3	25	7.5	0.2	1	<1	160	<2	< 0.03	0.760	1.300	10.0	8.4	8	9.6	260	28.0	9.2
MW-4	6/29/2006	2.65	7052.14	7.2	193	5.0	0.1	<1	<1	130	<2	< 0.03	0.020	0.030	8.0	4.8	165	1.5	200	22.0	7.4
MW-4	8/2/2006	3.08	7051.71	8.3	186	8.2	<0.1	<1	<1	150	<2	< 0.03	< 0.02	0.030	9.0	5.9	94	0.7	200	22.0	7.4
MW-4	10/10/2006	3.00	7051.79	6.9	205	6.9	<0.1	1	<1	160	2	< 0.03	< 0.02	0.050	10.0	6.1	101	1.5	210	24.0	7.9
MW-4	7/12/2007	3.70	7051.09	7.2	180	10.0	<0.1	0.1	<1	180	<2	< 0.03	0.031	0.059	10.0	6.3	213	1.6	200	24.0	7.5
MW-4	8/29/2007	3.30	7051.49	7.0	187	10.1	<0.1	<1	<1	140	<2	< 0.03	0.160	0.073	8.0	6.7	127	6.6	200	22.0	7.3
MW-4	9/26/2007	3.60	7051.19	6.8	191	9.5	<0.1	<1	<1	140	<2	< 0.03	0.067	0.067	9.0	6.4	-106	9.4	210	21.0	7.0
MW-4	7/8/2008	3.00	7051.79	6.9	203	8.2	<0.1	<1	<1	180	<2	< 0.03	0.060	0.030	8.0	6.6	216	1.1	220	24.0	8.0
MW-4	9/18/2008	3.49	7051.30	7.0	196	9.5	<0.1	<1	<1	160	<2	< 0.03	< 0.02	<0.01	9.0	6.3	476	2.4	210	20.0	6.5
MW-4	10/16/2008	3.75	7051.04	7.7	191	9.5	<0.1	<0.1	<1	170	2	< 0.03	0.020	<0.01	9.0	6.3	133	6.2	210	22.0	7.2
MW-4	7/7/2009	3.35	7051.44	7.0	207	7.3	0.4	2	<1	210	<2	< 0.03	0.040	0.040	9.0	6.6	476	5.6	220	25.0	8.2
MW-4	9/30/2009	3.30	7051.49	4.5	199	8.1	<0.1	<1	<1	160	<2	< 0.03	0.080	<0.01	9.0	7.2	243	3.9	200	23.0	7.0
MW-4	10/26/2009	3.35	7051.44	6.2	188	8.6	0.3	<1	<1	220	1300	< 0.03	0.030	0.260	9.0	8.2	300	4.7	240	25.0	7.5
MW-4	7/13/2010	2.50	7052.29	6.6	227	5.5	<0.1	<1	<1	150	2	< 0.03	0.030	<0.01	9.0	6.9	105	0.6	230	25.0	8.3
MW-4	8/24/2010	3.03	7051.76	6.4	228	6.9	<0.1	<1	<1	180	<2	< 0.03	< 0.02	0.040	9.0	7.1	83	0.2	230	23.0	7.6
MW-4	11/4/2010	2.15	7052.64	6.5	194	7.8	<0.1	<1	<1	140	50	< 0.03	< 0.02	0.040	8.0	6.9	172	0.1	190	21.0	6.5
MW-4	7/21/2011	1.60	7053.19	6.9	208	5.3	<0.1	<1	<1	160	<2	<0.03	<0.02	<0.01	7.4	4.8	104	0.4	210	21.0	7.1

		Depth	GW Elev.						Ammo									Dissolved			
		To GW	(ft,		Field EC	Temp.	NO3-N	TKN	nia as	TDS	Total Coliform	В	Fe	Mn	Na	CI	ORP	Oxygen	Lab SC	Ca	Mg
Well	Date	(ft)	NAVD88)	Field pH	(μS/cm)	(C)	(mg/L)	(mg/L)	N	(mg/L)	(MPN/100ml)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mV)	(mg/L)	(μS/cm)	(mg/L)	(mg/L)
MVV-4	9/8/2011	2.85	7051.94	6.9	215	6.6	<0.1	1	<1	150	<2	< 0.03	< 0.02	0.019	7.8	6.2	84	0.2	220	18.4	7.2
MW-4	10/20/2011	2.30	7052.49	7.0	191	7.3	<0.1	<1	<1	140	2	< 0.03	< 0.02	0.079	7.4	6.1	88	0.2	190	17.4	5.8
MW-4	6/26/2012	2.55	7052.24	8.0	125	6.4	<0.1	<1	<1	130	<1.8	< 0.03	< 0.02	0.022	9.5	20.0	94	0.4	130	22.2	7.5
MW-4	7/31/2012	3.00	7051.79	6.6	204	6.9	<0.2	2	<1	150	6.8	< 0.03	< 0.02	0.012	8.6	6.4	86	0.1	200	22.4	7.0
MW-4	10/9/2012	4.30	7050.49	5.8	191	8.1	<0.2	<1	<1	140	<1.8	< 0.03	0.020	0.046	8.3	6.4	357	1.0	190	18.2	5.9
MW-4	5/30/2013	2.30	7052.49	6.4	210	6.1	<0.2	<1	<1	150	<1.8	< 0.03	<0.02	0.027	7.7	6.9	109		210	20.8	7.2
MW-4	8/21/2013	3.30	7051.49	6.5	200	8.2	<0.2	<1	<1	140	<1.8	< 0.03	<0.02	0.030	7.5	6.8	448	0.4	200	18.8	6.3
MW-4	10/15/2013	4.31	7050.48	6.6	200	8.9	<0.2	<1	<1	150	<1.8	< 0.03	<0.02	0.014	8.2	6.8	553	0.5	200	21.8	6.5
MW-4	6/12/2014	2.66	7052.13	5.6	227	6.1	<0.2	<1	<1	160	<1.8	< 0.03	<0.02	<0.01	8.5	7.3	129	0.3	230	23.1	8.2
MW-4	8/12/2014	3.57	7051.22	6.9	208	7.9	<0.2	<1	<1	160	<1.8	< 0.03	0.026	0.068	8.5	6.8	213	0.1	210	21.8	6.9
MW-4	10/14/2014	4.69	7050.10	6.7	201	9.0	<0.2	<1	<1	130	<1.8	< 0.03	<0.02	0.009	7.7	6.8	574	0.1	200	18.9	6.8
MW-4	6/17/2015	2.41	7052.38	7.1	217	7.1	<0.2	<1	<1	140	<1.8	< 0.03	<0.02	<0.01	7.7	6.9	-7	0.1	220	20.7	7.0
MW-4	9/9/2015	3.72	7051.07	6.7	203	9.1	<0.2	<1	<1	160	2	0.034	<0.03	0.024	8.2	6.8	109	0.2	200	20.1	6.6
MW-4	11/13/2015	3.16	7051.63	6.8	189	8.9	<0.2	<1	<1	130	<1.8	< 0.03	<0.03	<0.01	8.2	7.7	253		190	18.4	5.7
MW-4	7/7/2016	2.82	7051.97	6.1	215	9.0	<0.2	<1	<1	150	<1.8	< 0.03	<0.03	0.014	8.1	6.2			220	22.6	7.2
MW-4	9/8/2016	3.58	7051.21	5.4	201	8.8	<0.1	0.66	<0.1	180	<1.8	< 0.03	<0.03	0.037	8.2	6.7				20.9	6.7
MW-4	10/20/2016	2.29	7052.50	6.1	169	8.5	0.17	0.31	<0.1	120	230	< 0.03	<0.03	<0.01	7.3	5.5				18.4	5.9
MW-4	7/13/2017	2.36	7052.43	7.8	197	6.3	<0.4	<1	<1	140	<1.8	< 0.03	< 0.03	<0.01	7.9	4.0			200	19.4	6.5
MW-4	8/24/2017	2.82	7051.97	7.3	199	7.9	<0.4	<1	<1	140	490	< 0.03	<0.03	<0.01	8.0	5.2			200	17.2	6.5
MW-4	9/28/2017	3.02	7051.77	6.0	201	9.4	<0.4	<1	<1	140	13	< 0.03	<0.03	0.288	8.0	5.9			200	20.6	6.3
MW-4	6/28/2018	2.60	7052.19	6.9	289	6.0	<0.2	<1	<0.2	206	<1.8										
MW-4	8/22/2018	3.45	7051.34	7.2	407	7.3	<0.2	<1	<0.2	140	<1.8										
MW-4	10/10/2018	4.41	7050.38	6.8	205	6.9	3	<1	<0.2	150	<1.8	<0.2	1.4	0.086	8.2	7.0					
MW-4	7/17/2019	2.50	7052.29	6.7	227	6.0	<0.2	<1	<0.2	140	<1.8										
MW-4	8/28/2019	3.15	7051.64	6.7	211	8.0	<0.2	<1	<0.2	140	<1.8										
MW-4	10/2/2019	3.15	7051.64	6.7	232	7.1	<0.2	<1	<0.02	130	<1.8	<0.2	0.21	<0.02	8.3	7.1					
MW-5	9/1/2004	12.95	7190.83	6.6	307	6.4	0.064	<1.0		276	80	NR ³	1.280	0.200	NR ³	NR ³					
MW-5	10/13/2004	13.74	7190.04	6.2	230	8.9	<0.1	2	<1	340	500	0.08	<0.02	0.230	18.0	28.0					
MW-5	8/11/2005	11.74	7192.04	6.3	110	15.7	<0.1	2	<1	180	2	<0.03	0.620	0.060	6.0	5.5	51	4.2	120	1.0	4.4
MW-5	9/15/2005	12.50	7191.28	7.0	170	11.2	0.1	<1	<1	170	<2	<0.03	0.750	0.130	7.0	5.8	41	NS	120	12.0	4.6
MW-5	10/13/2005	9.27	7194.51	6.5	103	8.8	0.1	<1	<1	120	11	<0.03	0.210	0.040	6.0	8.5	133	8.5	110	8.9	3.9
MW-5	6/29/2006	12.50	7191.28	7.6	71	14.7	<0.1	<1	<1	120	<2	< 0.03	0.280	0.050	4.0	4.1	159	6.5	81	5.8	2.5
MW-5	8/2/2006	11.49	7192.29	8.4	34	19.8	<0.1	<1	<1	120	<2	< 0.03	0.090	0.040	8.0	8.0	98	5.0	98	6.4	2.5
MW-5	10/11/2006		7191.89	5.8	93	8.4	<0.1	1	<1	170	2	<0.03	0.540	0.040	6.0	3.6	186	5.7	110	12.0	4.6
MW-5	7/12/2007	13.10	7190.68	6.1	142	13.9	٦٥.١	'	1	170	2	٧٥.٥٥	0.040	0.000	0.0	0.0	226	NS	110	12.0	4.0
MW-5	8/29/2007	13.50		-	re sampling	10.5											220	140			
MW-5	9/26/2007	13.70	7190.28	6.7	88	11.6											-87	8.9			
MW-5	7/8/2008	13.70	7190.00	7.3	104	15.1											136	NS			
MW-5	9/18/2008	13.80			re sampling	10.1											100	140			
MW-5	10/16/2008	13.95		•	re sampling re sampling																
MW-5	7/7/2009	12.80	7190.98	6.7	214	11.0	0.3	<1	<1	230	<2	< 0.03	0.430	0.100	10.0	4.8	818	8.1	130	11.0	3.8
MW-5	9/30/2009	13.30	7190.98	6.3	109	8.6	0.3	NS	NS	NS	NS	0.03	< 0.02	0.050	22.0	5.3	141	4.6	130	9.9	3.4
MW-5	10/26/2009	13.35			re sampling	0.0	0.4	110	140	140	INO	0.20	~U.UZ	0.000	22.0	0.0	171	7.0	100	5.5	J. T
MW-5	7/13/2010	11.50	7190.33	6.0	94	8.0	<0.1	<1	<1	200	2	< 0.03	0.270	0.060	5.0	5.1	158	2.5	94	8.0	2.7
MW-5	8/24/2010	12.52	7192.26	6.7	9 4 95	11.0	<0.1	<1	<1	170	2	<0.03	<0.02	0.020	5.0	4.8	129	7.1	9 4 95	7.9	3.3
MW-5	11/4/2010	12.32	7191.20	6.1	93 98	7.4	<0.1	<1	<1	84	23	0.06	<0.02	0.020	6.0	4.6 5.5	209	6.5	98	7.5 7.5	3.0
10100-3	11/4/2010	12.10	1 131.03	0.1	90	1.4	~ U. I	^ 1	\ 1	04	23	0.00	~ 0.0∠	0.020	0.0	5.5	209	0.5	90	1.5	5.0

		Depth				_			Ammo			_	_					Dissolved			
Well	Date	To GW (ft)	(ft, NAVD88)	Field pH	Field EC (μS/cm)	Temp.	NO3-N (mg/L)	TKN (mg/L)	nia as N	TDS (mg/L)	Total Coliform (MPN/100ml)	B (mg/L)	Fe (mg/L)	Mn (mg/L)	Na (mg/L)	CI (mg/L)	ORP (mV)	Oxygen (mg/L)	Lab SC (μS/cm)	Ca (mg/L)	Mg (mg/L)
MW-5	7/21/2011	9.15	7194.63	4.9	74	5.7	<0.1	<1	<1	100	4	<0.03	0.121	0.072	4.1	3.6	115	4.4	74	5.9	2.3
MW-5	9/8/2011	12.50	7191.28	6.5	101	8.0	<0.1	1	<1	150	<2	< 0.03	2.400	0.056	5.1	4.0	102	5.7	100	8.2	4.0
MW-5	10/20/2011	11.58	7192.20	6.0	95	7.0	<0.1	<1	<1	150	4.5	< 0.03	0.216	0.012	4.1	4.5	157	4.5	95	8.1	3.0
MW-5	6/26/2012	12.70	7191.08	6.9	26	7.1	0.1	<1	<1	130	IVS	0.074	0.039	0.054	6.9	8.2	58	15.3	120	9.5	3.9
MW-5	7/31/2012	11.87	7191.91	6.3	106	9.7	< 0.2	<1	<1	120	<1.8	< 0.03	< 0.02	0.037	4.8	4.7	231	5.3	110	10.2	3.7
MW-5	10/9/2012	14.64	7189.14	ed dry befo	re sampling																
MW-5	5/30/2013	13.20	7190.58	6.0	85	9.9	< 0.2	<1	<1	140	IVS	< 0.03	0.151	0.049	4.8	4.7	390		85	6.6	2.7
MW-5	8/21/2013	12.99	7190.79	6.0	40	21.8	<0.2	<1	<1	110	<1.8	< 0.03	0.074	0.016	3.9	5.1	702	6.2	40	6.2	2.3
MW-5	10/15/2013	14.06	7189.72	8.1	91	10.2	<0.2	<1	<1	160	<1.8	< 0.03	< 0.02	< 0.01	10.1	11.0	694	11.6	91	6.8	2.6
MW-5	6/12/2014	13.11	7190.67	5.8	80	11.3	<0.2	<1	<1	240	<1.8	< 0.03	0.046	< 0.01	4.3	5.1	692	7.8	80	6.9	3.0
MW-5	8/12/2014	13.01	7190.77	5.6	111	3.3	<0.2	<1	<1	120	14	< 0.03	0.284	0.063	5.4	6.0	279	3.3	110	10.1	3.9
MW-5	10/14/2014	14.23	7189.55	ed dry befo	re sampling																
MW-5	6/17/2015	13.19	7190.59	4.5	106	11.7	< 0.2	<1	<1	150	<1.8	0.041	< 0.02	0.137	4.8	6.4	418.2	6.9	110	8.7	3.5
MW-5	9/9/2015	12.44	7191.34	7.0	108	11.8	< 0.2	<1	<1	220	IVS	< 0.03	< 0.03	0.078	5.5	6.8	675.4	5.4	110	9.6	3.9
MW-5	11/12/2015	13.23	7190.55	6.6	108	7.7	<0.2	<1	<1	220	IVS	< 0.03	< 0.03	0.071	4.2	6.7	200.1		110	9.5	3.7
MW-5	7/7/2016	12.05	7191.73	5.6	110	9.3	<0.2	<1	<1	130	<1.8	< 0.03	< 0.03	0.034	6.5	6.3			110	15.5	5.1
MW-5	9/8/2016	13.26	7190.52	7.0	121	11.3													IVS		
MW-5	10/20/2016	12.56	7191.22	would not	pump																
MW-5	7/13/2017	13.24	7190.54	would not	pump																
MW-5	8/24/2017	12.83	7190.95	6.0	111	10.4	< 0.4	<2	<2	120	79	< 0.03	0.1	0.074	5.4	5.3			110	8.0	3.4
MW-5	9/28/2017	13.64	7190.14	6.9	108	6.7	<0.4	2	<1	120	2	< 0.03	< 0.03	0.059	4.9	5.2			110	8.6	3.3
MW-5	6/29/2018	10.70	7193.08	6.1	145	5.6	<0.2	<1	< 0.2	103	<1.8										
MW-5	8/23/2018	13.13	7190.65	6.4	259	6.6	pumped dry														
MW-5	10/10/2018	13.96	7189.82	IVS																	
MW-5	7/18/2019	12.25	7191.53	5.9	97	7.4	<0.2	<1	<0.2	95	<1.8										
MW-5	8/29/2019	12.61	7191.17	6.2	372	7.5	pumped dry														
MW-5	10/3/2019	13.41	7190.37	IVS																	
MW-6	10/30/2002	6.45	7053.04	6.6			<0.050	NR ¹		376	240	<0.10 ^T	335 ^T	6.89 ^T	36 ^T	59.0					
MW-6	7/29/2003	0.40	7000.04	7.1	457	7.5	<0.030	<0.5		260	<2	NR ³	NR ³	NR ³	NR ³	NR ³					
		0.47	7050.00		457	7.5				200		-	_	_	_						
MW-6	11/13/2003		7053.32	7.0			<0.050*	NR ¹			<2	<0.10 ¹	132 ^T	4.78 ^T	18.5 ¹	6.9					
MW-6	6/22/2004	2.14	7057.35	7.1	508	4.5	<0.05	<1.0		280	<2	NR ³	0.210	1.760	NR ³	NR^3					
MW-6	9/1/2004	5.43	7054.06	6.8	479	6.5	<0.050	<1.0		297	<2	NR^3	0.390	2.190	NR^3	NR^3					
MW-6	10/13/2004	6.39	7053.10	7.1	470	7.5	<0.1	<1	<1	320	<2	0.03	<0.02	2.100	16.0	6.6					
MW-6	8/11/2005	3.21	7056.28	6.9	470	6.9	<0.1	<1	<1	300	<2	< 0.03	0.650	2.400	17.0	7.0	14	1.5	500	71.0	16.0
MW-6	9/15/2005	4.71	7054.78	6.7	440	7.0	0.2	1	<1	290	<2	< 0.03	0.340	2.200	17.0	7.1	41	<0.2	460	66.0	15.0
MW-6	10/13/2005	5.15	7054.34	7.1	450	7.3	0.2	<1	<1	290	2	< 0.03	0.530	2.200	16.0	7.0	10	8.8	470	62.0	14.0
MW-6	6/29/2006	1.11	7058.38	7.5	431	7.6	<0.1	<1	<1	270	<2	< 0.03	0.290	2.100	15.0	7.4	25	0.6	450	62.0	14.0
MW-6	8/2/2006	3.63	7055.86	7.6	417	8.6	<0.1	<1	<1	280	<2	< 0.03	0.300	2.100	16.0	6.7	-38	0.5	460	62.0	14.0
MW-6	10/10/2006	5.60	7053.89	7.3	476	7.1	<0.1	<1	<1	300	<2	<0.03	0.310	2.400	17.0	6.7	-12	2.5	500	70.0	15.0
MW-6	7/12/2007	4.40	7055.09	7.1	434	8.0	<0.1	<1	<1	370	<2	< 0.03	0.300	2.400	17.0	6.3	52	2.3	460	68.0	15.0
MW-6	8/29/2007	5.90	7053.59	7.1	461	8.8	<0.1	<1	<1	280	50	< 0.03	0.430	2.600	17.0	7.4	45	4.5	490	69.0	15.0
MW-6	9/26/2007	6.70	7052.79	6.9	473	8.4	<0.1	<1	<1	280	4	<0.03	0.520	2.500	16.0	7.2	-123	9.9	500	65.0	15.0
MW-6	7/8/2008	3.00	7056.49	7.0	473	8.1	<0.1	<1	<1	330	<2	< 0.03	0.450	2.300	15.0	6.9	21	3.1	500	67.0	16.0
MW-6	9/18/2008	6.13	7053.36	7.1	490	8.1	<0.1	<1	<1	390	<2	< 0.03	0.220	2.400	17.0	6.7	78	2.7	510	69.0	16.0
MW-6	10/16/2008	6.85	7052.64	7.3	481	7.1	<0.1	<0.1	<1	320	<2	< 0.03	0.580	2.700	16.0	7.0	18	8.3	510	70.0	16.0
1V1 V V -O	10/10/2000	0.00	1002.04	7.0	701	7.1	٠٠.١	·U. I	71	020	٦_	-0.00	0.000	2.700	10.0	1.0	10	0.0	010	7 0.0	10.0

		Depth							Ammo									Dissolved			
347 11		To GW	(ft,		Field EC	Temp.	NO3-N	TKN	nia as	TDS	Total Coliform	В	Fe	Mn	Na	CI	ORP	Oxygen	Lab SC	Ca	Mg
Well	Date	(ft)	NAVD88)	Field pH	(μS/cm)	(C)	(mg/L)	(mg/L)	N 11	(mg/L)	(MPN/100ml)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mV)	(mg/L)	(μS/cm)	(mg/L)	(mg/L)
MW-6	7/7/2009	2.70	7056.79	7.2	490	7.3	<0.1	<1	<1	370	<2	< 0.03	0.900	2.800	16.0	7.1	232	2.0	500	71.0	16.0
MW-6	9/30/2009	6.50	7052.99	6.8	464	7.3	<0.1	<1	<1	320	<2	< 0.03	0.630	2.900	16.0	7.3	-32	1.8	510	71.0	15.0
MW-6	10/26/2009	5.40	7054.09 7057.79	6.7	389	7.1	<0.1	<1	<1	320	<2	< 0.03	1.000	2.700	16.0	7.2	24	0.3	520	68.0	15.0
MW-6	7/13/2010	1.70		6.8	485 407	5.5	<0.1	<1	<1 -1	310	2	< 0.03	0.620	2.600	16.0	7.0	-98	0.5	490 500	66.0	15.0
MW-6 MW-6	8/24/2010 11/4/2010	4.66 1.05	7054.83 7058.44	6.7 6.5	497 470	6.3	<0.1	<1 ~1	<1 <1	430 330	<2 <2	<0.03 <0.03	<0.02 0.710	2.700 3.100	19.0	6.4	-25 -22	0.3	500 480	64.0 63.0	15.0
MW-6	7/21/2011	0.70	7058.44		479 402	6.9 5.5	<0.1	<1 ~1	<1	320	<2 <2		0.710		15.0	6.3		0.4 0.3	480	55.1	14.0
MW-6	9/8/2011	4.33	7055.16	7.0 7.0	492 507	6.3	<0.1	<1 ~1	<1	280	<2 <2	<0.03	0.562	2.160 2.530	15.7 13.6	6.6 6.1	43		490 510	57.3	14.0
		4.33 1.86	7055.16	7.0	507 416		<0.1	<1 ~1		250 250	<2	<0.03	0.793			6.1	-38 17	0.4 0.7	510 420		15.8
MW-6 MW-6	10/20/2011 6/26/2012	2.60	7057.63	6.6		6.5	<0.1	<1 <1	<1 <1	300	6.8	<0.03 <0.03	0.793	2.380 4.090	13.5	4.0 6.2	17	0. <i>1</i> 1.1		43.8	11.9 16.8
	7/31/2012	4.65		6.8	310 516	5.2 6.4	<0.1			310	<1.8	<0.03	0.724	2.920	15.6		62 30		310	66.8	
MW-6		7.80	7054.84 7051.69	6.8	516 525		<0.2	<1 <1	<1 -1	340	4.5	<0.03	0.493	2.320	15.1	6.1	29	0.1 1.3	520 520	65.1	15.2
MW-6 MW-6	10/9/2012 5/30/2013	6.48	7051.09	6.7		6.7 6.2	<0.2	<1	<1 <1	250	<1.8	<0.03	0.012		15.0	6.4 4.7	28 -3		530	60.9 44.0	15.3
				6.5	375 460	8.5	<0.2			270	<1.8		0.107 0.644	2.070	12.3			 0.5	380		10.6
MW-6 MW-6	8/21/2013 10/15/2013	5.10 6.71	7054.39 7052.78	6.5	469 533		<0.2	<1	<1	310	<1.8 2	<0.03 <0.03	0.698	2.700	13.9	6.1 6.4	18 52	0.5 0.8	470 520	54.2 76.4	13.4 16.2
	6/12/2014	2.60	7052.76	6.3	523 455	7.5 5.9	<0.2	<1 ~1	<1 <1	310	<1.8		0.521	2.700	16.2		7	0.6	520 490		
MW-6			7050.69	5.9 5.7			<0.2	<1 2			_	<0.03		2.780	14.7	6.2				62.1	15.4 16.0
MW-6	8/12/2014	4.90 6.96	7054.59	5.7	529 540	7.4 7.5	<0.2	2	<1	370	<1.8	< 0.03	0.747 0.736	2.870	15.7	6.6	42	0.1	530 550	72.7	16.0
MW-6	10/14/2014		7052.55	6.5	549 343	7.5	<0.2	<1 ~1	<1 -1	370	<1.8	< 0.03		2.910	14.9	6.8	48 40	0.5	550 340	67.6	17.5
MW-6	6/17/2015	2.12	7057.37	7.4	342	6.6	0.3	<1	<1 -1	240	<1.8	0.03	<0.02	1.850	10.5	4.0	49 06	0.1	340	39.3	9.5
MW-6	9/9/2015	4.50	7054.99	6.5	457	8.4	<0.2	<1	<1 -1	280	<1.8	0.045	0.656	2.710	14.2	5.2	96	0.8	460	57.2	13.7
MW-6	11/12/2015	0.00	7059.49	6.2	209	8.1	<0.2	<1	<1 -1	120	<1.8	< 0.03	0.176	0.815	7.5	9.7	93		210	23.8	6.0
MW-6	7/7/2016 9/8/2016	2.15 5.84	7057.34	6.3	325	7.1 7.8	<0.2	<1 0.21	<1 0.1	190 280	<1.8	<0.03 <0.03	0.800 0.838	1.840 2.840	11.0	4.5			330	40.6	9.5
MW-6	10/20/2016	3.53	7055.05	6.2 6.9	451 362	7.8 7.3	<0.1	0.31		230	<1.8	<0.03	0.836	2.090	14.5	6.0				59.4 48.5	13.9
MW-6 MW-6		3.33 1.41	7058.08	7.4	302 375	7.3 5.9	<0.1 <0.4	0.44	0.11 <1	230	<1.8	<0.03	0.812	2.090	12.3	4.7			380	46.5 45.9	11.5
MW-6	7/13/2017 8/24/2017	1.65	7058.08	7.4 6.4	216	7.8		<1 ~1	<1	130	4	<0.03	0.623	1.160	12.4 8.3	4.4			220	22.3	10.9 6.3
MW-6	9/28/2017	1.58	7057.04	6.1	167	7.8 7.9	<0.4 <0.4	<1 <1	<1	110	220 <1.8	<0.03	0.422	0.768	6.5	2.3 2.1			170	18.3	4.5
MW-6	6/29/2018	2.80	7056.69	7.2	1100	7.9 5.7	<0.4	<1	<0.2	706	<1.8	\0.03	0.413	0.766	0.5	۷.۱			170	10.5	4.5
MW-6	8/23/2018	6.00	7050.09	7.2 7.0		5. <i>1</i> 6.4		<1		290											
MW-6		7.43			530		<0.2	_	<0.2	310	<1.8	<0.2	7.300	2 200	16.0	7.2					
	10/10/2018	1.43 1.35	7052.06	7.0	555 558	5.9 6.2	0.98	<1 ~1	<0.2		<1.8	~ 0.2	7.300	3.200	16.0	1.2					
MW-6	7/18/2019	4.75	7058.14	7.0	573		<0.2	<1	<0.2	310	<1.8										
MW-6 MW-6	8/29/2019 10/3/2019	4.75 6.01	7054.74 7053.48	7.0 7.1	608	6.7 5.7	<0.2 <0.2	<1 <1	<0.2 <0.2	310 320	<1.8	-O O	6 400	3.600	17.0	7.0					
10100-0	10/3/2019	0.01	7000.40	7.1	000	5.7	\0.2	\ 1	\0.2	320	<1.8	<0.2	6.400	3.600	17.0	7.8					
Discharge Pump	8/11/2005						<0.1	12	8.5	120	23	<0.03	0.630	0.200	14.0	13.0			190	6.8	1.3
Discharge Pump	9/15/2005						1.1	8	6.4	140	>16000	0.06	1.000	0.050	23.0	17.0		0.3	250	7.5	1.8
Discharge Pump	10/13/2005						1.7	13	11.0	150	800	0.06	0.840	0.030	24.0	20.0		0.0	290	6.8	1.7
Discharge Pump	6/29/2006						<0.1	8	7.0	100	8	0.04	2.600	0.500	13.0	13.0			180	6.8	1.4
Discharge Pump	8/2/2006						0.1	12	9.0	120	<2	0.04	0.940	0.060	18.0	17.0			230	7.1	4.5
Discharge Pump	10/11/2006						0.7	12	10.0	100	23	0.05	0.400	0.050	23.0	16.0			150	8.1	2.0
Discharge Pump	7/12/2007						<0.1	7	4.3	210	500	<0.03	2.700	0.400	17.0	12.0			170	7.2	1.5
Discharge Pump	7/8/2008			7.3	225	20.0	<0.1	, <1	4.5 <1	140	22	0.05	1.800	0.460	18.0	15.0	98	3.1	240	13.0	3.0
Discharge Pump	9/18/2008			7.3 8.3	143	18.6	<0.1	<1	<1	230	230	0.03	3.000	0.460	25.0	22.0	219	3. i 8.8	230	3.2	0.6
Discharge Pump	10/16/2008			0.5	170	10.0	0.5	4.97	<1	250 250	1300	0.07	1.300	0.130	34.0	21.0	213	0.0	320	16.0	3.4
Discharge Pump	7/7/2009						<0.3 <0.1	14.00	<1	180	50	0.05	1.500	0.120	23.0	19.0			300	12.0	2.1
Disonarye i ump	11112009						٦٠.١	17.00	* 1	100	30	0.00	1.500	0.230	20.0	13.0			300	12.0	۷.۱
Treatment Pond	8/11/2005						<0.1	14	9.6	120	>3000	0.04	0.170	0.020	20.0	3.1			76	7.3	1.7
	5,, 2000						.			0						~			. 5		•••

		•							Ammo									Dissolved			
		To GW	(ft,		Field EC	Temp.	NO3-N	TKN	nia as	TDS	Total Coliform	В	Fe	Mn	Na	CI	ORP	Oxygen	Lab SC		Mg
Well	Date	(ft)	NAVD88)	Field pH	(μS/cm)	(C)	(mg/L)	(mg/L)	N	(mg/L)	(MPN/100ml)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mV)	(mg/L)	(μS/cm)		(mg/L)
Treatment Pond	9/15/2005						2.1	10	8.1	130	>16000	0.07	0.120	0.030	24.0	17.0		2.8	260	8.5	1.8
Treatment Pond	10/13/2005						1.7	15	11.0	150	2400	0.05	0.210	0.090	22.0	20.0			290	9.8	2.4
Treatment Pond	6/29/2006						0.1	9	8.0	91	170	0.03	0.290	0.040	22.0	10.0			180	6.1	1.3
Treatment Pond	8/2/2006						0.1	13	9.0	130	>16000	<0.03	0.580	0.040	18.0	13.0			230	< 0.03	4.6
Treatment Pond	10/11/2006						1.1	19	16.0	150	16000	0.09	0.620	0.030	30.0	17.0			340	10.0	2.2
Treatment Pond	7/12/2007						0.2	18	11.6	240	16000	0.042	0.550	0.070	25.0	16.0			270	9.7	1.9
Treatment Pond	7/8/2008			7.8	281	26.2	0.4	14	<1	180	5000	0.06	0.470	0.040	25.0	16.0	102	3.0	300	9.0	2.0
Treatment Pond	9/18/2008			7.3	401	16.0	0.7	22	16.0	240	16000	0.08	0.520	0.060	35.0	20.0	213	7.8	420	11.0	2.0
Treatment Pond	10/16/2008						1.4	23	<1	200	9000	0.08	0.340	0.020	36.0	21.0			400	12.0	2.3
Treatment Pond	7/7/2009						1	12	<1	200	9000	0.04	0.310	0.050	20.0	14.0			250	9.9	1.8
Bloods Creek Upstream	8/11/2005						<0.1	2	<1	86	170	<0.03	0.360	0.020	5.0	2.0			67	6.5	1.6
Bloods Creek Upstream	6/20/2006						<0.1	<1	<1	46	<2	< 0.03	< 0.02	<0.01	1.0	1.2			34	3.1	0.7
Bloods Creek Upstream	7/12/2007						<0.1	<1	<1	69	14	< 0.03	0.210	0.060	5.0	1.1			57	6.5	1.3
Bloods Creek Upstream	7/8/2008			7.2	66	24.6	<0.1	<1	<1	64	130	< 0.03	0.170	0.020	5.0	1.8	204	5.8	51	5.0	1.0
Bloods Creek Upstream	7/7/2009						<0.1	<1	<1	100	500	<0.03	0.280	0.040	4.0	2.2			56	5.9	1.3
Bloods Creek Downstream	8/11/2005						<0.1	2	<1	100	>16000	0.05	0.160	0.020	20.0	3.2			76	7.3	1.7
Bloods Creek Downstream	6/20/2006						<0.1	<1	<1	84	17	< 0.03	0.050	<0.01	1.0	1.4			40	3.7	0.9
Bloods Creek Downstream	7/12/2007						<0.1	<1	<1	110	>16000	< 0.03	0.340	0.020	5.0	2.6			71	7.7	2.1
Bloods Creek Downstream	7/8/2008			7.3	61	25.0	<0.1	<1	<1	98	500	< 0.03	0.220	< 0.01	3.0	2.8	178	6.7	65	6.0	2.0
Bloods Creek Downstream	7/7/2009						<0.1	<1	<1	110	170	<0.03	0.290	<0.01	4.0	2.9			64	6.8	1.6

							Total Alkalinit			Hardness				Ammo
		K	HCO3 as CaCO3	HCO3 as	CO3 as	OH as CaCO3	y as CaCO3	Sulfate	Fecal Coliform	as CaCO3	NO2-N	***Total Nitrogen	Lab pH (std	nia as NH3
Well	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(MPN/100ml)	(mg/l)	(mg/L)	(mg/L)	units)	(mg/L)
MW-1	9/1/2004	\ J /	· • ·	\ J /	\ J /	\ J /	\ J /	\ J /	2	· · · · ·	NR ²	NR ²	6.9	<0.50
MW-1	10/13/2004								<2		NR ²	1.0	7.3	10.00
MW-1	8/11/2005	2.0	71	87	<1	<1	71	3.7	<2		<0.1	2.0	7.2	
MW-1	9/15/2005	4.0	76	93	<1	<1	76	3.9	<2		<0.1	<1	6.7	
MW-1	10/13/2005	3.0	61	74	<1	<1	61	3.0	<2		<0.1	<1	6.8	
MW-1	6/29/2006	<1	55	67	<1	<1	55	0.6	<2		<0.1	<1	5.9	
MW-1	8/2/2006	4.0	75	91	<1	<1	75	3.7	8		<0.1	<1	6.8	
MW-1	10/10/2006	2.0	70	85	<1	<1	70	3.6	<2		<0.1	<1	6.6	
MW-1	7/12/2007	5.0	87.8	107	<1	<1	88	3.7	<2		<0.1	<1	7.2	
MW-1	8/29/2007	4.4	96	117	<1	<1	96	4.5	2		<0.1	<1	7.4	
MW-1	9/26/2007	4.0	100	122	<1	<1	100	4.3	<2		<0.1	<1	7.3	
MW-1	7/8/2008	4.0	65	79	<1	<1	65	4.0	<2		<0.1	<1	7.0	
MW-1	9/18/2008	4.0	95	116	<1	<1	95	4.3	30		<0.1	<1	7.3	
MW-1	1/16/2008	4.0	90	109	<1	<1	90	4.5	4		<0.1	<1	7.2	
MW-1	7/7/2009	4.0	75	91	<1	<1	75	5.6	<2		<0.1	<1	7.3	
MW-1	9/30/2009	5.0	110	134	<1	<1	110	4.5	4		<0.2	<1	7.0	
MW-1	10/26/2009	4.0	100	122	<1	<1	100	5.1	11		<0.1	1.3	7.5	
MW-1	7/13/2010	3.0	65	79	<1	<1	65	4.4	<2		<0.1	<1.5	6.4	
MW-1	8/24/2010	3.0	78	95	<1	<1	78	4.7	<2		<0.1	<1	7.0	
MW-1	11/4/2010	3.0	76 76	93	<1	<1	76 76	3.3	2		<0.1	6.0	5.9	
MW-1	7/21/2011	2.9	76 76	93	<1	<1	76 76	3.6	<2		<0.1	<1	5.6	
MW-1	9/8/2011	3.1	76 76	93	<1	<1	76 76	4.7	<2		<0.1	2.0	7.0	
MW-1	10/20/2011	3.3	87	106	<1	<1	87	4.6	<2		<0.1	2.0	6.6	
MW-1	6/26/2012	2.5	54	66	<1	<1	54	3.1	<1.8	56.4	<0.1	0.2	6.7	
MW-1	7/31/2012	3.6	99	121	<1	<1	99	3.9	<1.8	30.4	<0.1	1.0	7.0	
MW-1	10/9/2012	3.5	85	104	<1	<1	85	4.4	<1.8		<0.1	2.0	6.5	
MW-1	5/30/2013	3.1	80	98	<1	<1	80	4.3	<1.8	60.2	<0.2	<1	6.4	
MW-1	8/21/2013	3.3	85	104	<1	<1	85	4.4	<1.8	65.4	<0.2	<1	6.6	
MW-1	10/15/2013	4.7	100	122	<1	<1	100	4.3	<1.8	88.6	<0.2	<1	6.4	
MW-1	6/12/2014	2.5	58	71	<1	<1	58	4.6	<1.8	52.7	~ 0.∠	\ 1	6.2	
MW-1	8/12/2014	3.6	86	105	<1	<1	86	4.4	<1.8	66.0			7.4	
MW-1	10/14/2014	3.7	86	105	<1	<1	86	4.0	<1.8	77.6			7.4	
MW-1	6/17/2015	2.0	42	51	<1	<1	42	3.6	<1.8	77.0			1.2	
MW-1	9/9/2015	3.7	80	98	<1	<1	80	4.2	<1.8	69.2			6.6	
MW-1	11/12/2015	3.0	68	83	<1	<1	68	4.2	<1.8	62.0			6.5	
MW-1	7/7/2016	2.9	86	105	<1	<1	86	3.6	<1.8	63.4			0.5	
MW-1	9/8/2016	3.2	80	98	<10	<10	80	3.5	<1.8					
MW-1	10/20/2016	3.2 3.6	81	99	<10	<10	81	3.5 3.1	6.8					
MW-1		1.3	37		<1	<1		2.3						
MW-1	7/13/2017 8/24/2017		62	41 76	<1 <1	<1	34 62	2.3 4.5	<1.8 <1.8					
MW-1	8/24/2017 9/28/2017	3.0 2.8	62 60	76 73	<1 <1	<1	62 60	4.5 4.5	<1.8	 50 0				
MW-1	6/29/2018	2.0	υυ	13	~ 1	\ 1	υυ	4.5	\1.0	58.8				
MW-1	8/23/2018													
MW-1	10/10/2018													
MW-1	7/18/2019													
MW-1	8/29/2019													
MW-1	10/3/2019													

							Total							
			HCO3 as	HCO3 as	CO3 as	OH as	Alkalinit y as		Fecal	Hardness as		***Total	Lab pH	Ammo nia as
		K	CaCO3	HCO3	CaCO3	CaCO3	CaCO3	Sulfate	Coliform	CaCO3	NO2-N	Nitrogen	(std	NH3
Well	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(MPN/100ml)	(mg/l)	(mg/L)	(mg/L)	units)	(mg/L)
MW-2	10/30/2002								NR ²		<0.020	NR ²		<0.50
MW-2	7/29/2003								4		NR^2	NR^2	6.7	<0.2
MW-2	11/13/2003								NR^2		<0.050*	NR^2	6.7	<0.50
MW-2	6/22/2004								<2		NR^2	NR^2	6.5	<0.50
MW-2	9/1/2004								<2		NR^2	NR^2	6.5	<0.50
MW-2	10/13/2004								<2		NR^2	10.0	7.1	
MW-2	8/11/2005	1.0	25	30	<1	<1	25	<0.5	<2		<0.1	2.0	6.9	
MW-2	9/15/2005	2.0	30	37	<1	<1	30	0.6	<2		<0.1	2.1	6.5	
MW-2	10/13/2005	2.0	25	30	<1	<1	25	<0.5	<2		<0.1	<1	6.5	
MW-2	6/29/2006	<1	20	24	<1	<1	20	<0.5	<2		<0.1	<1	5.6	
MW-2	8/2/2006	2.0	20	24	<1	<1	20	<0.5	<2		<0.1	<1	6.1	
MW-2	10/10/2006	<1	25	30	<1	<1	25	<0.5	<2		<0.1	<1	6.0	
MW-2	7/12/2007	2.0	25	30	<1	<1	25	<0.5	2		<0.1	0.7	6.8	
MW-2	8/29/2007	2.2	35	43	<1	<1	35	1.6	<2		<0.1	<1	7.0	
MW-2	9/26/2007	2.0	30	37	<1	<1	30	1.4	<2		<0.1	<1	6.7	
MW-2	7/8/2008	1.0	25	30	<1	<1	25	<0.5	<2		<0.1	<1	6.5	
MW-2	9/18/2008	2.0	25	30	<1	<1	25	0.6	<2		<0.1	3.2	6.9	
MW-2	10/16/2008	1.0	25	30	<1	<1	25	0.6	<2		<0.1	<1	7.0	
MW-2	7/7/2009	1.0	25	30	<1	<1	25	0.5	<2		<0.2	<1	7.0	
MW-2	9/30/2009	2.0	30	37	<1	<1	30	<0.5	<2		<0.1	<1	6.8	
MW-2	10/26/2009	2.0	25	30	<1	<1	25	<0.5	800		<0.1	0.5	6.7	
MW-2	7/13/2010	<1	20	24	<1	<1	20	<0.5	<2		<0.1	<1	6.1	
MW-2	8/24/2010	<1	22	27	<1	<1	22	<0.5	<2		<0.1	<1	6.3	
MW-2	11/4/2010	<1	25	30	<1	<1	25	<0.5	4		<0.1	3.0	5.8	
MW-2	7/21/2011	8.0	22	27	<1	<1	22	<0.5	<2		<0.1	<1	6.2	
MW-2	9/8/2011	1.0	27	33	<1	<1	27	<0.5	<2		<0.1	2.0	6.4	
MW-2	10/20/2011	1.0	33	40	<1	<1	33	<0.5	<2		<0.1	1.0	6.1	
MW-2	6/26/2012	0.9	30	37	<1	<1	30	<0.5	<1.8	22.7	<0.1	2.0	6.2	
MW-2	7/31/2012	1.0	35	43	<1	<1	35	<0.5	11		<0.2	<1	6.3	
MW-2	10/9/2012	1.4	30	37	<1	<1	30	0.8	<1.8		<0.2	<1	5.9	
MW-2	5/30/2013	0.8	18	22	<1	<1	18	0.5	<1.8	16.5	<0.2	<1	6.1	
MW-2	8/21/2013	1.4	28	34	<1	<1	28	0.6	<1.8	21.8	<0.2	<1	5.2	
MW-2	10/15/2013	1.4	22	27	<1	<1	22	0.6	<1.8	17.8	<0.2	<1	5.6	
MW-2	6/12/2014	0.9	18	22	- <1	- <1	18	0.5	<1.8	16.3	2. —	•	5.9	
MW-2	8/12/2014	5.8	28	34	<1	<1	28	0.6	<1.8	20.9			6.7	
MW-2	10/14/2014	1.1	24	29	<1	<1	24	0.6	<1.8	26.5			5.9	
MW-2	6/17/2015	1.0	30	36	<1	<1	30	<0.5	<1.8	20.0			0.0	
MW-2	9/9/2015	1.6	40	49	<1	<1	40	0.8	<1.8	19.5			6.9	
MW-2	11/13/2015	1.0	26	32	<1	<1	26	<0.5	2	22.5			6.1	
1V1 V V -Z	11/10/2010	1.0	20	02	7.1	*1	20	٠٥.٥	2	22.0			J. 1	

Well	Date	K (mg/L)	HCO3 as CaCO3 (mg/L)	HCO3 as HCO3 (mg/L)	CO3 as CaCO3 (mg/L)	OH as CaCO3 (mg/L)	Total Alkalinit y as CaCO3 (mg/L)	Sulfate (mg/L)	Fecal Coliform (MPN/100ml)	Hardness as CaCO3 (mg/l)	NO2-N (mg/L)	***Total Nitrogen (mg/L)	Lab pH (std units)	Ammo nia as NH3 (mg/L)
MW-2	7/7/2016	0.9	30	37	<1	<1	30	<0.5	<1.8	19.2				
MW-2	9/8/2016	1.1	34	41	<10	<10	34	<0.5	<1.8					
MW-2	10/20/2016	1.1	28	34	<10	<10	28	<0.5	170					
MW-2	7/13/2017	1.0	16	19	<1	<1	16	<0.5	<1.8					
MW-2	8/24/2017	1.0	22	27	<1	<1	22	<0.5	<1.8					
MW-2	9/28/2017	1.1	28	34	<1	<1	28	<0.5	<1.8	22.5				
MW-2	6/28/2018													
MW-2	8/22/2018													
MW-2	10/10/2018													
MW-2	7/17/2019													
MW-2	8/28/2019													
MW-2	10/2/2019													
MW-3	10/30/2002								NR ²		<0.020	NR ²		<0.50
MW-3	7/29/2003								80		NR^2	NR^2	6.6	<0.2
MW-3	11/13/2003								NR^2		0.06*	NR^2	6.0	**
MW-3	6/22/2004								<2		NR^2	NR^2	6.0	<0.50
MW-3	9/1/2004								<2		NR^2	NR^2	6.2	<0.50
MW-3	10/13/2004								<2		NR^2	0.3	6.7	
MW-3	8/11/2005	<1	20	24	<1	<1	20	1.9	<2		<0.1	<1	6.2	
MW-3	9/15/2005	2.0	25	30	<1	<1	25	1.4	8		<0.1	<1	5.9	
MW-3	10/13/2005	2.0	20	24	<1	<1	20	1.8	<2		<0.1	2.4	6.1	
MW-3	6/29/2006	<1	20	24	<1	<1	20	1.3	<2		<0.1	<1	5.5	
MW-3	8/2/2006	2.0	20	24	<1	<1	20	1.3	<2		<0.1	0.2	5.7	
MW-3	10/10/2006	<1	20	24	<1	<1	20	1.5	<2		<0.1	2.0	5.4	
MW-3	7/12/2007	2.0	28	34	<1	<1	28	1.1	<2		<0.1	0.2	6.5	
MW-3	8/29/2007	1.7	25	30	<1	<1	25	1.6	4		<0.1	<1	6.3	
MW-3	9/26/2007	2.0	30	37	<1	<1	30	0.5	2		<0.1	<1	6.3	
MW-3	7/8/2008	1.0	35	43	<1	<1	35	1.2	<2		<0.1	<1	6.3	
MW-3	9/18/2008	2.0	20	24 37	<1 <1	<1 -1	20 30	2.0	<2		<0.1	<1 0.15	6.2 6.2	
MW-3 MW-3	10/16/2008 7/7/2009	2.0 1.0	30 20	37 24	<1	<1 <1	20	2.1 3.5	<2 <2		<0.1 <0.2	0.15 <1	6.2 6.5	
MW-3	9/30/2009	3.0	40	49	<1	<1	40	3.2	<2		<0.2 <0.1	<1	6.0	
MW-3	10/26/2009	2.0	15	18	<1	<1	15	3.3	4		<0.1	0.90	6.4	
MW-3	7/13/2010	<1	20	24	<1	<1	20	<0.5	<2		<0.1	<1	6.1	
MW-3	8/24/2010	<1	27	33	<1	<1	27	<0.5	<2		<0.1	<1	5.8	
MW-3	11/4/2010	<1	25	30	<1	<1	25	<0.5	26		<0.1	3.00	5.6	
MW-3	7/21/2011	0.9	16	20	<1	<1	16	<0.5	<2		<0.1	<1	6.2	
MW-3	9/8/2011	1.1	22	27	<1	<1	22	< 0.5	<2		<0.1	2.00	6.1	
MW-3	10/20/2011	1.2	27	33	<1	<1	27	< 0.5	11		<0.1	1.00	6.1	
MW-3	6/26/2012	1.3	30	37	<1	<1	30	1.3	<1.8	22.1	<0.1	<1	6.0	
MW-3	7/31/2012	1.4	35	43	<1	<1	35	1.2	<1.8		<0.2	<1	6.0	
MW-3	10/9/2012	1.3	35	43	<1	<1	35	1.5	<1.8		<0.2	<1	5.7	
MW-3	5/30/2013	0.9	20	24	<1	<1	20	2.3	<1.8	15.7	<0.2	<1	5.9	

Wall	Data	K (mg/L)	CaCO3	HCO3 as	CO3 as CaCO3	OH as CaCO3	Total Alkalinit y as CaCO3	Sulfate	Fecal Coliform	Hardness as CaCO3	NO2-N	***Total Nitrogen	(std	NH3
Well MW-3	Date 9/21/2012	(mg/L) 1.1	(mg/L) 18	(mg/L) 22	(mg/L) <1	(mg/L) <1	(mg/L) 18	(mg/L) 1.3	(MPN/100ml)	(mg/l)	(mg/L) <0.2	(mg/L) <1	units) 4.2	(mg/L)
MW-3	8/21/2013			22 39	<1		32	1.3 1.4	<1.8 <1.8	18.7	<0.2 <0.2		4.2 5.4	
MW-3	10/15/2013	1.5 1.1	32	39 24	<1	<1 <1	32 20			21.8	<0.2	<1	5.4 5.7	
MW-3	6/12/2014 8/12/2014	4.6	20 20	24 24	<1	<1	20	1.3 1.2	<1.8 <1.8	15.3 19.4			5.7 5.6	
MW-3	10/14/2014	1.2	20 22	24 27	<1	<1	22	1.2	<1.8	20.5			5.6 5.5	
MW-3	6/17/2015	1.2	22 28	34	<1	<1	22 28	1.3	<1.8	20.5			5.5	
MW-3	9/9/2015	1.6	42	54 51	<1	<1	42	1.3	7.8	18.7			7.4	
MW-3	11/13/2015	1.1	24	29	<1	<1	24	1.4	<1.8	19.1			7.4	
MW-3	7/7/2016	1.1	30	37	<1	<1	30	1.3	<1.8	21.7				
MW-3	9/8/2016	1.4	26	32	<10	<10	26	1.1	49	Z 1.7 				
MW-3	10/20/2016	1.5	27	33	<10	<10	27	1.0	<1.8					
MW-3	7/13/2017	1.1	50	61	<1	<1	50	1.0	<1.8					
MW-3	8/24/2017	1.6	38	46	<1	<1	38	1.0	<1.8					
MW-3	9/28/2017	1.5	40	49	<1	<1	40	1.0	<1.8	24.2				
MW-3	6/28/2018	1.5	40	73	~1	` ' '	40	1.1	\1.0	24.2				
MW-3	8/22/2018													
MW-3	10/10/2018													
MW-3	7/17/2019													
MW-3	8/28/2019													
MW-3	10/2/2019													
10100-0	10/2/2013													
MW-4	10/30/2002								NR ²		<0.020	NR ²		<0.50
MW-4	7/29/2003								<2		NR^2	NR^2	6.5	< 0.2
MW-4	11/13/2003								NR^2		0.05*	NR^2	6.9	**
MW-4	6/22/2004								<2		NR^2	NR^2	6.8	< 0.50
MW-4	9/1/2004								<2		NR^2	NR^2	6.9	<0.50
MW-4	10/13/2004								<2		NR ²	<1.1	7.1	٠٥.٥٥
MW-4	8/11/2005	3.0	96	117	<1	<1	96	5.7	<2		<0.1	<1	6.9	
MW-4	9/15/2005	5.0	100	122	<1	<1	100	5.8	<2		<0.1	0.1	6.6	
MW-4	10/13/2005	4.0	110	134	<1	<1	110	5.0 5.1	<2		<0.1	1.2	6.8	
MW-4	6/29/2006	2.0	90	110	<1	<1	90	4.1	<2		<0.1	0.1	6.2	
MW-4	8/2/2006	5.0	85	102	<1	<1	85	6.2	<2		<0.1	<1	6.7	
MW-4	10/10/2006	<1	85	104	<1	<1	85	6.0	<2		<0.1	1.0	6.8	
MW-4	7/12/2007	4.0	87	106	<1	<1	87	6.7	<2		<0.1	0.1	6.8	
MW-4	8/29/2007	4.1	91	111	<1	<1	91	6.9	<2		<0.1	<1	7.2	
MW-4	9/26/2007	4.0	86	105	- <1	<1	86	10.0	<2		<0.1	<1	7.0	
MW-4	7/8/2008	4.0	86	105	<1	<1	86	5.8	<2		<0.1	<1	7.0	
MW-4	9/18/2008	4.0	85	104	<1	<1	85	6.2	<2		<0.1	<1	6.9	
MW-4	10/16/2008	4.0	90	109	<1	<1	90	5.9	<2		<0.1	<0.1	6.9	
MW-4	7/7/2009	4.0	95	116	<1	<1	95	7.0	<2		<0.2	2.4	7.1	
MW-4	9/30/2009	4.0	80	98	- <1	<	80	6.3	<u>-</u> <2		<0.1	<1	6.8	
MW-4	10/26/2009	3.0	90	110	<1	<1	90	5.4	13		<0.1	0.3	7.1	
MW-4	7/13/2010	4.0	100	122	<1	<1	100	5.2	<2		<0.1	<1	6.6	
MW-4	8/24/2010	3.0	82	100	<1	<1	82	5.6	<2		<0.1	<1	6.4	
	11/4/2010	3.0	75	91	<1	<1	75	6.8	13		<0.1	<1	6.5	
MW-4	11/7/2010				٠,	` I	10	0.0	10		١.٠٠	` I	0.5	

		Total												_
						Alkalinit	_	Hardness	aladada - A		Ammo			
		16		HCO3 as		OH as	y as	0.46-4-	Fecal	as	NOON	***Total	Lab pH	
Woll	Doto	K (ma/L)	CaCO3	HCO3	CaCO3	CaCO3	CaCO3	Sulfate	Coliform	CaCO3	NO2-N	Nitrogen	(std	NH3
Well MW-4	Date 9/8/2011	(mg/L) 3.1	(mg/L) 87	(mg/L) 106	(mg/L) <1	(mg/L) <1	(mg/L) 87	(mg/L) 5.0	(MPN/100ml) <2	(mg/l)	(mg/L) <0.1	(mg/L) 1.0	units) 6.9	(mg/L)
MW-4	10/20/2011	3.1	70	85	<1	<1	70	7.3	<2		<0.1 <0.1	<1.0 <1	7.0	
MW-4	6/26/2012	3.2 3.4	70 89	108	<1	<1	70 89	7.3 7.0	<1.8	86.4	<0.1 <0.1	<1	7.0 8.0	
MW-4	7/31/2012	3.4 3.4	84	108	<1	<1	84	6.6	<1.8	00.4	<0.1	2.0	6.6	
MW-4	10/9/2012	3.4	75	91	<1	<1	75	6.8	<1.8		<0.2 <0.2	2.0 <1		
MW-4	5/30/2013	3.2 3.5	75 86	105	<1	<1	75 86	6.1	<1.8	81.7	<0.2 <0.2	<1	5.8 6.4	
MW-4	8/21/2013	3.4	89	103	<1	<1	89	6.7	<1.8	72.9	<0.2 <0.2	<1	6.5	
MW-4	10/15/2013	4.0	91	111	<1	<1	91	6.7	<1.8	81.2	<0.2 <0.2	<1	6.6	
MW-4	6/12/2014	4.0 4.1	89	109	<1	<1	89	5.7 5.9	<1.8	91.2	\0. Z	~1	5.6	
MW-4	8/12/2014	4.1	92	112	<1	<1	92	6.0	<1.8	82.8			6.9	
MW-4	10/14/2014	3.2	92 78	95	<1	<1	92 78	6.5	<1.8				6.7	
MW-4		3.2 3.4	76 86	95 105	<1	<1	76 86		<1.8	75.2			0.7	
	6/17/2015				<1	<1		6.0		77 /			6.7	
MW-4	9/9/2015	3.9	110	134			110	6.3	<1.8	77.4			6.7	
MW-4	11/13/2015	11.4	78 22	95	<1	<1	78 22	5.3	<1.8	69.5			6.8	
MW-4	7/7/2016	3.6	22	27	<1	<1	22	4.8	<1.8	85.9				
MW-4	9/8/2016	3.4	92	112	<10	<10	92	5.4	<1.8					
MW-4	10/20/2016	3.4	75 22	91	<10	<10	75	4.8	7.8					
MW-4	7/13/2017	3.3	86	104	<1	<1	86	4.2	<1.8					
MW-4	8/24/2017	3.7	240	292	<1	<1	240	5.8	130					
MW-4	9/28/2017	3.3	90	110	<1	<1	90	5.4	13	77.4				
MW-4	6/28/2018													
MW-4	8/22/2018													
MW-4	10/10/2018													
MW-4	7/17/2019													
MW-4	8/28/2019													
MW-4	10/2/2019													
MW-5	9/1/2004								17		NR ²	NR ²	6.6	<0.50
MW-5	10/13/2004										NR ²		6.8	٠٥.٥٥
MW-5	8/11/2005	1.0	45	EE	-1	-1	15	1.0	2			2.0	6.2	
		1.0	45 51	55 62	<1 <1	<1 <1	45 51	1.8	<2 <2		<0.1	2.0		
MW-5	9/15/2005	3.0	51 25		•	•	51 25	2.0	_		<0.1	0.1	7.6	
MW-5	10/13/2005	3.0	35 25	43	<1	<1	35	1.3	<2		<0.1	0.2	6.1	
MW-5	6/29/2006	2.0	25	30	<1	<1	25	0.7	<2		<0.1	<1	5.4	
MW-5	8/2/2006	3.0	35	42 55	<1	<1	35	1.0	<2		<0.1	<1	6.1	
MW-5	10/11/2006	<1	45	55	<1	<1	45	1.7	<2		<0.1	1.0	6.0	
MW-5	7/12/2007												Well pur	ipea ary
MW-5	8/29/2007												14/ = II	
MW-5	9/26/2007												Well pur	
MW-5	7/8/2008												Well pur	iped dry
MW-5	9/18/2008													
MW-5	10/16/2008	0.0	4-		<u>د</u>	ž.	. –	0 -	.5		.0.0	,	o =	
MW-5	7/7/2009	2.0	45	55	<1	<1	45	2.7	<2		<0.2	<1	6.5	
MW-5	9/30/2009	2.0	NS	NS	NS	NS	NS	2.5	NS		0.2	NS	7.5	well pun
MW-5	10/26/2009				_	_			_					
MW-5	7/13/2010	3.0	35	43	<1	<1	35	<0.5	<2		<0.1	<1	6.0	
MW-5	8/24/2010	1.0	37	45	<1	<1	37	<0.5	<2		<0.1	<1	6.7	
MW-5	11/4/2010	2.0	41	50	<1	<1	41	<0.5	<2		<0.1	<1	6.1	

	Total Alkalinit Hardness													
		Alkalinit Hardness HCO3 as HCO3 as CO3 as OH as y as Fecal as *												Ammo
		1/				OH as	y as	016-4-	Fecal	as	NOO N	***Total	-	nia as
Well	Date	(mg/L)	CaCO3	HCO3	CaCO3	CaCO3	CaCO3	Sulfate	Coliform (MPN/100ml)	CaCO3	NO2-N	Nitrogen	(std units)	NH3
MW-5	7/21/2011	(mg/L) 1.9	(mg/L) 27	(mg/L) 33	(mg/L) <1	(mg/L) <1	(mg/L) 27	(mg/L) <0.5	(WFW/1001111) <2	(mg/l)	(mg/L) <0.1	(mg/L) <1	4.9	(mg/L)
MW-5	9/8/2011	2.2	43	52	<1	<1	43	<0.5	<2		<0.1	1.0	6.5	
MW-5	10/20/2011	2.2	38	46	<1	<1	38	1.7	<2		<0.1	<1	6.0	
MW-5	6/26/2012	4.6	39	48	<1	<1	39	1.0	IVS	39.8	<0.1	0.1	6.9	
MW-5	7/31/2012	2.4	39	48	<1	<1	39	2.1	<1.8	33.0	<0.1	<1	6.3	
MW-5	10/9/2012	۷.٦	00	40	11	71	00	۷. ۱	٧١.٥		٧٠.٧	- 1	0.0	
MW-5	5/30/2013	1.5	38	46	<1	<1	38	0.9	IVS	27.6	<0.2	<1	6.0	well pun
MW-5	8/21/2013	1.7	26	32	<1	<1	26	0.8	<1.8	25.2	<0.2	<1	6.0	well pull
MW-5	10/15/2013	2.4	33	40	<1	<1	33	2.7	<1.8	27.3	<0.2	<1	8.1	
MW-5	6/12/2014	2.4	36	44	<1	<1	36	1.0	<1.8	29.8		.,	5.8	
MW-5	8/12/2014	3.2	46	56	<1	<1	46	1.2	<1.8	41.1			5.6	
MW-5	10/14/2014	0.2	.0	00	•	•	.0		1.0				0.0	
MW-5	6/17/2015	2.6	42	51	<1	<1	42	1.1	<1.8					
MW-5	9/9/2015	3.3	46	56	<1	<1	46	1.2	IVS	39.9			7.0	
MW-5	11/12/2015	1.4	42	51	<1	<1	42	1.0	IVS	39.1				
MW-5	7/7/2016	3.2	46	56	<1	<1	46	1.0	<1.8	59.5				
MW-5	9/8/2016													
MW-5	10/20/2016													
MW-5	7/13/2017													
MW-5	8/24/2017	3.2	58	71	<1	<1	58	1.0	<1.8					
MW-5	9/28/2017	2.9	34	41	<1	<1	34	1.0	<1.8	34.8				
MW-5	6/29/2018													
MW-5	8/23/2018													
MW-5	10/10/2018													
MW-5	7/18/2019													
MW-5	8/29/2019													
MW-5	10/3/2019													
MW-6	10/30/2002								NR^2		<0.020	NR^2		<0.50
MW-6	7/29/2003								<2		NR^2	NR^2	6.5	< 0.2
MW-6	11/13/2003								NR^2		<0.050*	NR^2	6.7	**
MW-6	6/22/2004								<2		NR ²	NR^2	7.0	<0.50
MW-6	9/1/2004								<2		NR ²	NR ²	7.0	<0.50
MW-6	10/13/2004										NR ²	<1.1		~ 0.30
MW-6	8/11/2005	5.0	250	305	<1	<1	250	1.8	<2 <2		<0.1	<1.1 <1	7.6 7.3	
MW-6	9/15/2005	4.0	240	293	<1	<1	240	1.8	<2 <2		<0.1 <0.1	1.2	7.3 7.0	
MW-6	10/13/2005	4.0		293 292	<1	<1	240		<2 <2		<0.1 <0.1	0.2	7.0	
MW-6	6/29/2006	4.0 <1	240 230	292 280	<1	<1	230	1.8 1.8	<2 <2		<0.1 <0.1	0.2 <1	7.3 6.8	
MW-6	8/2/2006	3.0	230	280 280	<1	<1	230	1.6	<2		<0.1 <0.1	<1	6.8	<1
MW-6	10/10/2006	3.0 <1	250 250	304	<1	<1	250 250	1.0	<2 <2		<0.1 <0.1	<1	7.0	`1
MW-6	7/12/2007	6.0	233	284	<1	<1	233	1.9	<2		<0.1 <0.1	<1	7.0 7.1	
MW-6	8/29/2007	4.3	260	317	<1	<1	260	2.1	7		<0.1 <0.1	<1	7.1	
MW-6	9/26/2007	5.0	260	317	<1	<1	260	1.7	<2		<0.1	<1	7.3	
MW-6	7/8/2008	4.0	236	288	<1	<1	236	1.7	<2		<0.1	<1	7.3 7.2	
MW-6	9/18/2008	4.0	270	329	<1	<1	270	2.1	<2		<0.1	<1	7.2	
MW-6	10/16/2008	4.0	270	329	<1	<1	270	1.9	<2		<0.1	<0.1	7.7	
	10, 10,2000	1.0	210	020	` 1	71	210	1.0	٠ <u>٠</u>		-0.1	· U . 1		

Mall	Det	K	CaCO3	HCO3	CO3 as CaCO3	OH as CaCO3	Total Alkalinit y as CaCO3	Sulfate	Fecal Coliform	Hardness as CaCO3	NO2-N	***Total Nitrogen	Lab pH (std	Ammo nia as NH3
Well	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(MPN/100ml)	(mg/l)	(mg/L)	(mg/L)	units)	(mg/L)
MW-6	7/7/2009	4.0	260	317	<1	<1	260	3.2	<2		< 0.2	<1	7.2	
MW-6	9/30/2009	5.0	260	317	<1	<1	260	2.6	<2		<0.1	<1	7.0	
MW-6	10/26/2009	4.0	250	305	<1	<1	250	3.2	<2		<0.1	<1	7.6	
MW-6	7/13/2010	4.0	250	305	<1	<1	250	< 0.5	<2		<0.1	<1	6.8	
MW-6	8/24/2010	3.0	230	280	<1	<1	230	<0.5	<2		<0.1	<1	6.7	
MW-6	11/4/2010	2.0	230	281	<1	<1	230	2.9	<2		<0.1	<1	6.5	
MW-6	7/21/2011	4.3	270	329	<1	<1	270	2.3	<2		<0.1	<1	7.0	
MW-6	9/8/2011	3.5	270	329	<1	<1	270	<0.5	<2		<0.1	<1	7.0	
MW-6	10/20/2011	3.7	190	232	<1	<1	190	<0.5	<2		<0.1	<1	6.6	
MW-6	6/26/2012	3.7	230	280	<1	<1	230	1.9	<1.8	236	<0.1	<1	6.8	
MW-6	7/31/2012	3.8	260	317	<1	<1	260	3.0	<1.8		<0.2	<1	6.8	
MW-6	10/9/2012	4.1	290	354	<1	<1	290	2.0	<1.8		<0.2	<1	6.7	
MW-6	5/30/2013	3.3	190	232	<1	<1	190	2.8	<1.8	154	<0.2	<1	6.5	
MW-6	8/21/2013	3.9	250	305	<1	<1	250	2.0	<1.8	191	<0.2	<1	6.5	
MW-6	10/15/2013	4.4	270	329	<1	<1	270	3.1	<1.8	257	<0.2	<1	6.3	
MW-6	6/12/2014	4.6	260	317	<1	<1	260	3.0	<1.8	218			5.9	
MW-6	8/12/2014	4.9	310	378	<1	<1	310	3.1	<1.8	248			5.7	
MW-6	10/14/2014	4.3	280	341	<1	<1	280	2.0	<1.8	241			6.5	
MW-6	6/17/2015	2.4	190	231	<1	<1	190	1.6	<1.8					
MW-6	9/9/2015	3.3	250	305	<1	<1	250	1.8	<1.8	199			6.5	
MW-6	11/12/2015	1.4	90	110	<1	<1	90	8.0	<1.8	84			6.2	
MW-6	7/7/2016	2.6	170	207	<1	<1	170	1.2	<1.8	140				
MW-6	9/8/2016	3.3	226	276	<10	<10	226	1.7	<1.8					
MW-6	10/20/2016	2.9	183	223	<10	<10	183	1.8	<1.8					
MW-6	7/13/2017	3.0	190	231	<1	<1	190	1.4	<1.8					
MW-6	8/24/2017	1.9	120	146	<1	<1	120	0.9	<1.8					
MW-6	9/28/2017	1.3	80	98	<1	<1	80	0.7	<1.8	64.4				
MW-6	6/29/2018													
MW-6	8/23/2018													
MW-6	10/10/2018													
MW-6	7/18/2019													
MW-6	8/29/2019													
MW-6	10/3/2019													
Discharge Pump	8/11/2005	3.0	40	49	<1	<1	40	3.6	<2		<0.1	12.0	6.7	
Discharge Pump	9/15/2005	5.0	61	74	<1	<1	61	6.1	1700		0.8	9.9	6.9	
Discharge Pump	10/13/2005	6.0	76	93	<1	<1	76	7.2	22		0.3	15.0	7.2	
Discharge Pump	6/29/2006	7.0	55	67	<1	<1	55	3.4	<2		<0.1	8.0	6.4	
Discharge Pump	8/2/2006	6.0	70	85	<1	<1	70	4.2	<2		<0.1	12.1	6.9	
Discharge Pump	10/11/2006	<1	70 70	85	<1	<1	70 70	5.6	4		0.1	12.1	7.1	
Discharge Pump	7/12/2007	6.0	52.8	64	<1	<1	52.8	3.6	2		<0.1	6.5	7.1	
Discharge Pump	7/8/2007	6.0	75	91	<1	<1	52.6 75	3.0 4.9	6		<0.1	0.5 <1	7.2 7.3	
Discharge Pump	9/18/2008	5.0	75 28	34	<1	<1	75 28	4.9 6.7	30		<0.1 <0.1	<1	7.3 8.9	
				34 18	<1	<1	∠8 15				<0.1 <0.1	5.5	8.9 7.9	
Discharge Pump	10/16/2008	7.0	15 05			-		85.0	13					
Discharge Pump	7/7/2009	6.0	95	116	<1	<1	95	7.3	11		<0.2	14.0	7.2	
Treatment Pond	8/11/2005	5.0	30	37	<1	<1	30	1.0	1300		<0.1	14.0	8.5	

			Total Alkalinit Hardness											Ammo
			HCO3 as	HCO3 as	CO3 as	OH as	y as		Fecal	as		***Total	Lab pH	nia as
		K	CaCO3	HCO3	CaCO3	CaCO3	CaCO3	Sulfate	Coliform	CaCO3	NO2-N	Nitrogen	(std	NH3
Well	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(MPN/100ml)	(mg/l)	(mg/L)	(mg/L)	units)	(mg/L)
Treatment Pond	9/15/2005	6.0	66	81	<1	<1	66	6.1	>3000		8.0	12.9	7.1	
Treatment Pond	10/13/2005	6.0	76	93	<1	<1	76	7.2	1300		0.3	17.0	7.3	
Treatment Pond	6/29/2006	5.0	55	67	<1	<1	55	3.7	17		<0.1	9.1	6.9	
Treatment Pond	8/2/2006	5.0	75	91	<1	<1	75	4.2	700		0.1	13.2	7.2	
Treatment Pond	10/11/2006	<1	110	134	<1	<1	110	6.7	2800		0.2	20.3	7.3	
Treatment Pond	7/12/2007	8.0	90.8	111	<1	<1	90.8	4.4	1100		0.1	18.4	7.6	
Treatment Pond	7/8/2008	7.0	50	61	<1	<1	50	5.4	30		0.2	14.6	7.8	
Treatment Pond	9/18/2008	10.0	190	231	<1	<1	190	6.8	16000		0.4	23.1	8.0	
Treatment Pond	10/16/2008	10.0	130	159	<1	<1	130	7.7	2400		0.1	24.5	7.6	
Treatment Pond	7/7/2009	6.0	75	91	<1	<1	75	6.8	700		0.7	13.7	7.9	
Bloods Creek Upstream	8/11/2005	<1	30	37	<1	<1	30	0.5	80		<0.1	2.0	7.0	
Bloods Creek Upstream	6/20/2006	<1	10	12	<1	<1	10	<0.5	<2		<0.1	<1	6.3	
Bloods Creek Upstream	7/12/2007	2.0	25.6	31	<1	<1	25.6	0.5	8		<0.1	<1	7.0	
Bloods Creek Upstream	7/8/2008	2.0	24	29	<1	<1	24	<0.5	13		<0.1	<1	7.1	
Bloods Creek Upstream	7/7/2009	1.0	15	18	<1	<1	15	2.1	50		<0.2	<1	6.8	
Bloods Creek Downstream	8/11/2005	6.0	81	99	<1	<1	81	1.0	130		<0.1	2.0	6.8	
Bloods Creek Downstream	6/20/2006	<1	15	18	<1	<1	15	<0.5	2		<0.1	<1	6.3	
Bloods Creek Downstream	7/12/2007	6.0	30	37	<1	<1	30	0.7	50		<0.1	<1	6.9	
Bloods Creek Downstream	7/8/2008	1.0	25	30	<1	<1	25	0.6	130		<0.1	<1	7.1	
Bloods Creek Downstream	7/7/2009	1.0	30	37	<1	<1	30	2.2	13		< 0.2	<1	7.2	