

January 11, 2018

Mr. Jeff Gouveia Bear Valley Water District PO Box 5027 Bear Valley, California 95223

RE: Bear Valley Water District – Third Tri-Annual 2017 Groundwater Monitoring Report, WDRs Order No. 5-01-208 and R5-2005-0139.

Dear Mr. Gouveia:

Please find an electronic copy of the <u>Third Tri-Annual 2017 Groundwater Monitoring Report</u> as required by the revised Monitoring and Reporting Requirements of Order No. 5-01-208. Board staff have requested that all monitoring reports be submitted electronically and have a transmittal letter signed and dated by the discharger. Accordingly, please sign (and date) the attached form and re-attach to this report before emailing to the Regional Board by the **February 1st** deadline. The report should be emailed to centralvalleysacramento@waterboards.ca.gov.

Note that historical and third tri-annual 2017 groundwater monitoring data have been reviewed and analyzed in the preparation of this groundwater monitoring report.

Please contact me at your earliest convenience should you have any questions regarding the content of this report.

Sincerely, STANTEC

Thomas W. Butler PG, CEG, CHG Senior Hydrogeologist/Geochemist

Attachment – Third Tri-Annual 2017 Groundwater Monitoring Report (e-copy)

Monitoring Report Submittal Transmittal Form

Attn: Ms. Mary Boyd

Central Valley Regional Water Quality Control Board

11020 Sun Center Drive #200 Rancho Cordova, CA 95670-6114

Discharger: Bear Valley Water District

Name of Facility: Bear Valley Wastewater Treatment and Disposal Facility

WDRs Order Number: **5-01-208**County: Alpine County

Regulator Program: <u>Waste Discharge to Land (Non15)</u>

Unit: CIWQS Place ID: Compliance 209035

The <u>Bear Valley Water District</u> is hereby submitting to the Regional Water Quality Control Board ("RWQCB") the following information:

Check all that apply:

Annual Monitoring Report for the year <u>2017</u>
1 st /2 nd (circle one) Semi-annual Monitoring Report for the year
1 st /2 nd (circle one) Tri-Annual Monitoring Report for the year of 2017
Monthly Monitoring Report for the month of

During the monitoring period, there were / were not (circle one) violations of the WDR'S

1. The violations were:

See Attached Report

2. The actions to correct the violations were:

See Attached Report

Certification Statement

"I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment."

Signature: Phone: (209) 753-2112

Printed Name: Jeff Gouveia Date: January 11, 2018

BVWD General Manager

Bear Valley Water District – Third Tri-Annual 2017 Groundwater Monitoring Report

Prepared for:
Bear Valley Water District
PO Box 5027
Bear Valley, California 95223

Prepared by: Stantec Consulting Services Inc. 1340 Treat Boulevard, Suite 300 Walnut Creek, California 94597

Table of Contents

1.0	EXECUTI	VE SUMMARY	1.1
2.0	INTRODU	JCTION AND BACKGROUND	2.1
2.1		JCTION	
2.2		ROUND	
2.3		GY	
2.4			
	2.4.1	Ridge Top	
	2.4.2	Ridge Side	
	2.4.3	Valley Floor	
	2.4.4	Field Observations	2.4
3.0		DWATER REGULATORY REQUIREMENTS	
3.1		QUALITY OBJECTIVES AND BASIN PLAN REQUIREMENTS	
3.2		GRADATION POLICY	
3.3	BEAR VA	ALLEY WATER DISTRICT WASTE DISCHARGE REQUIREMENTS	3.2
4.0	GROUNE	DWATER MONITORING RESULTS	4.1
4.1	MONITO	RING SUMMARY	4.1
4.2	GROUNI	DWATER ELEVATIONS, GRADIENTS, AND FLOW DIRECTION	4.2
4.3	GROUNI	DWATER QUALITY	4.4
	4.3.1	Compliance Monitoring Well MW-1	4.6
	4.3.2	Background Monitoring Well MW-2	4.6
	4.3.3	Compliance Monitoring Well MW-3	4.7
	4.3.4	Compliance Monitoring Well MW-4	4.7
	4.3.5	Compliance Monitoring Well MW-5	4.7
	4.3.6	Compliance Monitoring Well MW-6	4.8
5.0	BACKGR	ROUND GROUNDWATER QUALITY SUMMARY	5.1
5.1	STATISTIC	CAL ANALYSIS INTRODUCTION	5.1
5.2	OUTLIER	ANALYSIS	5.1
5.3	NORMA	LITY TEST	5.2
5.4	SITE SPEC	CIFIC GROUNDWATER LIMITATIONS	5.3
5.5	ANTI-DEC	Gradation assessment	5.4
6.0	SUMMAF	RY AND CONCLUSIONS	6.1
7.0	PROFESS	IONAL SEALS AND CERTIFICATIONS	7.1
LIST C	OF TABLES		
Table	e 1 Region	al Board Interim Groundwater Limitations	3.3
		dwater Monitoring Requirements	
		-Annual 2017 Groundwater Quality Summary	
Table	4 Ground	dwater Elevation Summary	4.3

i

Table 5 2017 St	atistical Assessment of Background Groundwater Quality	5.3
Table 6 2017 R	ecommended Site Specific Groundwater Limitations	5.3
	roundwater Monitoring Compliance Summary	
LIST OF FIGURE	S	
Figure 1 Third T	ri-Annual 2017 Groundwater Elevation Contour Map	2.2
	dwater Elevation Time Series Chart	
Figure 3 TDS Tir	ne Series Chart	4.5
Figure 4 Chloric	de Time Series Chart	4.6
LIST OF APPEN	DICES	
APPENDIX A	GROUNDWATER MONITORING PROTOCOL	
APPENDIX B	THIRD TRI-ANNUAL 2017 ANALYTICAL RESULTS AND FIELD LOGS	
APPENDIX C	HISTORICAL GROUNDWATER ELEVATIONS AND QUALITY	

Executive Summary January 11, 2018

1.0 Executive Summary

- Groundwater elevation monitoring during the third tri-annual monitoring event of 2017 indicates flow that was roughly perpendicular to site topography and generally towards the northwest at a horizontal gradient ranging from 0.065 to 0.075;
- Groundwater quality monitoring indicates pH (all wells except MW-5), iron (MW-6), manganese (MW-1, MW-4, MW-5, and MW-6), and total coliform (MW-3 and MW-4) exceeded water quality goals for agricultural and/or potable use during the third triannual monitoring event.
- Revised background statistics were computed and the site-specific groundwater limitations updated as part of the Third Tri-Annual 2017 Groundwater Monitoring Report. Of all the constituents assessed tri-annually in 2017, manganese (MW-4 (one event) and MW-6) and total coliform (MW-1 (one event)) were present at concentrations/densities that may be considered above water quality objectives, at statistically significant levels. Conditions that naturally favor manganese mobilization are present in shallow groundwater in the area, including acidic soils and naturally low pH. Furthermore, coliform is ubiquitous on the surface of the earth and can be present in groundwater where a conduit, such as a fracture connected to the surface, exists. Coliform can also be introduced during sampling from contaminated equipment, introduced water, or windblown sediment/colonies. Thus, these exceedances should not be considered as irrefutable proof that an impact do to wastewater disposal has occurred. The background statistics will again be updated as part of the Third Tri-Annual 2018 Groundwater Monitoring Report.
- Statistical analysis indicates that all of the remaining parameters assessed in 2017, including: nitrate, ammonia, pH, boron, chloride, iron, and sodium, were in compliance with site specific groundwater limitations, indicating further compliance with State's Anti-Degradation Policy;
- Only one background well exists and thus computed 2017 background statistics could
 not reasonably account for natural special variations in water chemistry common in
 shallow groundwater systems. Furthermore, surface water from a nearby stream may
 influence groundwater quality due to its close proximity to the shallow background
 monitoring well; and,

Stantec

Executive Summary January 11, 2018

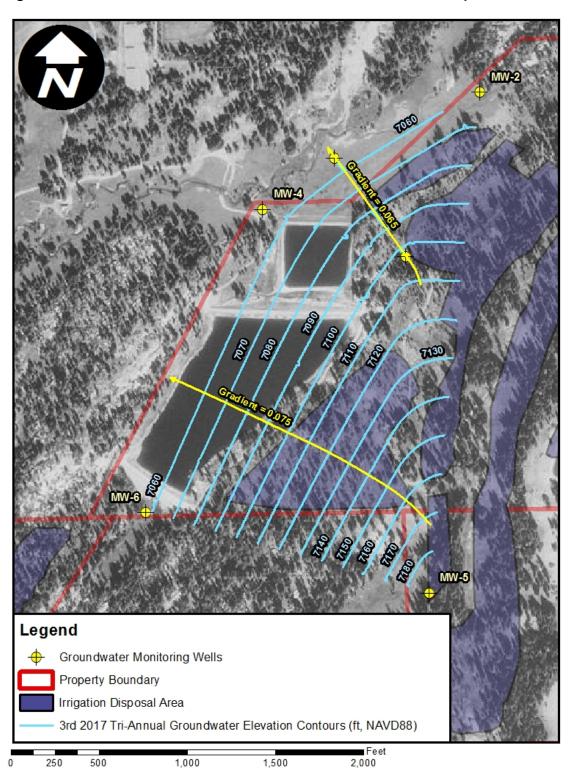
• Lack of a groundwater monitoring network that adequately accounts for spatial variations in background groundwater quality remains the most significant monitoring deficiency at the wastewater treatment and disposal facility.

Introduction and Background January 11, 2018

2.0 Introduction and Background

2.1 INTRODUCTION

The Bear Valley Water District (District) provides sanitary sewer collection, treatment and disposal for approximately 600 residential and commercial connections in the Alpine County community of Bear Valley, including the Lake Alpine basin area and the Mt. Reba Ski Area. The District's service area is primarily north of State Highway 4 serving the developed private lands in the Bear Valley village area and US Forest Service campgrounds and special use permitted areas. The District wastewater treatment and disposal facility (WWTF) is regulated by the Central Valley Regional Water Quality Control Board (Regional Board) and the Regional Board's Waste Discharge Requirements Order No. R5-2005-0139 and Order No. 5-01-208 (WDRs). The WWTF is located south of Highway 4 and is shown in Figure 1.


The District's WDRs contain monitoring and reporting requirements, which include tri-annual monitoring of groundwater. This report presents groundwater monitoring data obtained during the third tri-annual monitoring event, which was conducted on September 28, 2017 and satisfies the Tri-Annual Groundwater Monitoring Report reporting requirements as specified in the District's Revised Monitoring and Reporting Program for WDR Order No. R5-2005-0139 (MRP). The revised MRP states that groundwater monitoring reports shall be submitted "by the 1st day of February, July, and September of each year", corresponding to combined *annual/third tri-annual*, *first tri-annual*, *and second tri-annual reporting* periods, respectively. It should be noted that these reporting periods do not correspond to climate and related environmental conditions that prohibit site access and well sampling during certain times of the year and therefore the actual report submittal may vary from that which is stipulated in the MRP.

Regional Board staff's recognition of these climate controls was memorialized in the *July 31*, *2012* email correspondence. In summary, that correspondence stated that Regional Board staff will not recommend enforcement to the Executive Officer so long as the 1st and 2nd tri-annual monitoring reports are submitted by September 1st and November 1st of each year, respectively, instead of the dates currently required in the MRP. The third tri-annual report will remain due by February 1st. Although Regional Board staff have informally agreed to extend tri-annual monitoring report due dates by not seeking enforcement (provided the 1st and 2nd tri-annual reports are submitted by September 1st and November 1st, respectively), we further recommend that Regional Board staff formally memorialize these changes in the MRP at their earliest convenience, in order to assure further violations and potential related enforcement actions against the District do not occur.

Introduction and Background January 11, 2018

Figure 1 Third Tri-Annual 2017 Groundwater Elevation Contour Map

Introduction and Background January 11, 2018

2.2 BACKGROUND

An average flow of 0.1 million gallons per day (MGD) entered the District WWTF during the 2017 water year, which was then treated in a series of aerated treatment ponds where the biodegradable constituents are consumed and/or sequestered. Effluent from the aerated ponds was then stored in a 106 MG reservoir (effluent storage pond) or applied directly to land (summer months only). During the summer months, the stored effluent may be disposed of through spray irrigation to approximately 120 acres of permitted land, including approximately 80 acres of leased land and approximately 40 acres of land authorized by a Special Use Permit from the US Forest Service. Of the 120 gross acres of land, approximately 80 acres (40 from each disposal area) are currently suitable and/or used for effluent disposal purposes. The leased disposal area and permitted US Forest Service land have been in service before the installation of the groundwater monitoring wells (approximately 25 years for the leased land) at the site.

Effluent disposal via spray irrigation involves the disbursement of the effluent through low impact sprinklers upon soils and vegetation within the disposal area. The water is allowed to percolate into the soil and evapotranspirate into the atmosphere. The WDRs currently limit influent flow to 0.1 MGD (annual average basis) and limit application of wastewater to reasonable rates considering soil, climate and the irrigation management system.

2.3 GEOLOGY

The District's WWTF is located west of the Sierra crest along Bloods Creek, a tributary of the North Fork of the Stanislaus River. The elevations range from 7080 ft (msl) at the treatment pond to 7480 ft (msl) at the ballast pond on top of the ridge, east of the treatment and storage ponds. The geologic map for the Sacramento quadrangle (Wagner, Jennings, Bedrossian and Bortugno, 1981) indicates that Mesozoic granites underlie the area. This was confirmed by the presence of numerous granite outcrops in the meadows and at the base of the ridge. The map also shows traces of the Tertiary Mehrten Formation, described as an andesitic conglomerate, sandstone, and breccia. Although a competent outcrop of andesitic rock was not observed, the ridge does contain numerous andesitic fragments, produced by parent rock weathering. Just below the eastern side of the ridge crest are numerous large granite boulders, potentially representing glacial transport and deposition.

2.4 SOILS

The following soil descriptions are taken from the 1981 U.S. Forest Service soil survey of the Stanislaus National Forest. The descriptions are in agreement with field observations at the site and include the following:

2.4.1 Ridge Top

The soil along the southern end of the ridge top is classified as a lithic cryumbrept. This soil is described as a tan, moderately acid, loam about 5 inches thick, and containing no substantive

Introduction and Background January 11, 2018

subsoil. Rock content can range up to 60 percent from the substratum of fractured hard andesitic tuff or tuff-breccia. The soil has excessive drainage with moderately rapid permeability and a very high maximum erosion hazard. The soil supports basin sagebrush, mule's ear, perennial grasses, and scattered lodgepole pine.

2.4.2 Ridge Side

The soil along the disposal area, on the west side of the ridge, is classified as a gerle family generally found on 5 to 35 percent slopes. The surface soil is described as a dark gray, slightly acid, sandy loam, about 10 inches thick. The subsoil is described as a moderately acid, light brownish gray, sandy loam. The substratum is extremely stony (rock content can exceed 35%) consisting of glacial debris derived from granitic parent rocks. Additionally, the soil has excessive drainage, rapid permeability, and a moderate to high maximum erosion hazard, typically supporting mixed conifer forests.

2.4.3 Valley Floor

The valley floor soil, north of and below the treatment pond, is classified as an entic cryumbrept and described as a brown, moderately acid loam, sandy loam, and loamy sand, about 40 inches in thickness. The substratum is recent alluvium from granitic rocks and is well drained with moderately rapid to rapid permeability. It supports annual grasses, perennial grasses or sedge, and brush.

2.4.4 Field Observations

There is a good correlation between the topography of the disposal area and soil development and thickness. Mass wasting and in place weathering/deposition created a soil continuum that one can easily recognize and follow from the ridge top to the valley floor. Starting at the top of the ridge the soil is thin and scarcely present. What soil exists is very shallow, poorly developed, poorly sorted, contains no appreciable organic matter, and has a large percentage of andesitic rock fragments. The thickness of the soil increases as one moves down slope with more organic content being observed, correlating well with increased vegetation. Although the soil is still poorly sorted, it increasingly becomes more uniform towards a sandy loam with granitics composing more of the parent material. On the valley floor the soil contains organic material and is at its maximum development and thickness within the disposal area. The alluvial substratum is well-sorted sand with the parent material consisting of mostly granitic rock, with only a minor andesitic contribution. The granitic origin is marked by numerous small mica flakes, found within the soil profile.

Groundwater Regulatory Requirements January 11, 2018

3.0 Groundwater Regulatory Requirements

Discharge at the Bear Valley Water District WWTF is subject to requirements contained in the wastewater permit (Waste Discharge Requirements, or WDRs), Standard Provisions and Reporting Requirements for Waste Discharge Requirements 1 March 1991, the Water Quality Control Plan for the California Regional Water Quality Control Board, Central Valley Region and associated documents (Basin Plan). These requirements and policies are discussed below as they relate to discharges to land and the groundwater limitations at the WWTF.

3.1 WATER QUALITY OBJECTIVES AND BASIN PLAN REQUIREMENTS

The Central Valley Basin Plan contains water quality objectives for groundwater. These water quality objectives apply to all groundwater in the San Joaquin River Basin, though they do not require improvement over naturally occurring background concentrations. The groundwater objectives are:

- Bacteria total coliform organisms shall be less than 2.2 MPN/100ml over any sevenday period.
- Groundwater shall not contain chemical constituents that adversely affect beneficial uses.
- At a minimum, groundwater designated for municipal use shall not contain chemical constituents in concentrations greater than the maximum contaminant levels (MCLs) contained in Title 22 of the California Code of Regulations. To protect all beneficial uses, the Regional Board may apply limits more stringent than the MCLs.
- At a minimum, groundwater designated for municipal use shall not contain concentrations of radionuclides in excess of the MCLs contained in Title 22 of the California Code of Regulations.
- Groundwater shall not contain taste or odor constituents that cause nuisance or adversely affect beneficial uses.
- Groundwater shall be maintained free of toxic substances in concentrations that produce detrimental physiological response...

In conjunction with the Basin Plan groundwater objectives, the Regional Board has compiled water quality goals in the Regional Board staff report *A Compilation of Water Quality Goals*, updated in July of 2008. This report is intended to assist interpretation of the above narrative water quality objectives.

3.2 ANTIDEGRADATION POLICY

In 1968, the State Water Resources Control Board adopted Resolution No. 68-16, Statement of Policy with Respect to Maintaining High Quality of Waters in California, or the State

Groundwater Regulatory Requirements January 11, 2018

Antidegradation Policy. The Antidegradation policy requires that whenever the quality of waters is better than the water quality standards or water quality objectives, and a discharge does or reasonably has the potential to degrade the high quality water, then such degradation must:

- Not unreasonably affect beneficial uses, i.e., cause the water to exceed water quality standards or water quality objectives; and
- Be consistent with the best practicable treatment and control technology such that the highest water quality is maintained consistent with the maximum benefit to the people of the State.

The Antidegradation Policy applies to surface water and groundwater.

3.3 BEAR VALLEY WATER DISTRICT WASTE DISCHARGE REQUIREMENTS

The current District WDRs (Order No. 5-01-208 section D) have groundwater limitations that state:

- 1. Release of waste constituents from any storage or treatment component associated with the WWTF shall not cause groundwater under and beyond the storage or treatment component, as determined by an approved monitoring network, to:
 - a. Contain any of the constituents (identified in Table 1) in concentrations greater than as listed or greater than background quality, whichever is greater.
 - b. Contain any constituent identified in Groundwater Limitation D.1.a in concentrations greater than background quality (whether chemical, physical, biological, bacteriological, radiological, or some other property of characteristic).
 - c. Exhibit a pH of less than 6.5 or greater than 8.5 pH Units.
 - d. Impart taste, odor, or color that creates nuisance or impairs any beneficial use.
- 2. a. Release of waste constituents from any land disposal area associated with the WWTF shall not cause groundwater under and beyond the land disposal area to contain waste constituents in concentrations statistically greater than background water quality, except for coliform bacteria. For coliform bacteria, increases shall not cause the most probable number of total coliform organisms to exceed 2.2 MPN/100ml of any 7-day period.
 - b. If groundwater monitoring shows that waste constituents are present in concentrations greater than background, then upon the request of the Executive Officer, the Discharger shall complete the report described in Provision F.3.

Groundwater Regulatory Requirements January 11, 2018

Table 1 Regional Board Interim Groundwater Limitations

Parameter	Units	Interim Limitation*
рН	Std. units	6.5 – 8.4**
Boron	mg/l	0.6
Chloride	mg/l	142
Iron	mg/l	0.3
Manganese	mg/l	0.05
Sodium	mg/l	69
Total Coliform Organisms	MPN/100ml	Non-Detect
Total Dissolved Solids	mg/l	450
Total Nitrogen	mg/l	10
Nitrite as N	mg/l	1
Nitrate as N	mg/l	10
Ammonia as N	mg/l	0.5

^{*} From Waste Discharge Requirements Order No. 5-01-208 **From a Compilation of Water Quality Goals, July 2008

Groundwater Monitoring Results January 11, 2018

4.0 Groundwater Monitoring Results

4.1 MONITORING SUMMARY

The third tri-annual groundwater monitoring event occurred on September 28, 2017 with sampling and analytical activities being performed by J.L. Analytical Services, Inc. The sampling procedure utilized in monitoring the District's wells is included as Appendix A of this report for reference. Field measurements of depth to groundwater, electrical conductivity (EC), pH, and temperature were conducted in addition to the laboratory analysis of the parameters identified in Table 2 and according to the revised Monitoring and Reporting Program (MRP) No. 5-01-208, dated June 20, 2002. Groundwater samples were also collected for expanded general mineral chemistry, the results of which are summarized in Table 3. The field logs and laboratory results for the third tri-annual sampling event are included as Appendix B of this report.

Table 2 Groundwater Monitoring Requirements

Parameter	Units	Frequency ¹
Total Dissolved Solids	mg/l	3 times per year
Nitrate as Nitrogen	mg/l	3 times per year
рН	pH units	3 times per year
Total Coliform Organisms ²	MPN/100ml	3 times per year
Ammonia	mg/l	3 times per year
Total Kjeldahl Nitrogen	mg/l	3 times per year
General Minerals ³	mg/l	1 time per year

^{1.} Immediately after snowmelt, in the middle of the summer, and in the fall (shortly before wells become inaccessible due to snow cover.)

^{2.} Method No. 9221E, using a minimum of three dilutions of 15 tubes.

General minerals include boron, chloride, iron, manganese, and sodium, collected during the fall

Groundwater Monitoring Results January 11, 2018

Table 3 Third Tri-Annual 2017 Groundwater Quality Summary

Parameter	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6
Field pH	6.1	5.8	5.5	6.0	6.9	6.1
Field EC (μS/cm)	152	57	79	201	108	167
Temp. (C)	5.8	12.6	12.0	9.4	6.7	7.9
ORP (mV)						
Dissolved Oxygen (mg/L)						
Lab SC (μS/cm)	150	57	79	200	110	170
CI (mg/L)	1.6	0.7	3.1	5.9	5.2	2.1
NO3-N (mg/L)	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
TKN (mg/L)	<1	1	2	<1	2	<1
Ammonia as N	<1	<1	<1	<1	<1	<1
TDS (mg/L)	130	67	71	140	120	110
B (mg/L)	<0.03	<0.03	<0.03	< 0.03	< 0.03	< 0.03
Ca (mg/L)	16.5	6.1	6.8	20.6	8.6	18.3
Fe (mg/L)	<0.03	<0.03	<0.03	< 0.03	< 0.03	0.413
Mg (mg/L)	4.3	1.8	1.8	6.3	3.3	4.5
Mn (mg/L)	0.148	0.041	<0.01	0.288	0.059	0.768
K (mg/L)	2.8	1.1	1.5	3.3	2.9	1.3
Na (mg/L)	5.7	2.8	5.0	8.0	4.9	6.5
HCO₃ as CaCO₃ (mg/L)	60	28	40	90	34	80
HCO₃ as HCO₃ (mg/L)	73	34	49	110	41	98
CO₃ as CaCO₃ (mg/L)	<1	<1	<1	<1	<1	<1
OH as CaCO ₃ (mg/L)	<1	<1	<1	<1	<1	<1
Total Alkalinity as CaCO₃ (mg/L)	60	28	40	90	34	80
Sulfate (mg/L)	4.5	<0.5	1.1	5.4	1.0	0.7
Total Coliform (MPN/100ml)	1.8	2	7.8	13	2	<1.8
Fecal Coliform (MPN/100ml)	<1.8	<1.8	<1.8	13	<1.8	<1.8
Hardness as CaCO ₃ (mg/l)	58.8	22.5	24.2	77.4	34.8	64.4

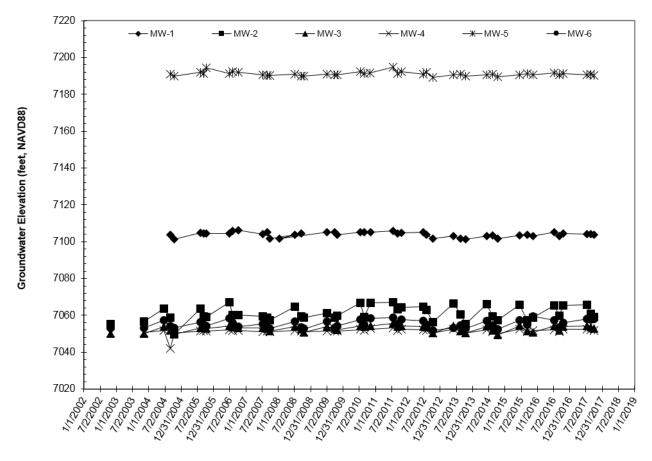
Bold data indicates and simple exceedance of a water quality goal, not to be confused with a statistically significant exceedances. IVS – Insufficient volume of water available to sample.

4.2 GROUNDWATER ELEVATIONS, GRADIENTS, AND FLOW DIRECTION

Depth to groundwater was measured on September 28, 2017 relative to the surveyed top north quadrant of the PVC well casing. Groundwater elevations were subsequently calculated for the third tri-annual monitoring event and summarized in Table 4 below. Table 4 also contains groundwater elevations from the three previous monitoring events and provides the computed

Groundwater Monitoring Results January 11, 2018

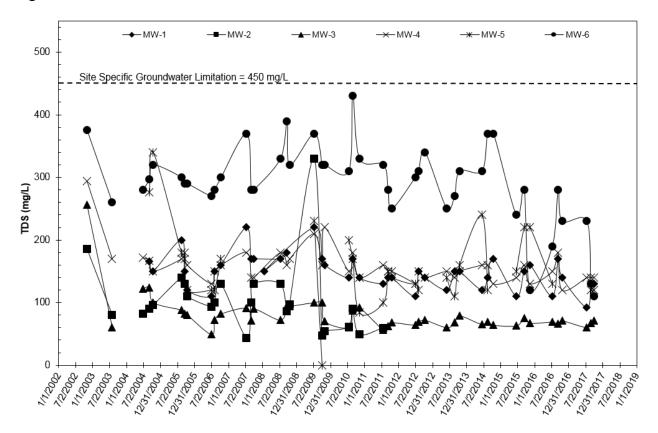
change in elevation at each well (in parentheses) relative to the previous monitoring event, illustrating recent temporal variability in groundwater elevation at the WWTF. Calculated groundwater elevations for the third tri-annual 2017 monitoring event were utilized to construct a contour map (Figure 1), which was subsequently used to estimate both groundwater flow direction and horizontal gradient. Interpreted groundwater flow direction during the third tri-annual monitoring was found to be roughly perpendicular to site topography and generally towards the northwest at a horizontal gradient ranging from 0.065 to 0.075 (Figure 1). Historical groundwater elevations are provided as Appendix C, while a time series plot for computed groundwater elevations is provided as Figure 2, for further reference.


Table 4 Groundwater Elevation Summary

Monitoring	Reference Point	Groundwater Elevation (feet , NAVD88)				
Well	Elevation (ft, NAVD88)	10/20/2016	7/13/2017	8/24/2017	9/28/2017	
MW-1	7114.08	7104.60 (+1.63)	7103.99 (-0.61)	7104.23 (+0.24)	7103.63 (-0.60)	
MW-2	7067.53	7065.49 (+5.59)	7065.70 (+0.21)	7060.96 (-4.74)	7059.08 (-1.88)	
MW-3	7056.37	7054.00 (+2.25)	7054.18 (+0.18)	7053.55 (-0.63)	7052.84 (-0.71)	
MW-4	7054.79	7052.50 (+1.29)	7052.43 (-0.07)	7051.97 (-0.46)	7051.77 (-0.20)	
MW-5	7203.78	7191.22 (+0.70)	7190.54 (-0.68)	7190.95 (+0.41)	7190.14 (-0.81)	
MW-6	7059.49	7055.96 (+2.31)	7058.08 (+2.12)	7057.84 (-0.24)	7057.91 (+0.07)	

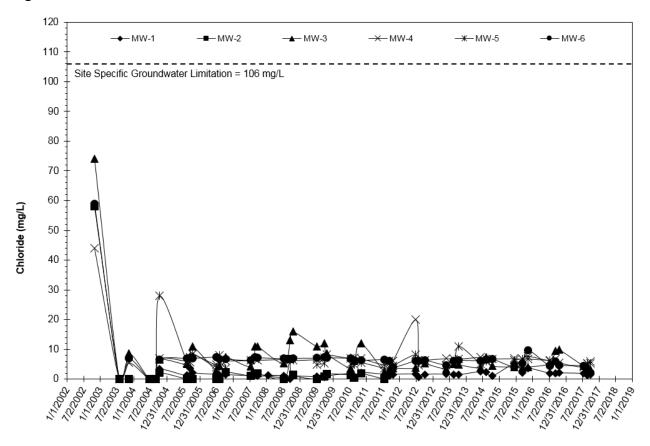
Groundwater Monitoring Results January 11, 2018

Figure 2 Groundwater Elevation Time Series Chart


4.3 GROUNDWATER QUALITY

Groundwater samples for the third tri-annual monitoring event were collected on September 28th, 2017. A summary of the lab and field results for this monitoring event are provided above in Table 3, while historical groundwater quality data are provided in Appendix C for further reference. Historical and third tri-annual data were compiled in time series plots for TDS (Figure 3) and chloride (Figure 4) to illustrate temporal variations in groundwater salinity at the site.

Groundwater Monitoring Results January 11, 2018


Figure 3 TDS Time Series Chart

Groundwater Monitoring Results January 11, 2018

Figure 4 Chloride Time Series Chart

4.3.1 Compliance Monitoring Well MW-1

Monitoring well MW-1 is generally located hydrogeologically down gradient of wastewater disposal operations and hydrogeologically up gradient of the eastern portion of the treatment pond (Figure 1). Field pH, field EC, and laboratory determined TDS measured during the third tri-annual monitoring event were reported at values of 6.1, 152 μ S/cm, and 130 mg/l, respectively. Nitrate as N and ammonia as N were not detected above their respective laboratory reporting limits of 0.4 and 1 mg/l, while manganese was detected at a concentration of 0.148 mg/l. Furthermore, total coliform organisms were detected at a density of 1.8 MPN/100ml.

Additional parameters monitored during the third tri-annual monitoring event of 2017 are summarized in Table 3 for reference.

4.3.2 Background Monitoring Well MW-2

Monitoring well MW-2 is located hydrogeologically up gradient of the disposal areas and serves as the background monitoring well for the WWTF (Figure 1). Field pH, field EC, and laboratory

Groundwater Monitoring Results January 11, 2018

determined TDS measured during the third tri-annual monitoring event were reported at values of 5.8, $57 \,\mu\text{S/cm}$, and $67 \,\text{mg/l}$, respectively. Nitrate as N and ammonia as N were not detected above their respective laboratory reporting limits. Furthermore, total coliform organisms were detected at a density of 2 MPN/100ml.

Additional parameters monitored during the third tri-annual monitoring event of 2017 are summarized in Table 3 for reference.

4.3.3 Compliance Monitoring Well MW-3

Monitoring well MW-3 is located hydrogeologically down gradient of wastewater disposal operations, near the northwestern portion of the WWTF property (Figure 1). Field pH, EC, and laboratory determined TDS measured during the third tri-annual monitoring event were reported at values of 5.5, 79 μ S/cm, and 71 mg/l, respectively. Nitrate as N and ammonia as N were not detected above their respective laboratory reporting limits. Furthermore, total coliform organisms were detected at a density of 7.8 MPN/100ml.

Additional parameters monitored during the third tri-annual monitoring event of 2017 are summarized in Table 3 for reference.

4.3.4 Compliance Monitoring Well MW-4

Monitoring well MW-4 is located hydrogeologically down gradient of wastewater disposal operations and the wastewater treatment pond, near the northwestern portion of the WWTF property (Figure 1). Field pH, EC, and laboratory determined TDS measured during the third tri-annual monitoring event were reported at values of 6.0, 201 μ S/cm, and 140 mg/l, respectively. Nitrate as N and ammonia as N were not detected above their respective laboratory reporting limits. Furthermore, total coliform organisms were detected at a density of 13 MPN/100ml.

Additional parameters monitored during the third tri-annual monitoring event of 2017 are summarized in Table 3 for reference.

4.3.5 Compliance Monitoring Well MW-5

Monitoring well MW-5 is located hydrogeologically down gradient of wastewater disposal operations, near the south-central portion of the WWTF property (Figure 1). Field pH, field EC, and laboratory determined TDS measured during the third tri-annual monitoring event were reported at values of 6.9, 108 μ S/cm, and 120 mg/l, respectively. Nitrate as N and ammonia as N were not detected above their respective laboratory reporting limits, while manganese was detected at a concentration of 0.059 mg/l, respectively. Furthermore, total coliform organisms were detected at a density of 2 MPN/100ml.

Groundwater Monitoring Results January 11, 2018

Additional parameters monitored during the third tri-annual monitoring event of 2017 are summarized in Table 3 for reference.

4.3.6 Compliance Monitoring Well MW-6

Monitoring well MW-6 is located hydrogeologically down to cross gradient of wastewater disposal operations and down gradient/adjacent to the effluent storage pond, near the southwestern portion of the WWTF property (Figure 1). Field pH, EC, and laboratory determined TDS measured during the third tri-annual monitoring event were reported at values of 6.1, $167 \,\mu\text{S/cm}$, and $110 \,\text{mg/l}$, respectively. Nitrate as N and ammonia as N were not detected above their respective laboratory reporting limits, while iron and manganese were detected at concentrations of 0.413 and 0.768 mg/l, respectively. Furthermore, total coliform organisms were not detected above the laboratory reporting limit of 1.8 MPN/100ml.

Additional parameters monitored during the third tri-annual monitoring event of 2017 are summarized in Table 3 for reference.

Background Groundwater Quality Summary January 11, 2018

5.0 Background Groundwater Quality Summary

5.1 STATISTICAL ANALYSIS INTRODUCTION

On behalf of the District, ECO:LOGIC Engineering (now Stantec) submitted a <u>Groundwater Characterization Report</u> (GCR), in <u>January 2005</u>. This report was submitted in accordance with the District's WDRs and the Regional Board's <u>July 8, 2004 Technical Report Review and Comments</u> letter requesting a statistical determination of background groundwater quality, pursuant to Title 27, Section 20415(e)(10) of the California Code of Regulations. The report compared actual COPC concentration at each of the compliance wells to both the Regional Board's Interim Groundwater Limitations and calculated background COPC using the 95% Confidence Limit (CL). As part of the <u>2006 Annual Report</u>, the statistical assessment was revised via an alternative methodology utilizing the 99% upper prediction limit (UPL) for parametrically distributed data, combined with alternative tests for non-parametric data. The background groundwater quality assessment has been updated annually since 2006. The analysis provided below represents the most current update to the statistical assessment of background groundwater quality, utilizing data collected through the third tri-annual monitoring event of 2017.

The following provides a summary of the assumptions used to compute the 99% UPL of background groundwater quality:

- Statistical analysis performed annually;
- Statistical test performed for the parameters TDS, nitrate, ammonia, pH, total coliform, boron, chloride, iron, sodium, and manganese;
- Data collected during the year of 2003 and earlier were not assessed due in part to several factors including the influence of well drilling activities and lack of filtration for metals. All data following 2003 were included in the statistical analysis;
- A pass 1 of 3 re-sampling strategy was employed; and,
- Maximum reported value, not reflective of an unreasonable anomaly, used to represent background groundwater quality for non-parametric data.

5.2 OUTLIER ANALYSIS

Prior to the evaluation of background groundwater quality, all background data (MW-2) were reviewed using Dixon's test (where n is between 3 and 25) or Rosner's test (for n > 25) for statistically significant outliers at the 99% confidence limit. The following provides a summary of the identified outliers and any actions taken.

Background Groundwater Quality Summary January 11, 2018

Field pH: No outliers identified.

TDS: One statistical outlier was identified during the 7/7/09 monitoring event. The results are anomalously high and do not correspond with the reported EC values, suggesting a laboratory error. The reported outlier was subsequently removed.

Nitrate as N: One outlier was identified and during the 10/26/09 monitoring event. This outlier was reviewed and found to be close to the reporting limit. The outlier was thus determined to be reasonable and subsequently retained for further analysis.

Ammonias as N: Two outliers were identified and during the 9/15/05 and 10/20/16. These outliers were reviewed and found to be close to the reporting limit. The outliers were thus determined to be reasonable and subsequently retained for further analysis.

Total Coliform: Three outliers were identified and during the 8/24/17, 10/26/09, and 11/4/10 monitoring events. The outliers were reviewed, determined to be representative of the range of detected values, and thus retained for further analysis.

Boron: No outliers identified.

Chloride: Two statistical outlier were identified and during the 9/18/08 and 10/9/2012 monitoring events. These data were reviewed and no anthropogenic cause could be attributed to the anomalies. Accordingly, they were retained for further analysis.

Iron: No outliers identified.

Sodium: Two statistical outliers were identified and during 9/18/08 and 10/9/12 monitoring events. These outliers were reviewed and no anthropogenic cause could be attributed to the anomalies. Accordingly, they were retained for further analysis.

Manganese: Seven statistical outliers were identified during the 10/13/04, 8/29/07, 7/21/11, 10/9/12, 8/21/13, 10/14/14, and 7/13/17 monitoring events. These outliers were reviewed and no anthropogenic cause could be attributed to the anomalies. Accordingly, they were retained for further analysis.

5.3 NORMALITY TEST

Following the outlier analysis a normality test was performed using Shapiro-Wilks Test at the 99% level of confidence. If the background monitoring data were normally distributed, or could be made normal through an appropriate transformation, parametric tests were applied. Alternatively, if the data were found to be non-parametrically distributed, non-parametric statistical tests were used. Following the initial data review, as summarized above, 99% background UPLs were computed, based on inclusion of the most recent 2017 monitoring data the results of which are summarized in Table 5.

Background Groundwater Quality Summary January 11, 2018

Table 5 2017 Statistical Assessment of Background Groundwater Quality

COPC	OPC Background Data Distribution/Method		Data Points
TDS (mg/l)	130	Parametric UPL (Natural Log Transformed)	41
Nitrate as N (mg/l)	0.5	Non-Parametric UPL	42
Ammonia as N (mg/l)	1	Non-Parametric UPL	42
рН	5.7 – 7.2	Parametric UPL	42
Total Coliform (MPN/100ml)	2200	Non-Parametric UPL	42
Boron (mg/l)	0.03	Non-Parametric UPL	40
Chloride (mg/l)	2.5	Parametric UPL (Natural Log Transformed)	40
Iron (mg/l)	1.54	Non-Parametric UPL	42
Sodium (mg/l)	8.6	Non-Parametric UPL	40
Manganese (mg/l)	0.22	Non-Parametric UPL	42

Bold data indicate an exceedance of the Regional Board's Interim Groundwater Limitations

5.4 SITE SPECIFIC GROUNDWATER LIMITATIONS

For COPC's where the background 99% UPL or non-parametric statistics are greater than the Regional Board's Interim Groundwater Limitation, the background statistic should be used for facility compliance. Of the COPCs analyzed, computed background (MW-2) statistics for iron, manganese, and total coliform exceeded the Regional Board's Interim Groundwater Limitations of 0.3 mg/l, 0.05 mg/l, and non-detect, respectively. Furthermore, background pH values were statistically lower than the lower limit of the groundwater goal of 6.5. Conversely, where an Interim Groundwater Limitation is greater than the background statistic, the Interim Groundwater Limitation should be used to assess facility compliance, as was the case for all the remaining parameters, provided the facility is implementing best practicable treatment and control measures for the constituent of potential concern. It should be noted however, that the WDR Interim Groundwater Limitations for boron and chloride are inconsistent with agricultural water quality goals and were revised accordingly. Table 6 presents the recommended site specific groundwater limitations for the facility.

Background Groundwater Quality Summary January 11, 2018

Table 6 2017 Recommended Site Specific Groundwater Limitations

COPC	Site Specific Groundwater Limitation	Basis for Limitation	Compliance Assessment Methodology
TDS (mg/l)	450	Agricultural Water Quality Goal	95% LCL
Nitrate as N (mg/l)	10	Primary Maximum Contaminant Level	Not to exceed
Ammonia as N (mg/l)	1.5	Taste and Odor Threshold	95% LCL
рН	5.7 – 8.4	STAT Parametric UPL/Agricultural Water Quality Goal	Pass 1 of 3/ 95% LCL
Total Coliform (MPN/100ml)	2200	STAT Non-Parametric UPL	Not to exceed
Boron (mg/l)	0.7	Agricultural Water Quality Goal	95% LCL
Chloride (mg/l)	106	Agricultural Water Quality Goal	95% LCL
Iron (mg/l)	1.54	STAT Non-Parametric UPL	Not to exceed
Sodium (mg/l)	69	Agricultural Water Quality Goal	95% LCL
Manganese (mg/l)	0.22	STAT Non-Parametric UPL	Not to exceed

Bold data indicate an exceedance of the Regional Board's Interim Groundwater Limitations

5.5 ANTI-DEGRADATION ASSESSMENT

In evaluating facility compliance, the UPL methodology is not appropriate for statistically assessing compliance with water quality goals based on MCLs or agricultural limitations (such as those used in determining Interim Groundwater Limitations) because many of these goals are based on long term averages of water quality. Accordingly, the 95% lower confidence interval (LCL) about the mean is recommended (95% LCL for two-tailed test for pH) and is appropriate for assessing compliance with the parameters TDS, ammonia, upper pH, boron, chloride, and sodium, which were based on unrestricted agricultural use or taste and odor thresholds. However, where a parametric 99% UPL serves as the site specific groundwater limitation, the pass 1 of 3 re-sampling should be used to assess compliance (that is if one sample of the past three is less than the limitation, no statistically significant impact is noted). Alternatively, for non-parametric tests, a simple exceedance of the site specific groundwater limitation may indicate a statistically significant impact. Table 7 summarizes the results of the compliance assessment.

Background Groundwater Quality Summary January 11, 2018

Table 7 2017 Groundwater Monitoring Compliance Summary

СОРС	Site Specific Groundwater Limitation	Compliance Assessment Methodology	2017 Statistically Significant Exceedance
TDS (mg/l)	450	95% LCL	None
Nitrate as N (mg/l)	10	Not to Exceed	None
Ammonia as N (mg/l)	1.5	95% LCL	None
рН	5.7 – 8.4	Pass 1 of 3/95% LCL	None
Total Coliform (MPN/100ml)	2200	Not to Exceed	MW-1
Boron (mg/l)	0.7	95% LCL	None
Chloride (mg/l)	106	95% LCL	None
Iron (mg/l)	1.54	Not to Exceed	None
Sodium (mg/l)	69	95% LCL	None
Manganese (mg/l)	0.22	Not to Exceed	MW-4 and MW-6

Of the parameters assessed, manganese and total coliform organisms were detected in groundwater at levels that statistically exceed site specific groundwater limitations during 2017. The exceedances occurred at monitoring wells MW-4 and MW-6 for manganese and MW-1 for total coliform. Manganese is an element that forms pH and redox sensitive minerals in the subsurface, which can become mobile under reducing conditions and in groundwater with low pH, both of which are not uncommon in alpine groundwater environments. For instance, the dilute nature and lack of buffering capacity of alpine groundwater (primarily snowmelt) and presences of acidic surface soils bode well for low pH groundwater, a condition that naturally favors manganese mobilization. Coliform is ubiquitous on the surface of the earth and can be present in groundwater where a conduit, such as a fracture connected to the surface, exists. Furthermore, coliform can be introduced during sampling from contaminated equipment, introduced water, or windblown sediment/colonies. Therefore, the presence of manganese or coliform in groundwater should not in of themselves be considered irrefutable proof of wastewater impacts.

Caution should also be exercised when evaluating computed "background" groundwater values to that of down gradient monitoring locations as the computed background statistics only consider one datum (MW-2) and thus, does not account for natural spatial variations in groundwater quality in the area. Spatial variability of the quality of shallow groundwater is more the norm than the exception and can be attributed to a host of issues including, but not limited to, soil column thickness, soil composition, bedrock composition, grain size distribution, organic matter content, groundwater elevation, acidity/alkalinity, land use, and redox potential. As such quantitative interpretation or comparison of groundwater data collected at "down gradient" monitoring locations to only one background location for the purpose of assessing facility compliance is not recommended. The computed background statistics and site specific

Background Groundwater Quality Summary January 11, 2018

groundwater goals should thus be used only to identify areas which *may have* been impacted with current or historic wastewater disposal practices. If improved background statistics are required, additional monitoring wells should be installed at locations up and cross gradient of the waste discharge.

All of the parameters assessed, with the potential exception of manganese and coliform, were in compliance with the site specific groundwater limitations, indicating further compliance with regards to the State's Anti-Degradation Policy.

Summary and Conclusions January 11, 2018

6.0 Summary and Conclusions

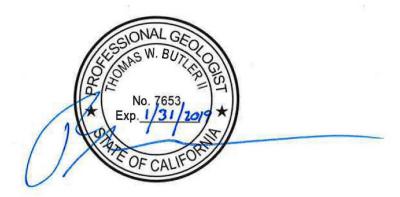
Groundwater was assessed during the third tri-annual monitoring event, pursuant to the District's WDRs and MRP, issued by the Regional Board. During the third tri-annual monitoring event, reported water quality values for the following constituents exceeded water quality goals for agricultural and/or potable use at the locations indicated, including:

• pH (below the lower limit): All wells except MW-5;

• Iron: MW-6;

Manganese: MW-1, MW-4, MW-5, and MW-6; and,

• Total Coliform Organisms: MW-3 and MW-4.


A revised 2017 annual statistical analysis indicates statistically significant exceedances of site specific groundwater limitations occurred for manganese at MW-4 and MW-6 as well as total coliform at MW-1. Dissolved manganese and coliform are both commonly spatially transient and can be influenced by variables other than the disposal of effluent. It should be noted that the current groundwater monitoring network contains only one background monitoring well (MW-2) making it impossible to incorporate potential spatial variations into the background statistics. Accordingly, a statistically significant impact should not be considered irrefutable proof that the impact originated as a result of the discharge. Regardless, a revised statistical assessment will be conducted as part of the Third Tri-Annual 2018 Groundwater Monitoring Report, which will also include a revised assessment of background groundwater quality.

Professional Seals and Certifications January 11, 2018

7.0 Professional Seals and Certifications

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment.

Thomas W. Butler, PG, CHG, CEG Senior Hydrogeologist/Geochemist

Appendix A Groundwater Monitoring Protocol January 11, 2018

Appendix A Groundwater Monitoring Protocol

Bear Valley Water District Groundwater Monitoring Well Sampling Procedures

- 1) The covers of the monitoring wells were opened and loose material cleared from the edged. A propane torch was used to briefly burn the frame of the cover and any debris inside the box and around the well casing (i.e., eliminating potential contamination of samples from ants). The wells are 2-in PVC approximately 13.5 to 23.5 feet deep with the lower 10 to 15 feet screened. The compression cap was removed and placed top down on the well cover.
- 2) Water surface depth was measured to within 0.01 feet by lowering an electronic tape into the well while passing it through a cloth soaked in hypochlorite solution (the tape was cleaned and disinfected in the lab prior to bringing it to the field). The water depth was measured relative the top of the north quadrant of the PVC well casing. More than three well volumes were purged from the wells until pH, EC and temperature stabilized. The volume to purge was calculated based on the well casing diameter (area) times the water column height (well depth from well logs minus depth to water surface times three. no annular space estimate was included).
- 3) Dedicated 12V submersible plastic pumps (ES 60) with a vinyl discharge hose were used for purging and sampling the wells. The pump, hose and cord were decontaminated prior to transport to the field in deionized (D.I.) water plus detergent, and then rinsed three times in D.I. water (running the pump during each to flush water through the impeller and hose) and finally the pump and appurtenances were placed in a dilute hypochlorite solution (running the pump to flush the solution through the impeller and hose). The pump and hose were removed from sealed bins and lowered into the well, avoiding pump or hose touching the cover frame, ground etc. The technician used rubber gloves during sampling and changed them each time anything "dirty" was touched. New gloves were rinsed in chlorine solution prior to handling equipment.
- 4) After priming and pumping a small amount of water through the hose (to remove and remaining liquid in the hose), the discharge rate was measured, by measuring the time to fill a one-gallon container. This time was them multiplied by the well purge volume as calculated in step 2) above. The time to purge three volumes was rounded up by approximately 5 minutes.
- 5) The pump was started and time recorded while it discharged. Approximately every three minutes a roughly 200 ml sample was collected in a glass container from the discharge pump hose and pH, EC and Temperature were measured with a multimeter. All wells stabilized with regards to pH EC, and Temperature.
- 6) Prelabled sample bottles, were introduced into the discharge stream of the pump after pumping 3-well volumes and stabilized pH, EC and Temperature. These were sealed and placed in an ice chest on ice for shipment to the lab.

- 7) The pump was shut off and all equipment was removed, the well cap was rinsed with dilute chlorine solution and replaced and the well cover replaced on the well.
- 8) After measurement, the measuring tape was rolled onto the reel while it was wiped.

Appendix B Third Tri-Annual 2017 Analytical Results and Field Logs January 11, 2018

Appendix B Third Tri-Annual 2017 Analytical Results and Field Logs

November 9, 2017

Bear Valley Water District Attn: Mr. Gouveia P.O. Box 5027 Bear Valley, CA 95223

Dear Mr. Gouveia:

On September 28, 2017, technicians from IEH-JL Analytical tested the monitoring wells at the Bear Valley Water Treatment facility. The wells at this site are located adjacent to the water treatment plant.

All of the two-inch wells, with the exception of Monitoring Well #5, were sampled and purged with a SS Monsoon 12 volt DC Submersible pump. Monitoring Well #5 was hand bailed. Purging volumes were measured using a calibrated and graduated five-gallon container. Before and after each sampling, the pump was sanitized and rinsed with DI water. All water level measurements were taken from the PVC pipe at the top of the well casing. The samples were immediately placed into a refrigerated ice chest for transport to the laboratory.

No major new issues were found during this sampling period, other than Monitoring Well #5 had to be hand bailed. All other wells had sufficient water for normal purges and sample collection.

Sincerely,

Richard A. Jacobs, Ph.D.

Richard Jacobs Ph.D.,

GROUNDWATER MONITORING REPORT

Bear Valley Water District Bear Valley, CA 3rd Monitoring Event of 2017

> Bear Valley Water District P.O. Box 5027 Bear Valley, CA 95223

Prepared for:
Bear Valley Water District
Attn: Mr. Gouveia
P.O. Box 5027
Bear Valley, CA 95223

Prepared by: IEH-JL Analytical 217 Primo Way Modesto, CA 95358 (209) 538-8111

Bear Valley Water District Bear Valley, CA 3rd Monitoring Event of 2017 GROUNDWATER MONITORING REPORT

Table of Contents

Section 1 Monitoring Well Report Body

Section 2 Monitoring Well Field Data

Original Field Data Sheets

Section 3 Monitoring Well Field Data

Table 1 Monitoring Well Purge Data

Table 2 Monitoring Well Field Data

Section 4 Monitoring Well Analytical Reports

Certificate of Analysis

Metals Report

Bear Valley Water District Bear Valley, CA 3rd Monitoring Event of 2017

GROUNDWATER MONITORING REPORT

Section 1

Bear Valley Report Body

November 9, 2017

Bear Valley Water District Attn: Mr. Gouveia P.O. Box 5027 Bear Valley, CA 95223

Dear Mr. Gouveia:

On September 28, 2017, technicians from IEH-JL Analytical sampled the six monitoring wells at Bear Valley Water District. The wells at this site are located around the wastewater treatment plant. All wells, with the exception of well #5, were sampled and purged with a SS Monsoon 12 volt DC Submersible pump. Monitoring well #5 was hand bailed. Purging volumes were measured using a calibrated and graduated five-gallon container. Before and after each sampling, the pump was cleaned and disinfected. All water level measurements were taken from the top of the well casing (PCV pipe), using a cleaned and disinfected water level meter. The wells were sampled according to accepted protocols. Specifically, they were purged a minimum of three volumes and the temperature, conductivity, and pH were allowed to stabilize. The samples were decanted into appropriate containers and immediately placed into a refrigerator for transport to the laboratory.

All wells had sufficient water for normal purges, site testing and for sample submission to the laboratory.

Well locks for Well numbers 1-6 were in acceptable condition and were locked prior to our departure.

Enclosed are the field notes and the analytical data, which represent this sampling event.

Sincerely,

Richard A. Jacobs, Ph.D.

Richard A. Jacobs, Ph.D.

IEH-JL Analytical

Bear Valley Water District Bear Valley, CA 3rd Monitoring Event of 2017 GROUNDWATER MONITORING REPORT

Section 2

Monitoring Well Field Data

Original Monitoring Well Work Sheets

Monitoring Well -- Lock Report

				0 20-17
Client	BEAR VALLEY WD	Bear Valley, CA	Date:	9-28-17
CIICITE.	DEVIL AVEFF 1 AAD	Doui vanoj, or.		

Well Number	Is there a lock?	Condition of the lock?	Does it Work?	Was it Locked upon arrival?	Was it locked upon departure?
	Yes / No	Acceptable / Bad	Yes / No	Yes / No	Yes / No
1	~	A	V		Y
2		A		4	<u> </u>
3	1	A	4		4
4	4	A	\frac{1}{2}	4	Ý
5	1	A	\checkmark		4
6	1	A	4	4	4
	7			/	
				x	
					×.
, and the same of					
				*	

Comments:	

Sampler: Mike TSUromati

Form: Lock Report 4-04

Client:	BEAR VALI	LEY Wat	ter District	– Bear Valley, CA	Site Des	scription:	<u>Monitori</u>	<u>ng Wel</u>	1#1
PH: Primary pH meter re	c Calibration Decading: ged with	0H4 pH7	7 pH10 EC	: 100 200 250 1000 meter reading: 101	1413 206		_ Time: <u></u>	830	
WELL IN	FORMATIO	N:			Casing	Gal/Lin. F	t Casir	ig C	Gal/Lin. Ft
Well Depth			27.29) Ft.	Diameter	(GPLF)	Diame	ter	(GPLF)
	Vater (DTW)		-) 10.45	Ft.	X 2" →	0.17	□ 4.5"	→	0.83
	umn (WD – I		=) 16,84	Linear Ft.	□ 3" →	0.38	□ 5" →	•	1.02
Final Depti	h to Water:		11,73	_ Ft. @	□ 4 →	0.66	□ 6 →		1.50
			0920	AM/PM			□ 8 →		2.60
16.84	_ X 0.17	= 2	2.8628	3,0	_ X _	3 =	910	L gal	
Water Column	Gal per Lin	near Ft.	1 purge volume (before rounding)	Adjusted Purge volum (round up to nearest (per of Volumes	Total Purge V	olume, gal.	
PURGING	DATA: {	record pH.		before purging} the			purge volum	ne 1	
	ng started:	0850	Time Sa			Dat		8-17	
Time	Purge Volume (gal)	pН	EC (µS/cm)	Temp (C.)		Color	Turbidity	Odor	Pumpe
0850	Ø	6.47	150	11,90	(Clear	Clear	Hove	N0
0857	3.0	6,03	173	6.04		Clear	clear	None	No
0903	6,0	6,17	159	5.81		lear	clear	Noue	NO
0910	9,0	6,89	152	5181		Clear	clear	Dave	NO
						clear cloudy Yellow Brown	Clear Trace Light Moderate Heavy	None Faint Moderate Strong	Yes/No
Other Notes:	Wey De	epth z	24,32						
	EQUIPMENT Pump X pn) (PVC)			SAMPLING EQL Submersible Pun Bailer (Teflon) (np X	Ar	EATHER _(nbient Temp in Dust	eraturé:	
Well integri	ity: 🛛 Good	□ Fa	ir 🗆 Poor	QC Samples co	ollected at this	s well:			
Unfiltered Bott		1_BOD_	300 ml DO	2 Coliform	1L	Nalgene Base	1L A	mber Glass	
Field F Bott		BOD _	1_TKN	Coliform	<u>1</u> 1L	Nalgene Base	1L A	mber Glass	
Sampler(s):	li Ketserom	abi S	ignature:	- hard	Date: 9 - 2	28-17			

Client: BEAR VA	LLEY Water	District – Bea	ar Valley, CA	Site Des	cription: N	/lonitoring	g Well	# 2
Instrument Calibra PH: Primary calibra pH meter reading:			PS 100 200 250 1 neter reading:	000 1413 2	2060 10,000	子 Time:	6830	
System purged with	n 🗶 DI Wate	er (check approp	oriately)					
WELL INFORM	ATION:			Casing Diameter	Gal/Lin. I (GPLF)			Sal/Lin. Ft (GPLF)
Well Depth (W Depth to Water (I Water Column (W	, , ,	17.90 (-) 8.45 (=) 9.45	Ft. _ Ft. _ Linear Ft.	X 2" →	0.17	□ 5" →		0.83
Final Depth to Wa	ater:	9,14	Ft. @ .AM/PM	□ 4 →	0.66	□ 6 →		1.50 2.60
9,45 X 0 Water Column Ga).17 = _ Il per Linear Ft.	1 purge volume (before rounding)	Adjusted Purge vo		3 =		Ogal Volume, gal	l.
PURGING DATA Time purging star		, EC, & Temp be	efore purging} t				ime] -8-17	
Purge Volume Time (gal)	pН	EC (µS/cm)	Tempe (C		Color	Turbidity	Odor	Pumped Dry
1142 0	5,67	61	12.3	0	yellow	GOM	None	No
1146 2,0	5.76	57	12,3	6	yellow	MOO	Nove	100
1150 4,0	5.81	57	12.6		yellow	MOD	Nane	NO
1154 6.0	5,79	57	12.3	9	Cloudy	MeD	Dove	<i>N8</i>
					clear cloudy Yellow Brown	Clear Trace Light Moderate Heavy	None Faint Moderate Strong	Yes/No
Other Notes: Wel	u Depth 1	7.84						
PURGING EQUIPM Submersible Pump Bailer (Teflon) (PV	X		SAMPLING EQU Submersible Pur Bailer (Teflon) (np X PVC)	An Ra	EATHER 6 hbient Temperin Dust	rature:	
Well integrity:	Good □ Fa	ir 🗆 Poor	QC Sample	s collected at	this well:			
Unfiltered Sample Bottles	1_BOD	300 ml DO	2 Coliform	1L	Nalgene Base	1L Am	ber Glass	
Field Filtered Bottles	2 BOD 1	TKN _	Coliform	_1_1L	Nalgene Base	1L Am	ber Glass	
Sampler(s):	sorumak s	ignature: like	when !	Reviewed b	y:	Da	ite:	

Clien	t: BEAR	VALLEY Wa	ater District – B	Bear Valley,	CA Site I	Description	n: Monito	ring W	ell # 3
PH: Prim pH meter	ary calibra r reading:	tion: pH4 pl		00 200 250 1 eter reading: <u>l</u>	000 1413 2			0830	
System p	ourged with	X DI Wat	er (check appropri	ately)					
	NFORM				Casing Diameter	Gal/Lin. I (GPLF)			ıl/Lin. Ft GPLF)
Well De		/D) (ft):		Ft.	V	0.47	- - - - - - - - - - 	- -	0.83
Depth to	Water (E	OTW) (ft):	(-) 3,53	Ft.	X 2" →	0.17			1.02
water C	olumn (V	VD – DTVV):	. ,	_inear Ft.	□ 3" →	0.38			
Final De	pth to Wa	ter:	3,65 F	-t. @	□ 4 →	0.66	□ 6 →		1.50
			1235 A	AMIPM			□ 8 →	- (2.60
10.0	3 x o	.17 =	1.7051	2.0	Х	3 =	= 6	(gal	
Water Colu	umn Gal	per Linear Ft.	1 purge volume (before rounding)	Adjusted Purge vo (round up to near		umber of sing Volumes	Total Purg	e Volume, ga	
	NG DATA	(H, EC, & Temp bef					ume] 28-17	
	Purge Volume		\						Pumped
Time	(gal) ∅	5,51	EC (µS/cm)	Tempera		Color	Turbidity	Odor	Dry
1220	2,0	5,47	80	151		cloudy	Trace	None	N8 N0
1224	4,0	5,45	4 9	1218		clay	clear	None	00
1228	6,0	5,47	79	121		Clear	clear	Wove	ಬರಿ
	/					oloor	Clear	None	Yes/No
						clear cloudy Yellow Brown	Trace Light Moderate Heavy	Faint Moderate Strong	res/No
Other Note	es: Wei	d Depth	13,54						
Submersi	G EQUIPM ible Pump eflon) (PVC	X	s	AMPLING EQU ubmersible Pur Bailer (Teflon)	mp X	Ai	MEATHER 6 mbient Tempe ain Dust _	erature:	
Well inte	grity: 🔟	Good □ F	air □ Poor	QC Sample	s collected at	this well:			
	d Sample ttles	1_BOD	300 ml DO 2	_Coliform	1L	Nalgene Base	1L Ai	mber Glass	
	Filtered ttles	2 BOD 1	TKN	Coliform	1L	Nalgene Base	1L Ar	mber Glass	
Sampler(s)	HikeT	Suranala)	Signature:	Menn	Date:				

Clien	t: BEAR	VALLEY W	ater District -	- Be	ar Valley, (CA Site D	escription	: Monito	ring We	<u> </u>
PH: Prim pH meter	ent Calibra nary calibrat r reading: ourged with	tion: pH4 p		: 100 mete	200 250 1 r reading: <u>((</u>	000 1413 2		~l 7 Time: _	0830	
WELL	INFORMA	ATION:				Casing	Gal/Lin. I			
Well De	pth (W	(D) (ft):	17.10	Ft.		Diameter	(GPLF)	Diamet	_ _	
	· Water (E	, , ,	(-) 3,02	Ft		X 2" →	0.17	□ 4.5" -	>	
Water C	Column (V	VD – DTW):	(=) 14.08	_ Lir	near Ft.	□ 3" →	0.38	□ 5" →		
Final De	epth to Wa	ter:	3,29	_Ft.	@	□ 4 →	0.66	□ 6 →		1.50
			1320		1/PM			□ 8 →		2.60
14,09	8 x o	.17 =	213936	*****	215	X	3 =	7.	5 gal	
Water Colu	umn Gal	per Linear Ft.	1 purge volume	****	djusted Purge vo		umber of	Total Purge	e Volume, ga	l.
			(before rounding)	(ro	ound up to near	est 0.5) Ca	sing Volumes			
PURGII	NG DATA	: {record p	H, EC, & Temp I	efor	e purging} t	hen [Expr	ess all data			
Time pu	rging start	ed: 125°	Time Sai	mple	d: 1313	5		Date: <u>9</u> -	28-17	
Time	Purge Volume	nН	FC (uS/cm)		Temperat	ture (C.)	Color	Turbidity	Odor	Pumped
1257	Volume (gal) pH EC (μS/cm) Ø 5.98 2.32 2.5 5.91 2.14			15.7	Name and Address of the Owner, where the Owner, which is the Owner, where the Owner, which is the Owner,	cleer	clear	Done	Gal/Lin. Ft (GPLF) 0.83 1.02 1.50 2.60 Pumped Odor Dry Dove NO Nove NO No Nove NO No Nove NO No Nove NO	
1303	5.98 232 5.91 214				9,8		Clear	clear	None	100
1308	5.0	6,03	206		9,4		clay	clear	Noue	
1314	75	6.01	201		9,0	to	claw	clead	Wove	100
							clear cloudy Yellow Brown	Clear Trace Light Moderate Heavy		Yes/No
Other Note	es: Wei	1 Depth	17.07							
Submers	G EQUIPM sible Pump eflon) (PVC	X		Sub	MPLING EQU mersible Pur ller (Teflon)(np X	Ai	TEATHER © mbient Temperain Dust _	erature:	
Well inte	grity: 🗵	Good □ I	Fair □ Poor		QC Sample	s collected at	this well:			
	ed Sample ottles	1_BOD	_ 300 ml DO	_2_C	oliform	1L	Nalgene Base	1L Ar	mber Glass	
	Filtered ttles	2 BOD _	1_TKN	c	oliform	1L	Nalgene Base	1L Ar	mber Glass	
Sampler(s):HikeTS	uromak	Signature:	h	Carle	und	Date:			

Client: Bear Valley Water District - Bear Valley, CA Site Description: Monitoring Well # 5

PH: Prir pH mete	nent Calibra mary calibra er reading: purged with	ation: pH4		: 100 200 250 1 neter reading: <u>10</u>	000 1413	te: <u>9 - 2 8 -</u> 2060 10,000 µS/cm		0830				
	INFORM		ater (eneck appre	princely)	Casing	Gal/Lin. F	t Cool	20	Gal/Lin. Ft			
Well De Depth t Water (epth (W to Water (I Column (V epth to Wa	VD) (ft): DTW) (ft): WD – DTW):	20.19 (-) 13.64 (=) 6.55 17.43		Diameter X 2" → 3" → 4 →	(GPLF)	Diame □ 4.5" □ 5" → □ 6 →	eter →	0.83 1.02 1.50 2.60			
Water Co		I per Linear Ft.	1 purge volume (before rounding)	Adjusted Purge vo		3 = umber of sing Volumes			al.			
	ING DATA	1		pefore purging} to								
Time	Purge Volume (gal) pH EC (μS/cm) Temperature (C.) Color Turbidity Odor Dry											
1000	1.5	7,19	113		***************************************							
1012	3,0	6.87	108	6.6		cloudy			NO			
1017	415	6,89	108	6,6		cloudy	Mon	Casing Diameter 4.5" -> 5" -> 6 -> 8 -> Total Purge Volume, gas repurge volume te: 9-78-7 Curbidity Odor Mod Dove Mod D	NO			
						clear cloudy Yellow Brown	Trace Light Moderate	Faint Moderate	Yes/No			
Other Not	tes: Wev	l Depth	20,13									
Submers	IG EQUIPM sible Pump feflon) (PVC			SAMPLING EQU Submersible Pun Bailer (Teflon) (np	An	nbient Temp	erature: _				
Well inte	egrity: 🗡	Good □ F	Fair □ Poor	QC Samples	collected at	this well:						
	ed Sample ottles	1 BOD	_ 300 ml DO	2 Coliform	1L	Nalgene Base	1L A	mber Glass				
	Filtered ottles	2 BOD 1	1_TKN	Coliform	1L I	Nalgene Base	1L A	mber Glass				
Sampler(s):MikeT	Surungt	Signature:	hinah	mul	Date: 9-	-28-17					

Clien	t: BEAR	VALLEY W	ater District	– Bear Va	alley, (CA Site	Descripti	ion: Monito	oring W	ell # 6
PH: Prim		tion: pH4 p	leter: YSI 556 H7 pH10 EC + 10 EC			000 1413	ate: <u>9-28</u> 2060 10,00 µS/cm	Time:	0830	
System	ourged with	X DI Wa	ter (check appr							
WELL	INFORM	ATION:				Casing	Gal/Lin.		ng G	Sal/Lin. Ft
Well De	pth (V)	/D) (ft):	22.59	9 Ft.		Diameter	(GPLF	Diame	ter	(GPLF)
		, , ,	(-) 1158			X 2" ->	0.17	4.5"	→ -	0.83
Water C	olumn (\	ND – DTW):	(=) Zli01	Linear F	₹t.	□ 3" →	0.38	□ 5" →		1.02
	pth to Wa		2:01					□ 6 →		1.50
i illai De	piii to vva	iter.		_ Ft. @		□ 4 →	0.66	□ 8 →		2.60
			1120	_AM/PM						2.00
21,0	X 0	.17 =	3,5717	4	0,	X	3	= 17	gal	
Water Colu	ımn Gal	per Linear Ft.	1 purge volume	Adjusted			Number of		e Volume, ga	ıl.
		,	(before rounding)	(round u r	to neare	st 0.5) Ca	asing Volumes			
PURGII	NG DATA	: {record pl	H FC & Temp	hefore nuro	ning} #	en l'Evn	ress all data	per purgo vo	lumo]	
	rging start	(1115		iess all uata		28-17	
	Purge						,			
	Volume									Pumped
Time	(gal)	(before rounding) ATA: {record pH, EC, & Temp started:	Tei		ure (C.)	Color	Turbidity	Odor	Dry	
1055	4.0				11,2		Clear	clear	Nove	NO.
1108	8,0				7.5		clost	clear	Nove	No
1114	120				7,0		clow	chleir	Dove	NO NO
										20
							alaar	Class		<u></u>
							clear cloudy Yellow Brown	Clear Trace Light Moderate Heavy	None Faint Moderate Strong	Yes/No
Other Note	es: We	1 Depth	21.98							
Submersi	E EQUIPMI ble Pump flon) (PVC	X		SAMPLIN Submersib	ole Pum	р Х	A	MEATHER Minimum Members Member	erature:	
	grity: 🖄		air 🗆 Poor	Bailer (Te		collected at				
Unfiltered				2 Coliform	bampies		Nalgene Base	1L An	nber Glass	
Dot										
Field F Bot		2 BOD 1	TKN	Coliform		1L	Nalgene Base	1L An	nber Glass	
Sampler(s):	MikeT	Suromah	Signature	·lii)h	mbo	Date:	9-28-17		

Bear Valley Water District Bear Valley, CA 3rd Monitoring Event of 2017 GROUNDWATER MONITORING REPORT

Section 3

Monitoring Well Field Data

Table 1 Bear Valley Monitoring Well Purge Data

Table 2 Bear Valley Monitoring Field Data

TABLE 1 Bear Valley Water District Monitoring Well Purge Data

September 28, 2017

Well Number	Initial Well Depth	Depth to Ground Water	Linear Feet of Water	Final Depth to Water	Measured Well Depth	Casing Diameter	Adjusted Purge Volume	Total Required Purge volume	Total Actual Purge volume
	(Ft)	(Ft)	(Ft)	(Ft)	(Ft)	(ln)	(Gal)	(Gal)	(Gal)
	(b)	(c)	(b - c)						
1	27.29	10.45	16.84	11.73	24.32	2	3.0	9.0	9.0
2	17.90	8.45	9.45	9.14	17.84	2	2.0	6.0	6.0
3	13.56	3.53	10.03	3.65	13.54	2	2.0	6.0	6.0
4	17.10	3.02	14.08	3.29	17.07	2	2.5	7.5	7.5
5	20.19	13.64	6.55	17.43	20.13	2	1.5	4.5	3.0
6	22.59	1.58	21.01	2.01	21.98	2	4.0	12.0	12.0

For 2" Casing - Casing Volume (gal) = Height of Water Column X 0.17 Gallons per linear foot

TABLE 2 FIELD DATA BEAR VALLEY WATER DISTRICT Monitoring Well - Field Data Summary

S	eptember 28, 20	017							
Well Number	Sampling Date	Time	Purge Volume (Gal)	pH (pH units)	EC (μS/cm)	Temp (C)	Color	Turbidity	Odor
		8:57	3.0	6.0	170	6.0	Clear	Clear	None
1	9/28/2017	9:03	6.0	6.2	160	5.8	Clear	Clear	None
		9:10	9.0	6.1	150	5.8	Clear	Clear	None
		11:46	2.0	5.8	57	12.4	Yellow	Moderate	None
2	9/28/2017	11:50	4.0	5.8	57	12.7	Yellow	Moderate	None
		11:54	6.0	5.8	57	12.6	Cloudy	Moderate	None
		12:20	2.0	5.5	80	12.1	Clear	Clear	None
3	9/28/2017	12:24	4.0	5.5	79	12.1	Clear	Clear	None
		12:28	6.0	5.5	79	12.0	Clear	Clear	None
		13:03	2.5	5.9	210	9.9	Clear	Clear	None
4	9/28/2017	13:08	5.0	6.0	210	9.5	Clear	Clear	None
		13:14	7.5	6.0	200	9.4	Clear	Clear	None
		10:05	1.5	7.2	110	6.6	Cloudy	Moderate	None
5	9/28/2017	10:12	3.0	6.9	110	6.7	Cloudy	Moderate	None
		10:17	4.5	6.9	110	6.7	Cloudy	Moderate	None
		11:02	4.0	6.0	160	7.5	Clear	Clear	None
6	9/28/2017	11:08	8.0	5.9	160	7.7	Clear	Clear	None
		11:14	12.0	6.1	170	7.9	Clear	Clear	None

Bear Valley Water District Bear Valley, CA 3rd Monitoring Event of 2017 GROUNDWATER MONITORING REPORT

Section 4

Certificate of Analysis (Analytical Reports)

Metals Report

217 Primo Way • Modesto, California 95358 • Office (209) 538-8111 • FAX (209) 538-3966

Bear Valley Water Dist.

P.O. Box 5027 Bear Valley,CA 95223 Report #
Report Date:
Received Date:
Work Order:

L2.2-14R40889 10/27/2017 09/28/2017 416678

Laboratory Number:

41667801

Description:

Waste Water, MW #1, 09-28-2017, 0911

Analytical Results

Constituent		Result		Minimum Level	Method Detection Limit	Method Reference	Analysis Date	Analysis Time	Analyst
Total Coliform (20 T LST)		1.8	MPN/100ml			SM 9221B	09/28/2017	NA	SM
Fecal Coliform (20 T LST)	<	1.8	MPN/100ml			SM 9221E	09/28/2017	NA	SM
pH		6.1	SU	0.5	0.2	SM 4500-H B	09/28/2017	09:10	AS
Electrical Conductivity (E.C.)		150	umho/cm	1.0	1.0	SM 2510B ⁵	09/28/2017	09:10	AS
Total Dissolved Solids (TDS)		130	mg/l	20	6.8	SM 2540C	10/02/2017	14:45	JA
Total Alkalinity (as CaCO3)		60	mg/l	5.0	3.0	SM 2320B	10/07/2017	09:30	NH
Bicarbonate Alkalinity (as CaCO3)		60	mg/l			SM 2320B	10/07/2017	09:30	NH
Carbonate Alkalinity (as CaCO3)	<	1	mg/l			SM 2320B	10/07/2017	09:30	NH
Hydroxide Alkalinity (as CaCO3)	<	1	mg/l			SM 2320B	10/07/2017	09:30	NH
Nitrate Nitrogen	<	0.4	mg/l	0.001	0.001	EPA 300.0	09/29/2017	12:35	JA
Chloride		1.6	mg/l	0.2	0.01	EPA 300.0	09/29/2017	12:35	JA
Sulfate		4.5	mg/l	0.5	0.1	EPA 300.0	09/29/2017	12:35	JA
Ammoniacal Nitrogen by Kjeldahl	<	1	mg/l	1.0	0.8	SM 4500 NH3 C	09/29/2017	13:15	AS
Total Kjeldahl Nitrogen (TKN)	<	1	mg/l	1.0	8.0	SM 4500-Norg B	10/10/2017	NA	AS
Boron		See Report				See Attached Report	10/05/2017	NA	CM

QC Results

Constituent	QC Units		Blank	Ма	ntrix	Theoretical Spike	Matrix Spike	Matrix Spike Duplicate	Lab Control Spike	Precision %	Accuracy %	Response %
Total Coliform (20 T LST)	MPN/100ml		NA		NA	NA	NA	NA	NA	NA	NA	NA
Fecal Coliform (20 T LST)	MPN/100ml		NA	I	NA	NA	NA	NA	NA	NA	NA	NA
рН	SU		NA	I	NA	NA	NA	NA	NA	NA	NA	NA
Electrical Conductivity (E.C.)	umho/cm		NA		NA	NA	NA	NA	NA	NA	NA	NA
Total Dissolved Solids (TDS)	mg/l	<	20	5	40	3000	3600	3600	3000	0.6	100.7	100.0
Total Alkalinity (as CaCO3)	mg/l	<	5	1	30	300	420	420	300	0.1	99.2	99.6
Bicarbonate Alkalinity (as CaCO3)	mg/l		NA		NA	NA	NA	NA	NA	NA	NA	NA
Carbonate Alkalinity (as CaCO3)	mg/l		NA		NA	NA	NA	NA	NA	NA	NA	NA
Hydroxide Alkalinity (as CaCO3)	mg/l		NA		NA	NA	NA	NA	NA	NA	NA	NA
Nitrate Nitrogen	mg/l	<	0.1	< (0.4	0.9	1.1	1.1	0.9	0.2	95.9	97.5
Chloride	mg/l	<	0.2		3.1	8.0	3.9	3.9	0.8	0.0	98.8	101.3
Sulfate	mg/l	<	0.5	•	1.1	5.0	5.9	5.9	4.8	0.9	95.7	96.6
Ammoniacal Nitrogen by Kjeldahl	mg/l	<	1	<	1	28	27	27	27	1.0	93.7	96.2
Total Kjeldahl Nitrogen (TKN)	mg/l	<	1	<	1	28	29	29	27	0.5	101.4	97.2
Boron	_		NA		NA	NA	NA	NA	NA	NA	NA	NA

Notes

At 25 °C

217 Primo Way • Modesto, California 95358 • Office (209) 538-8111 • FAX (209) 538-3966

Bear Valley Water Dist.

P.O. Box 5027 Bear Valley,CA 95223 Report # Report Date: L2.2-14R40889 10/27/2017

Received Date: Work Order:

09/28/2017 416678

Laboratory Number:

41667801

Description:

Waste Water, MW #1, 09-28-2017, 0911

Analytical Results

Constituent	Result	Minimum Level	Method Detection Limit	Method Reference	Analysis Date	Analysis Time	Analyst
Calcium	See Report			See Attached Report	10/05/2017	NA	CM
Iron	See Report			See Attached Report	10/05/2017	NA	CM
Magnesium	See Report			See Attached Report	10/05/2017	NA	CM
Manganese	See Report			See Attached Report	10/05/2017	NA	СМ
Potassium	See Report			See Attached Report	10/05/2017	NA	CM
Sodium	See Report			See Attached Report	10/05/2017	NA	CM

QC Results

Constituent	QC Units	Blank	Matrix	Theoretical Spike	Matrix Spike	Matrix Spike Duplicate	Lab Control Spike	Precision %	Accuracy %	Response %
Calcium		NA	NA	NA	NA	NA	NA	NA	NA	NA
Iron		NA	NA	NA	NA	NA	NA	NA	NA	NA
Magnesium		NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese		NA	NA	NA	NA	NA	NA	NA	NA	NA
Potassium		NA	NA	NA	NA	NA	NA	NA	NA	NA
Sodium		NA	NA	NA	NA	NA	NA	NA	NA	NA

Notes

Authorized By: Amos Smide

10/27/2017

Amos Snider Laboratory Supervisor

217 Primo Way • Modesto, California 95358 • Office (209) 538-8111 • FAX (209) 538-3966

Bear Valley Water Dist.

P.O. Box 5027 Bear Valley,CA 95223 Report #
Report Date:
Received Date:
Work Order:

L2.2-14R40889 10/27/2017 09/28/2017 416678

Laboratory Number:

41667802

Description:

Waste Water, MW #2, 09-28-2017, 1155

Analytical Results

Constituent		Result		Minimum Level	Method Detection Limit	Method Reference	Analysis Date	Analysis Time	Analyst
Total Coliform (20 T LST)		2.0	MPN/100ml			SM 9221B	09/28/2017	NA	SM
Fecal Coliform (20 T LST)	<	1.8	MPN/100ml			SM 9221E	09/28/2017	NA	SM
pH		5.8	SU	0.5	0.2	SM 4500-H B	09/28/2017	11:54	AS
Electrical Conductivity (E.C.)		57	umho/cm	1.0	1.0	SM 2510B ⁵	09/28/2017	11:54	AS
Total Dissolved Solids (TDS)		67	mg/l	20	6.8	SM 2540C	10/02/2017	14:45	JA
Total Alkalinity (as CaCO3)		28	mg/l	5.0	3.0	SM 2320B	10/07/2017	09:30	NH
Bicarbonate Alkalinity (as CaCO3)		28	mg/l			SM 2320B	10/07/2017	09:30	NH
Carbonate Alkalinity (as CaCO3)	<	1	mg/l			SM 2320B	10/07/2017	09:30	NH
Hydroxide Alkalinity (as CaCO3)	<	1	mg/l			SM 2320B	10/07/2017	09:30	NH
Nitrate Nitrogen	<	0.4	mg/l	0.001	0.001	EPA 300.0	09/29/2017	12:35	JA
Chloride		0.7	mg/l	0.2	0.01	EPA 300.0	09/29/2017	12:35	JA
Sulfate	<	0.5	mg/l	0.5	0.1	EPA 300.0	09/29/2017	12:35	JA
Ammoniacal Nitrogen by Kjeldahl	<	1	mg/l	1.0	0.8	SM 4500 NH3 C	10/17/2017	15:00	AF
Total Kjeldahl Nitrogen (TKN)		1	mg/l	1.0	8.0	SM 4500-Norg B	10/10/2017	NA	AF
Boron		See Report	-			See Attached Report	10/05/2017	NA	CM

QC Results

Constituent	QC Units		Blank	М	latrix	Theoretical Spike	Matrix Spike	Matrix Spike Duplicate	Lab Control Spike	Precision %	Accuracy %	Response %
Total Coliform (20 T LST)	MPN/100ml		NA		NA	NA	NA	NA	NA	NA	NA	NA
Fecal Coliform (20 T LST)	MPN/100ml		NA		NA	NA	NA	NA	NA	NA	NA	NA
рН	SU		NA		NA	NA	NA	NA	NA	NA	NA	NA
Electrical Conductivity (E.C.)	umho/cm		NA		NA	NA	NA	NA	NA	NA	NA	NA
Total Dissolved Solids (TDS)	mg/l	<	20		540	3000	3600	3600	3000	0.6	100.7	100.0
Total Alkalinity (as CaCO3)	mg/l	<	5		130	300	420	420	300	0.1	99.2	99.6
Bicarbonate Alkalinity (as CaCO3)	mg/l		NA		NA	NA	NA	NA	NA	NA	NA	NA
Carbonate Alkalinity (as CaCO3)	mg/l		NA		NA	NA	NA	NA	NA	NA	NA	NA
Hydroxide Alkalinity (as CaCO3)	mg/l		NA		NA	NA	NA	NA	NA	NA	NA	NA
Nitrate Nitrogen	mg/l	<	0.1	<	0.4	0.9	1.1	1.1	0.9	0.2	95.9	97.5
Chloride	mg/l	<	0.2		3.1	0.8	3.9	3.9	0.8	0.0	98.8	101.3
Sulfate	mg/l	<	0.5		1.1	5.0	5.9	5.9	4.8	0.9	95.7	96.6
Ammoniacal Nitrogen by Kjeldahl	mg/l	<	1	<	1	28	28	28	28	0.5	100.9	100.2
Total Kjeldahl Nitrogen (TKN)	mg/l	<	1	<	1	28	29	29	27	0.5	101.4	97.2
Boron	_		NA		NA	NA	NA	NA	NA	NA	NA	NA

Notes

At 25 °C

217 Primo Way • Modesto, California 95358 • Office (209) 538-8111 • FAX (209) 538-3966

Bear Valley Water Dist.

P.O. Box 5027 Bear Valley,CA 95223

Report # Report Date: **Received Date:** L2.2-14R40889 10/27/2017

Work Order:

09/28/2017 416678

Laboratory Number:

41667802

Description:

Waste Water, MW #2, 09-28-2017, 1155

Analytical Results

Constituent	Result	Minimum Level	Method Detection Limit	Method Reference	Analysis Date	Analysis Time	Analyst
Calcium	See Report			See Attached Report	10/05/2017	NA	CM
Iron	See Report			See Attached Report	10/05/2017	NA	CM
Magnesium	See Report			See Attached Report	10/05/2017	NA	CM
Manganese	See Report			See Attached Report	10/05/2017	NA	СМ
Potassium	See Report			See Attached Report	10/05/2017	NA	CM
Sodium	See Report			See Attached Report	10/05/2017	NA	CM

QC Results

Constituent	QC Units	Blank	Matrix	Theoretical Spike	Matrix Spike	Matrix Spike Duplicate	Lab Control Spike	Precision %	Accuracy %	Response %
Calcium		NA	NA	NA	NA	NA	NA	NA	NA	NA
Iron		NA	NA	NA	NA	NA	NA	NA	NA	NA
Magnesium		NA	NA	NA	NA	NA	NA	NA	NA	NA J
Manganese		NA	NA	NA	NA	NA	NA	NA	NA	NA
Potassium		NA	NA	NA	NA	NA	NA	NA	NA	NA
Sodium		NA	NA	NA	NA	NA	NA	NA	NA	NA

Notes

Authorized By: Amos Smide

10/27/2017

Amos Snider Laboratory Supervisor

ELAP Accreditation Laboratory Certificate #2776. Unless otherwise noted, all samples were received in acceptable condition. The result(s) in this report relate only to the portion of the sample(s) tested. This report does not constitute a release of product for consumption. This report shall not be reproduced in full, without written approval of the laboratory. This document contains confidential commercial information pursuant to 5 U.S.C. Page 4 of 12 SEC. 552(b)(4).

217 Primo Way • Modesto, California 95358 • Office (209) 538-8111 • FAX (209) 538-3966

Bear Valley Water Dist.

P.O. Box 5027 Bear Valley,CA 95223 Report #
Report Date:
Received Date:
Work Order:

L2.2-14R40889 10/27/2017 09/28/2017 416678

Laboratory Number:

41667803

Description:

Waste Water, MW #3, 09-28-2017, 1229

Analytical Results

Constituent		Result		Minimum Level	Method Detection Limit	Method Reference	Analysis Date	Analysis Time	Analyst
Total Coliform (20 T LST)		7.8	MPN/100ml			SM 9221B	09/28/2017	NA	SM
Fecal Coliform (20 T LST)	<	1.8	MPN/100ml			SM 9221E	09/28/2017	NA	SM
pH		5.5	SU	0.5	0.2	SM 4500-H B	09/28/2017	12:28	AS
Electrical Conductivity (E.C.)		79	umho/cm	1.0	1.0	SM 2510B5	09/28/2017	12:28	AS
Total Dissolved Solids (TDS)		71	mg/l	20	6.8	SM 2540C	10/02/2017	14:45	JA
Total Alkalinity (as CaCO3)		40	mg/l	5.0	3.0	SM 2320B	10/07/2017	09:30	NH
Bicarbonate Alkalinity (as CaCO3)		40	mg/l			SM 2320B	10/07/2017	09:30	NH
Carbonate Alkalinity (as CaCO3)	<	1	mg/l			SM 2320B	10/07/2017	09:30	NH
Hydroxide Alkalinity (as CaCO3)	<	1	mg/l			SM 2320B	10/07/2017	09:30	NH
Nitrate Nitrogen	<	0.4	mg/l	0.001	0.001	EPA 300.0	09/29/2017	12:35	JA
Chloride		3.1	mg/l	0.2	0.01	EPA 300.0	09/29/2017	12:35	JA
Sulfate		1.1	mg/l	0.5	0.1	EPA 300.0	09/29/2017	12:35	JA
Ammoniacal Nitrogen by Kjeldahl	<	1	mg/l	1.0	0.8	SM 4500 NH3 C	10/17/2017	15:00	AF
Total Kjeldahl Nitrogen (TKN)		2	mg/l	1.0	0.8	SM 4500-Norg B	10/10/2017	NA	AF
Boron		See Report				See Attached Report	10/05/2017	NA	CM

QC Results

Constituent	QC Units		Blank	!	Matrix	Theoretical Spike	Matrix Spike	Matrix Spike Duplicate	Lab Control Spike	Precision %	Accuracy %	Response %
Total Coliform (20 T LST)	MPN/100ml		NA		NA	NA	NA	NA	NA	NA	NA	NA
Fecal Coliform (20 T LST)	MPN/100ml		NA		NA	NA	NA	NA	NA	NA	NA	NA
рН	SU		NA		NA	NA	NA	NA	NA	NA	NA	NA
Electrical Conductivity (E.C.)	umho/cm		NA		NA	NA	NA	NA	NA	NA	NA	NA
Total Dissolved Solids (TDS)	mg/l	<	20		540	3000	3600	3600	3000	0.6	100.7	100.0
Total Alkalinity (as CaCO3)	mg/l	<	5		130	300	420	420	300	0.1	99.2	99.6
Bicarbonate Alkalinity (as CaCO3)	mg/l		NA		NA	NA	NA	NA	NA	NA	NA	NA
Carbonate Alkalinity (as CaCO3)	mg/l		NA		NA	NA	NA	NA	NA	NA	NA	NA
Hydroxide Alkalinity (as CaCO3)	mg/l		NA		NA	NA	NA	NA	NA	NA	NA	NA
Nitrate Nitrogen	mg/l	<	0.1	<	0.4	0.9	1.1	1.1	0.9	0.2	95.9	97.5
Chloride	mg/l	<	0.2		3.1	8.0	3.9	3.9	0.8	0.0	98.8	101.3
Sulfate	mg/l	<	0.5		1.1	5.0	5.9	5.9	4.8	0.9	95.7	96.6
Ammoniacal Nitrogen by Kjeldahl	mg/l	<	1	<	1	28	28	28	28	0.5	100.9	100.2
Total Kjeldahl Nitrogen (TKN)	mg/l	<	1	<	1	28	29	29	27	0.5	101.4	97.2
Boron			NA		NA	NA	NA	NA	NA	NA	NA	NA

Notes

At 25 °C

217 Primo Way • Modesto, California 95358 • Office (209) 538-8111 • FAX (209) 538-3966

Bear Valley Water Dist.

P.O. Box 5027 Bear Valley,CA 95223

Report # Report Date: **Received Date:** L2.2-14R40889 10/27/2017

Work Order:

09/28/2017 416678

Laboratory Number:

41667803

Description:

Waste Water, MW #3, 09-28-2017, 1229

Analytical Results

Constituent	Result	Minimum Level	Method Detection Limit	Method Reference	Analysis Date	Analysis Time	Analyst
Calcium	See Report			See Attached Report	10/05/2017	NA	CM
Iron	See Report			See Attached Report	10/05/2017	NA	CM
Magnesium	See Report			See Attached Report	10/05/2017	NA	CM
Manganese	See Report			See Attached Report	10/05/2017	NA	СМ
Potassium	See Report			See Attached Report	10/05/2017	NA	CM
Sodium	See Report			See Attached Report	10/05/2017	NA	CM

QC Results

Constituent	QC Units	Blank	Matrix	Theoretical Spike	Matrix Spike	Matrix Spike Duplicate	Lab Control Spike	Precision %	Accuracy %	Response %
Calcium		NA	NA	NA	NA	NA	NA	NA	NA	NA
Iron		NA	NA	NA	NA	NA	NA	NA	NA	NA
Magnesium		NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese		NA	NA	NA	NA	NA	NA	NA	NA	NA
Potassium		NA	NA	NA	NA	NA	NA	NA	NA	NA
Sodium		NA	NA	NA	NA	NA	NA	NA	NA	NA

Notes

Authorized By: Amos Smider

10/27/2017

Amos Snider Laboratory Supervisor

217 Primo Way • Modesto, California 95358 • Office (209) 538-8111 • FAX (209) 538-3966

Bear Valley Water Dist.

P.O. Box 5027 Bear Valley,CA 95223 Report #
Report Date:
Received Date:
Work Order:

L2.2-14R40889 10/27/2017 09/28/2017 416678

Laboratory Number:

41667804

Description:

Waste Water, MW #4, 09-28-2017, 1315

Analytical Results

Constituent		Result		Minimum Level	Method Detection Limit	Method Reference	Analysis Date	Analysis Time	Analyst
Total Coliform (20 T LST)		13	MPN/100ml			SM 9221B	09/28/2017	NA	SM
Fecal Coliform (20 T LST)		13	MPN/100ml			SM 9221E	09/28/2017	NA	SM
pH		6.0	SU	0.5	0.2	SM 4500-H B	09/28/2017	13:14	AS
Electrical Conductivity (E.C.)		200	umho/cm	1.0	1.0	SM 2510B ⁵	09/28/2017	13:14	AS
Total Dissolved Solids (TDS)		140	mg/l	20	6.8	SM 2540C	10/02/2017	14:45	JA
Total Alkalinity (as CaCO3)		90	mg/l	5.0	3.0	SM 2320B	10/07/2017	09:30	NH
Bicarbonate Alkalinity (as CaCO3)		90	mg/l			SM 2320B	10/07/2017	09:30	NH
Carbonate Alkalinity (as CaCO3)	<	1	mg/l			SM 2320B	10/07/2017	09:30	NH
Hydroxide Alkalinity (as CaCO3)	<	1	mg/l			SM 2320B	10/07/2017	09:30	NH
Nitrate Nitrogen	<	0.4	mg/l	0.001	0.001	EPA 300.0	09/29/2017	12:35	JA
Chloride		5.9	mg/l	0.2	0.01	EPA 300.0	09/29/2017	12:35	JA
Sulfate		5.4	mg/l	0.5	0.1	EPA 300.0	09/29/2017	12:35	JA
Ammoniacal Nitrogen by Kjeldahl	<	1	mg/l	1.0	0.8	SM 4500 NH3 C	10/17/2017	15:00	AF
Total Kjeldahl Nitrogen (TKN)	<	1	mg/l	1.0	8.0	SM 4500-Norg B	10/10/2017	NA	AF
Boron		See Report	-			See Attached Report	10/05/2017	NA	CM

QC Results

Constituent	QC Units		Blank	N	/latrix	Theoretical Spike	Matrix Spike	Matrix Spike Duplicate	Lab Control Spike	Precision %	Accuracy %	Response %
Total Coliform (20 T LST)	MPN/100ml		NA		NA	NA	NA	NA	NA	NA	NA	NA
Fecal Coliform (20 T LST)	MPN/100ml		NA		NA	NA	NA	NA	NA	NA	NA	NA
pH .	SU		NA		NA	NA	NA	NA	NA	NA	NA	NA
Electrical Conductivity (E.C.)	umho/cm		NA		NA	NA	NA	NA	NA	NA	NA	NA
Total Dissolved Solids (TDS)	mg/l	<	20		540	3000	3600	3600	3000	0.6	100.7	100.0
Total Alkalinity (as CaCO3)	mg/l	<	5		130	300	420	420	300	0.1	99.2	99.6
Bicarbonate Alkalinity (as CaCO3)	mg/l		NA		NA	NA	NA	NA	NA	NA	NA	NA
Carbonate Alkalinity (as CaCO3)	mg/l		NA		NA	NA	NA	NA	NA	NA	NA	NA
Hydroxide Alkalinity (as CaCO3)	mg/l		NA		NA	NA	NA	NA	NA	NA	NA	NA
Nitrate Nitrogen	mg/l	<	0.1	<	0.4	0.9	1.1	1.1	0.9	0.2	95.9	97.5
Chloride	mg/l	<	0.2		3.1	0.8	3.9	3.9	0.8	0.0	98.8	101.3
Sulfate	mg/l	<	0.5		1.1	5.0	5.9	5.9	4.8	0.9	95.7	96.6
Ammoniacal Nitrogen by Kjeldahl	mg/l	<	1	<	1	28	28	28	28	0.5	100.9	100.2
Total Kjeldahl Nitrogen (TKN)	mg/l	<	1	<	1	28	29	29	27	0.5	101.4	97.2
Boron			NA		NA	NA	NA	NA	NA	NA	NA	NA

Notes

At 25 °C

217 Primo Way • Modesto, California 95358 • Office (209) 538-8111 • FAX (209) 538-3966

Bear Valley Water Dist.

P.O. Box 5027 Bear Valley,CA 95223

Report # Report Date: **Received Date:** L2.2-14R40889 10/27/2017 09/28/2017

Work Order:

416678

Laboratory Number:

41667804

Description:

Waste Water, MW #4, 09-28-2017, 1315

Analytical Results

Constituent	Result	Minimum Level	Method Detection Limit	Method Reference	Analysis Date	Analysis Time	Analyst
Calcium	See Report			See Attached Report	10/05/2017	NA	CM
Iron	See Report			See Attached Report	10/05/2017	NA	CM
Magnesium	See Report			See Attached Report	10/05/2017	NA	CM
Manganese	See Report			See Attached Report	10/05/2017	NA	СМ
Potassium	See Report			See Attached Report	10/05/2017	NA	CM
Sodium	See Report			See Attached Report	10/05/2017	NA	CM

QC Results

Constituent	QC Units	Blank	Matrix	Theoretical Spike	Matrix Spike	Matrix Spike Duplicate	Lab Control Spike	Precision %	Accuracy %	Response %
Calcium		NA	NA	NA	NA	NA	NA	NA	NA	NA
Iron		NA	NA	NA	NA	NA	NA	NA	NA	NA
Magnesium		NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese		NA	NA	NA	NA	NA	NA	NA	NA	NA
Potassium		NA	NA	NA	NA	NA	NA	NA	NA	NA
Sodium		NA	NA	NA	NA	NA	NA	NA	NA	NA

Notes

Authorized By: Amos Smide

10/27/2017

Amos Snider Laboratory Supervisor

ELAP Accreditation Laboratory Certificate #2776. Unless otherwise noted, all samples were received in acceptable condition. The result(s) in this report relate only to the portion of the sample(s) tested. This report does not constitute a release of product for consumption. This report shall not be reproduced in full, without written approval of the laboratory. This document contains confidential commercial information pursuant to 5 U.S.C. Page 8 of 12 SEC. 552(b)(4).

217 Primo Way • Modesto, California 95358 • Office (209) 538-8111 • FAX (209) 538-3966

Bear Valley Water Dist.

P.O. Box 5027 Bear Valley,CA 95223 Report #
Report Date:
Received Date:
Work Order:

L2.2-14R40889 10/27/2017 09/28/2017 416678

Laboratory Number:

41667805

Description:

Waste Water, MW #5, 09-28-2017, 1018

Analytical Results

Constituent		Result		Minimum Level	Method Detection Limit	Method Reference	Analysis Date	Analysis Time	Analyst
Total Coliform (20 T LST)		2.0	MPN/100ml			SM 9221B	09/28/2017	NA	SM
Fecal Coliform (20 T LST)	<	1.8	MPN/100ml			SM 9221E	09/28/2017	NA	SM
pH		6.9	SU	0.5	0.2	SM 4500-H B	09/28/2017	10:17	AS
Electrical Conductivity (E.C.)		110	umho/cm	1.0	1.0	SM 2510B5	09/28/2017	10:17	AS
Total Dissolved Solids (TDS)		120	mg/l	20	6.8	SM 2540C	10/02/2017	14:45	JA
Total Alkalinity (as CaCO3)		34	mg/l	5.0	3.0	SM 2320B	10/07/2017	09:30	NH
Bicarbonate Alkalinity (as CaCO3)		34	mg/l			SM 2320B	10/07/2017	09:30	NH
Carbonate Alkalinity (as CaCO3)	<	1	mg/l			SM 2320B	10/07/2017	09:30	NH
Hydroxide Alkalinity (as CaCO3)	<	1	mg/l			SM 2320B	10/07/2017	09:30	NH
Nitrate Nitrogen	<	0.4	mg/l	0.001	0.001	EPA 300.0	09/29/2017	12:35	JA
Chloride		5.2	mg/l	0.2	0.01	EPA 300.0	09/29/2017	12:35	JA
Sulfate		1.0	mg/l	0.5	0.1	EPA 300.0	09/29/2017	12:35	JA
Ammoniacal Nitrogen by Kjeldahl	<	1	mg/l	1.0	0.8	SM 4500 NH3 C	10/17/2017	15:00	AF
Total Kjeldahl Nitrogen (TKN)		2	mg/l	1.0	0.8	SM 4500-Norg B	10/10/2017	NA	AF
Boron		See Report				See Attached Report	10/05/2017	NA	CM

QC Results

Constituent	QC Units		Blank	ı	Matrix	Theoretical Spike	Matrix Spike	Matrix Spike Duplicate	Lab Control Spike	Precision %	Accuracy %	Response %
Total Coliform (20 T LST)	MPN/100ml		NA		NA	NA	NA	NA	NA	NA	NA	NA `
Fecal Coliform (20 T LST)	MPN/100ml		NA		NA	NA	NA	NA	NA	NA	NA	NA
рН	SU		NA		NA	NA	NA	NA	NA	NA	NA	NA
Electrical Conductivity (E.C.)	umho/cm		NA		NA	NA	NA	NA	NA	NA	NA	NA
Total Dissolved Solids (TDS)	mg/l	<	20		540	3000	3600	3600	3000	0.6	100.7	100.0
Total Alkalinity (as CaCO3)	mg/l	<	5		130	300	420	420	300	0.1	99.2	99.6
Bicarbonate Alkalinity (as CaCO3)	mg/l		NA		NA	NA	NA	NA	NA	NA	NA	NA Ì
Carbonate Alkalinity (as CaCO3)	mg/l		NA		NA	NA	NA	NA	NA	NA	NA	NA
Hydroxide Alkalinity (as CaCO3)	mg/l		NA		NA	NA	NA	NA	NA	NA	NA	NA.
Nitrate Nitrogen	mg/l	<	0.1	<	0.4	0.9	1.1	1.1	0.9	0.2	95.9	97.5
Chloride	mg/l	<	0.2		3.1	0.8	3.9	3.9	0.8	0.0	98.8	101.3
Sulfate	mg/l	<	0.5		1.1	5.0	5.9	5.9	4.8	0.9	95.7	96.6
Ammoniacal Nitrogen by Kjeldahl	mg/l	<	1	<	1	28	28	28	28	0.5	100.9	100.2
Total Kjeldahl Nitrogen (TKN)	mg/l	<	1	<	1	28	29	29	27	0.5	101.4	97.2
Boron			NA		NA	NA	NA	NA	NA	NA	NA	NA

Notes

At 25 °C

217 Primo Way • Modesto, California 95358 • Office (209) 538-8111 • FAX (209) 538-3966

Bear Valley Water Dist.

P.O. Box 5027 Bear Valley,CA 95223 Report # Report Date: L2.2-14R40889 10/27/2017

Received Date: Work Order:

09/28/2017 416678

Laboratory Number:

41667805

Description:

Waste Water, MW #5, 09-28-2017, 1018

Analytical Results

Constituent	Result	Minimum Level	Method Detection Limit	Method Reference	Analysis Date	Analysis Time	Analyst
Calcium	See Report			See Attached Report	10/05/2017	NA	CM
Iron	See Report			See Attached Report	10/05/2017	NA	CM
Magnesium	See Report			See Attached Report	10/05/2017	NA	CM
Manganese	See Report			See Attached Report	10/05/2017	NA	СМ
Potassium	See Report			See Attached Report	10/05/2017	NA	CM
Sodium	See Report			See Attached Report	10/05/2017	NA	CM

QC Results

Constituent	QC Units	Blank	Matrix	Theoretical Spike	Matrix Spike	Matrix Spike Duplicate	Lab Control Spike	Precision %	Accuracy %	Response %
Calcium		NA	NA	NA	NA	NA	NA	NA	NA	NA
Iron		NA	NA	NA	NA	NA	NA	NA	NA	NA
Magnesium		NA	NA	NA	NA	NA	NA	NA	NA	NA J
Manganese		NA	NA	NA	NA	NA	NA	NA	NA	NA
Potassium		NA	NA	NA	NA	NA	NA	NA	NA	NA
Sodium		NA	NA	NA	NA	NA	NA	NA	NA	NA

Notes

Authorized By: Amos Smider

10/27/2017

Amos Snider Laboratory Supervisor

ELAP Accreditation Laboratory Certificate #2776. Unless otherwise noted, all samples were received in acceptable condition. The result(s) in this report relate only to the portion of the sample(s) tested. This report does not constitute a release of product for consumption. This report shall not be reproduced in full, without written approval of the laboratory. This document contains confidential commercial information pursuant to 5 U.S.C. Page 10 of 12 SEC. 552(b)(4).

217 Primo Way • Modesto, California 95358 • Office (209) 538-8111 • FAX (209) 538-3966

Bear Valley Water Dist.

P.O. Box 5027 Bear Valley,CA 95223 Report #
Report Date:
Received Date:
Work Order:

L2.2-14R40889 10/27/2017 09/28/2017 416678

Laboratory Number:

41667806

Description:

Waste Water, MW #6, 09-28-2017, 1115

Analytical Results

Constituent		Result		Minimum Level	Method Detection Limit	Method Reference	Analysis Date	Analysis Time	Analyst
Total Coliform (20 T LST)	<	1.8	MPN/100ml			SM 9221B	09/28/2017	NA	SM
Fecal Coliform (20 T LST)	<	1.8	MPN/100ml			SM 9221E	09/28/2017	NA	SM
pH		6.1	SU	0.5	0.2	SM 4500-H B	09/28/2017	11:14	AS
Electrical Conductivity (E.C.)		170	umho/cm	1.0	1.0	SM 2510B5	09/28/2017	11:14	AS
Total Dissolved Solids (TDS)		110	mg/l	20	6.8	SM 2540C	10/02/2017	14:45	JA
Total Alkalinity (as CaCO3)		80	mg/l	5.0	3.0	SM 2320B	10/07/2017	09:30	NH
Bicarbonate Alkalinity (as CaCO3)		80	mg/l			SM 2320B	10/07/2017	09:30	NH
Carbonate Alkalinity (as CaCO3)	<	1	mg/l			SM 2320B	10/07/2017	09:30	NH
Hydroxide Alkalinity (as CaCO3)	<	1	mg/l			SM 2320B	10/07/2017	09:30	NH
Nitrate Nitrogen	<	0.4	mg/l	0.001	0.001	EPA 300.0	09/29/2017	12:35	JA
Chloride		2.1	mg/l	0.2	0.01	EPA 300.0	09/29/2017	12:35	JA
Sulfate		0.7	mg/l	0.5	0.1	EPA 300.0	09/29/2017	12:35	JA
Ammoniacal Nitrogen by Kjeldahl	<	1	mg/l	1.0	0.8	SM 4500 NH3 C	10/17/2017	15:00	AF
Total Kjeldahl Nitrogen (TKN)	<	1	mg/l	1.0	0.8	SM 4500-Norg B	10/10/2017	NA	AF
Boron		See Report				See Attached Report	10/05/2017	NA	CM

QC Results

Constituent	QC Units	ı	Blank	М	atrix	Theoretical Spike	Matrix Spike	Matrix Spike Duplicate	Lab Control Spike	Precision %	Accuracy %	Response %
Total Coliform (20 T LST)	MPN/100ml		NA		NA	NA	NA	NA	NA	NA	NA	NA
Fecal Coliform (20 T LST)	MPN/100ml		NA		NA	NA	NA	NA	NA	NA	NA	NA
pH	SU		NA		NA	NA	NA	NA	NA	NA	NA	NA
Electrical Conductivity (E.C.)	umho/cm		NA		NA	NA	NA	NA	NA	NA	NA	NA
Total Dissolved Solids (TDS)	mg/l	<	20	!	540	3000	3600	3600	3000	0.6	100.7	100.0
Total Alkalinity (as CaCO3)	mg/l	<	5		130	300	420	420	300	0.1	99.2	99.6
Bicarbonate Alkalinity (as CaCO3)	mg/l		NA		NA	NA	NA	NA	NA	NA	NA	NA Ì
Carbonate Alkalinity (as CaCO3)	mg/l		NA		NA	NA	NA	NA	NA	NA	NA	NA
Hydroxide Alkalinity (as CaCO3)	mg/l		NA		NA	NA	NA	NA	NA	NA	NA	NA
Nitrate Nitrogen	mg/l	<	0.1	<	0.4	0.9	1.1	1.1	0.9	0.2	95.9	97.5
Chloride	mg/l	<	0.2		3.1	0.8	3.9	3.9	0.8	0.0	98.8	101.3
Sulfate	mg/l	<	0.5		1.1	5.0	5.9	5.9	4.8	0.9	95.7	96.6
Ammoniacal Nitrogen by Kjeldahl	mg/l	<	1	<	1	28	28	28	28	0.5	100.9	100.2
Total Kjeldahl Nitrogen (TKN)	mg/l	<	1	<	1	28	29	29	27	0.5	101.4	97.2
Boron			NA		NA	NA	NA	NA	NA	NA	NA	NA

Notes

At 25 °C

217 Primo Way • Modesto, California 95358 • Office (209) 538-8111 • FAX (209) 538-3966

Bear Valley Water Dist.

P.O. Box 5027 Bear Valley,CA 95223 Report # Report Date: L2.2-14R40889 10/27/2017

Received Date: Work Order:

09/28/2017 416678

Laboratory Number:

41667806

Description:

Waste Water, MW #6, 09-28-2017, 1115

Analytical Results

Constituent	Result	Minimum Level	Method Detection Limit	Method Reference	Analysis Date	Analysis Time	Analyst
Calcium	See Report			See Attached Report	10/05/2017	NA	CM
Iron	See Report			See Attached Report	10/05/2017	NA	CM
Magnesium	See Report			See Attached Report	10/05/2017	NA	CM
Manganese	See Report			See Attached Report	10/05/2017	NA	СМ
Potassium	See Report			See Attached Report	10/05/2017	NA	CM
Sodium	See Report			See Attached Report	10/05/2017	NA	CM

QC Results

Constituent	QC Units	Blank	Matrix	Theoretical Spike	Matrix Spike	Matrix Spike Duplicate	Lab Control Spike	Precision %	Accuracy %	Response %
Calcium		NA	NA	NA	NA	NA	NA	NA	NA	NA
Iron		NA	NA	NA	NA	NA	NA	NA	NA	NA
Magnesium		NA	NA	NA	NA	NA	NA	NA	NA	NA J
Manganese		NA	NA	NA	NA	NA	NA	NA	NA	NA
Potassium		NA	NA	NA	NA	NA	NA	NA	NA	NA
Sodium		NA	NA	NA	NA	NA	NA	NA	NA	NA

Notes

Authorized By: Amos Smide

10/27/2017

Amos Snider Laboratory Supervisor

ELAP Accreditation Laboratory Certificate #2776. Unless otherwise noted, all samples were received in acceptable condition. The result(s) in this report relate only to the portion of the sample(s) tested. This report does not constitute a release of product for consumption. This report shall not be reproduced in full, without written approval of the laboratory. This document contains confidential commercial information pursuant to 5 U.S.C. Page 12 of 12 SEC. 552(b)(4).

IEH ANALYTICAL LABORATORIES

LABORATORY & CONSULTING SERVICES

3927 AURORA AVENUE NORTH, SEATTLE, WA 98103

PHONE: (206) 632-2715 FAX: (206) 632-2417

CASE FILE NUMBER: JLA070-42 PAGE 1

 REPORT DATE:
 10/20/17

 DATE SAMPLED:
 09/28/17

DATE RECEIVED: 10/03/17

FINAL REPORT, LABORATORY ANALYSIS OF SELECTED PARAMETERS ON WATER

SAMPLES FROM JL ANALYTICAL / BEAR VALLEY WATER DISTRICT

CASE NARRATIVE

Six water samples were received by the laboratory in good condition and analyzed according to the chain of custody. No diffic ulties were encountered in the preparation or analysis of these samples. Sample data follows while QA/QC data is contained on the subsequent page.

SAMPLE DATA

			DISSOLVED METALS								
		MAGNESIUM	SODIUM	BORON	POTASSIUM	IRON	MANGANESE				
SAMPLE DESCRIPTION	LAB ID	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)				
MW #1	416678-01	4.30	5.65	< 0.030	2.84	< 0.030	0.148				
MW #2	416678-02	1.77	2.77	< 0.030	1.08	< 0.030	0.041				
MW #3	416678-03	1.77	4.96	< 0.030	1.45	< 0.030	< 0.010				
MW #4	416678-04	6.29	8.02	< 0.030	3.30	< 0.030	0.288				
MW #5	416678-05	3.26	4.89	< 0.030	2.86	< 0.030	0.059				
MW #6	416678-06	4.53	6.48	< 0.030	1.26	0.413	0.768				

		t	
		DISS. M	1ETALS
		CALCIUM	HARDNESS
SAMPLE DESCRIPTION	LAB ID	(mg/L)	(mgCaCO3/L)
MW #1	416678-01	16.5	58.8
MW #2	416678-02	6.11	22.5
MW #3	416678-03	6.78	24.2
MW #4	416678-04	20.6	77.4
MW #5	416678-05	8.56	34.8
MW #6	416678-06	18.3	64.4

IEH ANALYTICAL LABORATORIES

LABORATORY & CONSULTING SERVICES 3927 AURORA AVENUE NORTH, SEATTLE, WA 98103

PHONE: (206) 632-2715 FAX: (206) 632-2417

CASE FILE NUMBER: JLA070-42 PAGE 2

REPORT DATE: 10/20/17

09/28/17 DATE SAMPLED: 10/03/17 **DATE RECEIVED:**

FINAL REPORT, LABORATORY ANALYSIS OF SELECTED PARAMETERS ON WATER

SAMPLES FROM JL ANALYTICAL / BEAR VALLEY WATER DISTRICT

QA/QC DATA

QC PARAMETER	MAGNESIUM	SODIUM	BORON	POTASSIUM	IRON	MANGANESE
	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
METHOD	EPA 200.7					
DATE ANALYZED	10/05/17	10/05/17	10/05/17	10/05/17	10/05/17	10/05/17
REPORTING LIMIT	0.100	0.500	0.030	0.500	0.030	0.010
DUPLICATE						
CAMPIELD	D A TICKY	D A TICH				
SAMPLEID	BATCH	BATCH	BATCH	BATCH	BATCH	BATCH
ORIGINAL	<0.100	<0.500	0.060	<0.500	< 0.030	< 0.010
DUPLICATE	< 0.100	< 0.500	0.060	< 0.500	< 0.030	< 0.010
RPD	NC	NC	0.67%	NC	NC	NC
00000						
SPIKE SAMPLE						
SAMPLEID	BATCH	BATCH	BATCH	BATCH	BATCH	BATCH
ORIGINAL	<0.100	<0.500	0.060	<0.500	<0.030	<0.010
SPIKED SAMPLE	10.1	10.2	0.547	9.54	4.94	0.496
SPIKE ADDED	10.0	10.0	0.500	10.0	5.00	0.500
% RECOVERY	101.00%	102.00%	97.28%	95.40%	98.80%	99.20%
QC CHECK						
QC CITECK						
FOUND	10.2	9.89	0.497	9.77	0.525	0.515
TRUE	10.0	10.0	0.500	10.0	0.500	0.500
% RECOVERY	102.00%	98.90%	99.40%	97.70%	105.00%	103.00%
						1
BLANK	< 0.100	< 0.500	< 0.030	< 0.500	< 0.030	< 0.010

RPD = RELATIVE PERCENT DIFFERENCE. NA = NOT APPLICABLE OR NOT AVAILABLE.

NC = NOT CALCULABLE DUE TO ONE OR MORE VALUES BEING BELOW THE DETECTION LIMIT.
OR = RECOVERY NOT CALCULABLE DUE TO SPIKE SAMPLE OUT OF RANGE OR SPIKE TOO LOW RELATIVE TO SAMPLE CONCENTRATION.

IEH ANALYTICAL LABORATORIES

LABORATORY & CONSULTING SERVICES 3927 AURORA AVENUE NORTH, SEATTLE, WA 98103 PHONE: (206) 632-2715 FAX: (206) 632-2417

CASE FILE NUMBER: JLA070-42 PAGE 3

REPORT DATE: 10/20/17

DATE SAMPLED: 09/28/17 10/03/17 **DATE RECEIVED:**

FINAL REPORT, LABORATORY ANALYSIS OF SELECTED PARAMETERS ON WATER

SAMPLES FROM JL ANALYTICAL / BEAR VALLEY WATER DISTRICT

QA/QC DATA

QC PARAMETER	CALCIUM	HARDNESS
	(mg/L)	(mgCaCO3/L)
METHOD	EPA 200.7	SM18 2340B
DATE ANALYZED	10/05/17	10/05/17
REPORTING LIMIT	0.100	0.700
DUPLICATE		
SAMPLE ID	BATCH	BATCH
ORIGINAL	0.277	0.692
DUPLICATE	0.274	0.684
RPD	1.16%	1.16%
SPIKE SAMPLE		
SAMPLE ID	BATCH	
ORIGINAL	0.277	
SPIKED SAMPLE	10.0	
SPIKE ADDED	10.0	
% RECOVERY	97.33%	NA
QC CHECK		
FOUND	9.99	66.9
TRUE	10.0	66.2
% RECOVERY	99.90%	101.21%
BLANK	< 0.100	< 0.700

RPD = RELATIVE PERCENT DIFFERENCE.

NC = NOT CALCULABLE DUE TO ONE OR MORE VALUES BEING BELOW THE DETECTION LIMIT.
OR = RECOVERY NOT CALCULABLE DUE TO SPIKE SAMPLE OUT OF RANGE OR SPIKE TOO LOW RELATIVE TO SAMPLE CONCENTRATION.

SUBMITTED BY:

Damien Gadomski, PhD Laboratory Manager

amien Hademshi

BEAR VALLEY WATER DISTRICT – THIRD TRI-ANNUAL 2017 GROUNDWATER MONITORING REPORT

Appendix C Historical Groundwater Elevations and Quality January 11, 2018

Appendix C Historical Groundwater Elevations and Quality

Well	Date	Depth To GW (ft)	GW Elev. (ft, NAVD88)		Field EC (μS/cm)	Temp. (C)	ORP (mV)	Dissolved Oxygen (mg/L)	Lab SC (μS/cm)	CI (mg/L)	NO3-N (mg/L)	TKN (mg/L)	Ammo nia as N	TDS (mg/L)	B (mg/L)	Ca (mg/L)	Fe (mg/L)	Mg (mg/L)	Mn (mg/L)	K (mg/L)	Na (mg/L)	HCO3 as CaCO3 (mg/L)
MW-1	9/1/2004	10.29	7103.79	6.7	221	4.8				NR^3	<0.050	<1.0		166	NR^3		0.940		0.370		NR^3	
MW-1	10/13/2004	12.73	7101.35	6.9	180	6.2				3.4	<0.1	1	<1	150	0.05		< 0.02		0.350		7.0	
MW-1	8/11/2005	9.32	7104.76	6.5	150	6.4	71	5.5	160	1.2	<0.1	2	<1	200	< 0.03	19.0	0.210	5.2	0.280	2.0	6.0	71
MW-1	9/15/2005	9.54	7104.54	7.0	150	6.4	56	7.9	160	3.6	<0.1	<1	<1	150	< 0.03	20.0	0.730	5.3	0.300	4.0	6.0	76
MW-1	10/13/2005	9.50	7104.58	6.6	1482	7.1	138	7.5	170	2.2	<0.1	<1	<1	120	0.03	18.0	0.150	4.8	0.260	3.0	6.0	61
MW-1	6/29/2006	9.60	7104.48	6.9	125	5.1	103	1.7	140	1.6	<0.1	<1	<1	110	< 0.03	14.0	0.060	3.9	0.140	<1	5.0	55
MW-1	8/2/2006	8.25	7105.83	7.7	156	6.9	65	4.3	170	1.4	<0.1	<1	<1	150	< 0.03	20.0	< 0.02	5.0	0.280	4.0	7.0	75
MW-1	10/10/2006	8.08	7106.00	6.8	171	5.9	70	2.7	180	1.5	<0.1	<1	<1	160	< 0.03	22.0	0.130	5.7	0.360	2.0	7.0	70
MW-1	7/12/2007	10.10	7103.98	7.0	173	7.0	110	6.7	180	1.2	<0.1	<1	<1	220	< 0.03	23.0	0.130	5.8	0.370	5.0	6.0	87.8
MW-1	8/29/2007	9.00	7105.08	7.1	180	7.7	-2	4.9	200	1.5	<0.1	<1	<1	170	0.037	25.0	0.340	5.8	0.430	4.4	6.0	96
MW-1	9/26/2007	12.30	7101.78	7.2	189	7.4	-121	4.7	200	1.0	<0.1	<1	<1	170	< 0.03	23.0	0.140	6.0	0.380	4.0	6.7	100
MW-1	7/8/2008	10.25	7103.83	7.2	168	7.4	141	1.9	180	1.1	<0.1	<1	<1	170	< 0.03	21.0	0.060	6.0	0.270	4.0	6.0	65
MW-1	9/18/2008	9.70	7104.38	7.3	189	6.9	156	7.4	200	<1.0	<0.1	<1	<1	180	< 0.03	22.0	0.060	5.1	0.330	4.0	7.0	95
MW-1	1/16/2008	12.30	7101.78	7.6	180	6.4	78	7.1	190	1.2	<0.1	<0.1	<1	150	< 0.03	26.0	0.180	7.7	0.360	4.0	11.0	90
MW-1	7/7/2009	8.95	7105.13	7.2	168	6.8	469	6.2	180	8.0	<0.1	<1	<1	220	< 0.03	23.0	0.140	5.8	0.260	4.0	7.0	75
MW-1	9/30/2009	9.00	7105.08	6.2	194	6.8	52	1.9	190	0.6	<0.1	<1	<1	170	< 0.03	25.0	0.120	5.5	0.420	5.0	7.0	110
MW-1	10/26/2009	10.30	7103.78	2.7	142	6.3	281	1.0	190	1.1	0.3	1	<1	160	< 0.03	23.0	0.110	6.2	0.280	4.0	9.0	100
MW-1	7/13/2010	8.80	7105.28	6.4	150	6.0	402	1.7	150	1.9	<0.1	<1	<1	140	< 0.03	19.0	0.040	4.7	0.220	3.0	6.0	65
MW-1	8/24/2010	9.03	7105.05	7.0	185	6.1	43	0.9	190	0.9	<0.1	<1	<1	170	< 0.03	20.0	< 0.02	5.4	0.300	3.0	7.0	78
MW-1	11/4/2010	8.80	7105.28	5.9	173	6.3	132	2.0	170	2.2	<0.1	6	<1	140	< 0.03	18.0	< 0.02	4.3	0.310	3.0	6.0	76
MW-1	7/21/2011	8.10	7105.98	5.6	148	5.7	101	1.1	150	1.6	<0.1	<1	<1	130	< 0.03	14.7	0.017	4.1	0.200	2.9	4.6	76
MW-1	9/8/2011	9.54	7104.54	7.0	177	6.2	38	1.3	180	1.1	<0.1	2	<1	140	< 0.03	17.2	0.040	5.1	0.272	3.1	5.7	76
MW-1	10/20/2011	9.44	7104.64	6.6	167	5.7	61	1.5	170	1.6	<0.1	2	<1	140	< 0.03	17.3	0.060	4.3	0.280	3.3	5.4	87
MW-1	6/26/2012	9.00	7105.08	6.7	93	5.4	63	2.1	93	1.7	0.2	<1	<1	110	< 0.03	15.9	< 0.02	4.1	0.190	2.5	5.6	54
MW-1	7/31/2012	10.30	7103.78	7.0	197	8.5	103	0.1	200	0.7	<0.1	1	<1	150	< 0.03	23.9	0.081	5.8	0.263	3.6	6.6	99
MW-1	10/9/2012	12.40	7101.68	6.5	184	5.8	87	1.5	180	1.6	<0.2	2	<1	140	< 0.03	20.4	0.105	5.0	0.322	3.5	6.5	85
MW-1	5/30/2013	11.00	7103.08	6.4	153	6.1	198		150	1.7	<0.2	<1	<1	120	< 0.03	16.7	< 0.02	4.5	0.143	3.1	5.3	80
MW-1	8/21/2013	12.39	7101.69	6.6	177	8.1	276	2.3	180	1.5	<0.1	<1	<1	150	<0.03	18.6	0.080	4.6	0.280	3.3	5.3	85
MW-1	10/15/2013	12.95	7101.13	6.4	193	7.1	514	1.3	190	1.5	<0.2	<1	<1	150	<0.03	25.7	0.093	5.9	0.300	4.7	6.8	100
MW-1	6/12/2014	11.04	7103.04	6.2	130	6.4	266	2.9	130	2.6	<0.2	<1	<1	120	<0.03	14.4	<0.02	4.1	0.052	2.5	5.0	58
MW-1	8/12/2014	10.67	7103.41	7.4	157	6.7	258	2.3	160	2.4	<0.2	<1	<1	140	<0.03	18.9	<0.02	4.6	0.206	3.6	5.6	86
MW-1	10/14/2014	12.39	7101.69	7.2	189	6.7	264	0.3	190	1.0	<0.2	<1	<1	170	<0.03	21.8	<0.02	5.6	0.299	3.7	6.2	86
MW-1	6/17/2015	10.72	7103.36	7.2	138	6.8	306	1.8	140	5.2	<0.2	<1	<1	110	<0.03	12.5	<0.02	3.7	0.046	2.0	4.6	42
MW-1	9/9/2015	10.19	7103.89	6.6	165	6.7	241	2.7	170	2.2	<0.2	<1	<1	150	0.034	19.4	<0.03	5.0	0.203	3.7	5.9	80
MW-1	11/12/2015		7103.08	6.5	161	8.3	270		160	3.7	<0.2	<1	<1	160	<0.03	17.3	<0.03	4.6	0.205	3.0	5.1	68
MW-1	7/7/2016	8.89	7105.19	6.1	154	8.6			150	2.0	<0.2	<1	<1	110	<0.03	17.7	<0.03	4.6	0.108	2.9	5.4	86
MW-1	9/8/2016	11.11	7102.97	6.4	168	6.9				1.9	<0.1	0.62	<0.1	170	<0.03	19.1	<0.03	4.8	0.196	3.2	5.5	80
MW-1	10/20/2016		7104.60	6.4	172	6.5				2.1	<0.1	0.31	0.19	140	<0.03	20.5	0.043	5.1	0.236	3.6	5.8	81
MW-1	7/13/2017	10.09	7103.99	7.6	88	7.3			88	1.9	<0.4	<1	<1	92	<0.03	8.9	<0.03	2.7	0.016	1.3	4.5	37
MW-1	8/24/2017	9.85	7104.23	6.1	154	6.5			150	1.3	<0.4	<1	<1	130	<0.03	15.0	<0.03	4.6	0.128	3.0	5.5	62
MW-1	9/28/2017	10.45	7103.63	6.1	152	5.8			150	1.6	<0.4	<1	<1	130	<0.03	16.5	<0.03	4.3	0.148	2.8	5.7	60
MW-2	10/30/2002	12.25	7055.28	6.7						58.0	<0.050	NR ¹	<0.4	186	<0.10 ^T		79 ^T		1.13 ^T		19.8 ^T	_
MW-2	7/29/2003			7.1	112	9.2				NR^3	<0.1	1	<0.2	80	NR ³		NR^3		NR^3		NR ³	
MW-2	11/13/2003	10.95	7056.58	7.7						<1.0	<0.050*	NR^1	<0.4		<0.10 ^T		37 ^T		0.82^{T}		5.7 [™]	
MW-2	6/22/2004	3.76	7063.77	6.7	70	4.8				NR^3	<0.050	2	<0.4	82	NR^3		0.920		<0.02		NR^3	

Well	Date	Depth To GW (ft)	GW Elev. (ft, NAVD88)	Field pH	Field EC (μS/cm)	Temp.	ORP (mV)	Dissolved Oxygen (mg/L)	Lab SC (μS/cm)	CI (mg/L)	NO3-N (mg/L)	TKN (mg/L)	Ammo nia as N	TDS (mg/L)	B (mg/L)	Ca (mg/L)	Fe (mg/L)	Mg (mg/L)	Mn (mg/L)	K (mg/L)	Na (mg/L)	HCO3 as CaCO3 (mg/L)
MW-2	9/1/2004	8.86	7058.67	6.9	68	7.2	(1114)	(1119, 2)	(μο/οπή	NR ³	<0.050	1	<0.4	90	NR ³	(1119/ =)	0.590	(mg/L)	<0.02	(1119/12)	NR ³	(1119/12)
MW-2	10/13/2004	17.80	7049.73	6.5	63	11.4				2.2	<0.1	10	<1	96	0.03		0.020		0.110		3.0	
MW-2	8/11/2005	3.82	7063.71	6.2	50	11.9	11	1.1	54	<1	<0.1	2	<1	140	<0.03	5.5	0.310	1.8	0.040	1.0	2.0	25
MW-2	9/15/2005	8.00	7059.53	7.1	51	12.3	99	NS	56	- <1	0.1	2	0.5	130	<0.03	6.1	0.680	2.1	0.010	2.0	3.0	30
MW-2	10/13/2005	8.35	7059.18	6.8	59	10.0	1	9.4	67	<1	<0.1	- <1	<1	110	< 0.03	6.4	0.280	2.2	0.010	2.0	3.0	25
MW-2	6/29/2006	0.50	7067.03	7.9	45	12.5	133	0.6	48	<1	<0.1	<1	<1	93	< 0.03	4.6	0.100	1.5	<0.01	<1	2.0	20
MW-2	8/2/2006	7.24	7060.29	7.8	45	13.1	37	1.8	53	<1	<0.1	<1	<1	100	< 0.03	5.0	0.070	1.7	0.060	2.0	4.0	20
MW-2	10/10/2006	7.30	7060.23	6.8	66	7.9	160	7.6	75	2.3	<0.1	<1	<1	130	< 0.03	8.0	0.440	2.8	0.020	<1	4.0	25
MW-2	7/12/2007	8.10	7059.43	6.8	41	15.9	229	8.5	49	1.1	<0.1	0.7	<1	43	< 0.03	5.5	1.200	1.7	0.049	2.0	3.0	25
MW-2	8/29/2007	8.70	7058.83	7.3	67	16.0	150	6.4	75	1.9	0.1	<1	<1	100	< 0.03	7.8	0.970	2.2	0.100	2.2	3.0	35
MW-2	9/26/2007	10.30	7057.23	6.7	54	11.0	-121	12.0	65	2.0	0.1	<1	<1	130	< 0.03	5.2	0.023	1.7	0.015	2.0	3.0	30
MW-2	7/8/2008	2.90	7064.63	6.6	45	13.8	137	4.1	49	<1	<0.1	<1	<1	130	< 0.03	5.0	0.450	2.0	0.020	1.0	2.0	25
MW-2	9/18/2008	7.95	7059.58	6.7	115	13.1	764	13.1	99	6.8	0.2	3	<1	86	< 0.03	5.2	0.510	1.7	0.010	2.0	7.0	25
MW-2	10/16/2008	8.78	7058.75	7.5	52	18.3	214	7.6	56	1.6	0.2	<0.1	<1	97	< 0.03	5.7	0.220	1.7	0.010	1.0	3.0	25
MW-2	7/7/2009	6.30	7061.23	6.9	44	9.4	363	8.5	48	<0.2	<0.1	<1	<1	330	< 0.03	6.1	0.910	1.8	0.020	1.0	3.0	25
MW-2	9/30/2009	8.70	7058.83	6.0	59	8.4	85	0.0	61	0.9	<0.1	<1	<1	47	< 0.03	6.9	0.620	1.6	0.020	2.0	3.0	30
MW-2	10/26/2009	7.85	7059.68	6.1	47	9.0	480	4.2	61	1.8	0.5	<1	<1	54	<0.03	6.8	0.520	1.9	0.040	2.0	3.0	25
MW-2	7/13/2010	0.80	7066.73	6.1	43	9.3	134	0.3	43	1.4	<0.1	<1	<1	61	< 0.03	4.7	0.200	1.5	<0.01	<1	2.0	20
MW-2	8/24/2010	8.34	7059.19	6.3	47	9.8	136	7.9	47	0.5	<0.1	<1	<1	90	< 0.03	4.7	<0.02	1.5	<0.01	<1	2.0	22
MW-2	11/4/2010	0.70	7066.83	5.8	57	9.5	201	4.0	57	1.9	<0.1	3	<1	49	<0.03	6.4	0.080	1.8	0.010	<1	3.0	25
MW-2	7/21/2011	0.40	7067.13	6.2	42	7.2	179	0.4	42	<0.2	<0.1	<1	<1	59	< 0.03	4.5	0.116	1.4	0.200	8.0	1.8	22
MW-2	9/8/2011	4.40	7063.13	6.4	56	10.2	77	1.7	56	0.6	<0.1	2	<1	70	<0.03	5.3	1.540	2.1	0.014	1.0	2.6	27
MW-2	10/20/2011	3.30	7064.23	6.1	67	10.8	121	2.1	67	1.0	<0.1	1	<1	60	<0.03	6.5	0.034	2.0	<0.01	1.0	2.5	33
MW-2	6/26/2012	2.95	7064.58	6.2	40	9.9	70	0.7	40	0.3	<0.1	2	<1	53	<0.03	6.0	<0.02	1.9	<0.01	0.9	2.5	30
MW-2	7/31/2012	4.75	7062.78	6.3	74	9.7	139	0.9	74	8.0	<0.2	<1	<1	67	<0.03	8.4	0.054	2.7	<0.01	1.0	3.7	35
MW-2	10/9/2012	11.24	7056.29	5.9	100	9.0	691	2.6	100	8.7	<0.2	<1	<1	81	<0.03	7.0	0.029	2.1	0.220	1.4	8.6	30
MW-2	5/30/2013	1.00	7066.53	6.1	43	8.3	150		43	0.4	<0.2	<1	<1	53	<0.03	4.3	<0.02	1.4	<0.01	8.0	2.1	18
MW-2	8/21/2013	7.00	7060.53	5.2	50	11.8	231	2.2	50	8.0	<0.2	<1	<1	160	<0.03	5.8	0.197	1.8	0.168	1.4	3.0	28
MW-2	10/15/2013	12.41	7055.12	5.6	56	9.6	571	3.1	56	0.7	<0.2	<1	<1	87	<0.03	4.9	0.044	1.4	0.023	1.4	3.2	22
MW-2	6/12/2014	1.54	7065.99	5.9	47	7.7	83	4.1	47	0.3	<0.2	<1	<1	65	<0.03	4.5	<0.02	1.2	<0.01	0.9	2.3	18
MW-2	8/12/2014	7.94	7059.59	6.7	54	11.4	155	4.1	54	0.3	<0.2	<1	<1	85	<0.03	5.5	<0.02	1.7	0.023	5.8	2.6	28
MW-2	10/14/2014	10.28	7057.25	5.9	55	10.1	616	2.6	55	0.7	<0.2	<1	<1	120	<0.03	7.1	0.101	2.1	0.115	1.1	3.2	24
MW-2	6/17/2015	1.94	7065.59	7.7	47	9.2	78	0.4	47	0.3	<0.2	<1	<1	45	<0.03	4.8	<0.02	1.5	<0.01	1.0	2.4	30
MW-2	9/9/2015	10.31	7057.22	6.9	50	11.6	201	2.7	50	0.6	<0.2	<1	<1	70	<0.03	5.1	<0.03	1.6	0.042	1.6	2.8	40
MW-2	11/13/2015	8.81	7058.72	6.1	60	12.1	349		60	0.9	<0.2	<1	<1	90	<0.03	5.9	<0.03	1.9	0.023	1.0	2.4	26
MW-2	7/7/2016	2.29	7065.24	5.7	49	11.2			49	0.3	<0.2	<1	<1	54	<0.03	5.9	<0.03	1.5	<0.01	0.9	2.3	30
MW-2	9/8/2016	7.63	7059.90	6.3	70	10.6				1.3	<0.1	0.40	<0.1	180	<0.03	7.1	<0.03	2.2	<0.01	1.1	2.7	34
MW-2	10/20/2016	2.04	7065.49	5.8	64.5	10.3				2.2	0.2	0.35	0.14	54	<0.03	6.9	<0.03	2.1	<0.01	1.1	3.2	28
MW-2	7/13/2017	1.83	7065.70	7.2	46	10.7			46	0.3	<0.4	<1	<1	54	<0.03	7.1	0.077	2.0	0.160	1.0	3.0	16
MW-2	8/24/2017	6.57	7060.96	6.0	57	12.9			57	0.6	<0.4	<1	<1	55	<0.03	5.2	<0.03	1.8	0.022	1.2	2.9	22
MW-2	9/28/2017	8.45	7059.08	5.8	57	12.6			57	0.7	<0.4	1	<1	67	<0.03	6.1	<0.03	1.8	0.041	1.1	2.8	28

Well	Date	Depth To GW (ft)	GW Elev. (ft, NAVD88)	Field pH	Field EC (μS/cm)	Temp. (C)	ORP (mV)	Dissolved Oxygen (mg/L)	Lab SC (μS/cm)	CI (mg/L)	NO3-N (mg/L)	TKN (mg/L)	Ammo nia as N	TDS (mg/L)	B (mg/L)	Ca (mg/L)	Fe (mg/L)	Mg (mg/L)	Mn (mg/L)	K (mg/L)	Na (mg/L)	HCO3 as CaCO3 (mg/L)
MW-3	10/30/2002	6.38	7049.99	6.3						74.0	<0.050	NR ¹		256	<0.10 ^T		63 ^T		0.92 ^T		32 ^T	
MW-3	7/29/2003			6.4	98	6.9				NR ³	0.3	1		60	NR^3		NR ³		NR ³		NR^3	
MW-3	11/13/2003	6.30	7050.07	6.3		0.0				8.6	0.06*	NR ¹			<0.10 ^T		46 ^T		0.73 ^T		10.7 ^T	
MW-3	6/22/2004	2.45	7053.92	6.1	04	4.2				NR ³	0.52	2		122	NR ³		0.650		<0.02		NR ³	
					94					NR ³					NR ³						NR ³	
MW-3	9/1/2004	4.75	7051.62	6.6	100	7.2					0.63	<1.0		124			0.380		<0.02			
MW-3	10/13/2004	6.59	7049.78	6.1	85	8.9			7-	6.5	0.3	<1	<1	100	0.04	0.0	< 0.02	4 -	< 0.01	. 4	7.0	00
MW-3	8/11/2005	3.12	7053.25	6.3	70 70	7.5	59	4.4	75 70	5.0	0.5	<1	<1	88	< 0.03	6.2	0.040	1.7	< 0.01	<1	6.0	20
MW-3	9/15/2005	2.97	7053.40	6.1	78 NA	10.8	100	9.1	70	7.7	<0.1	<1	<1	82	< 0.03	5.9	0.070	1.5	< 0.02	2.0	6.0	25
MW-3	10/13/2005 6/29/2006	3.48 2.02	7052.89 7054.35	6.8	NM 50	10.1 6.3	84 190	4.4	92 56	11 3	0.4	2 <1	<1 -1	80 40	<0.03 <0.03	7.3 4.3	0.030	2.2 1.2	0.040	2.0	7.0 4.0	20
MW-3 MW-3	8/2/2006	2.02	7054.55	7.6 7.7	50 88	7.9	180 70	2.7 3.6	68	5 5	<0.1 0.2	<1	<1 <1	49 72	<0.03	4.3 5.4	0.030 <0.02	1.5	<0.01 <0.01	<1 2.0	6.0	20 20
MW-3	10/10/2006	3.15	7053.02	6.4	76	8.7	76 169	2.6	82	7.4	<0.2	2	<1	82	<0.03	6.6	<0.02	2.0	<0.01	<1	6.0	20
MW-3	7/12/2007	3.17	7053.20	6.2	59	10.4	249	4.2	66	4.3	0.2	<1	<1	91	<0.03	5.9	0.053	1.6	<0.01	2.0	8.0	28
MW-3	8/29/2007	3.40	7052.97	6.4	89	13.6	176	4.5	97	11.0	<0.1	<1	<1	71	<0.03	7.5	0.033	1.8	<0.01	1.7	6.0	25
MW-3	9/26/2007	5.00	7051.37	5.8	89	10.9	-109	7.8	96	11.0	0.1	<1	<1	90	< 0.03	7.5	<0.02	2.1	<0.01	2.0	7.0	30
MW-3	7/8/2008	2.50	7053.87	6.4	47	8.8	218	2.5	66	5.3	0.1	<1	<1	72	< 0.03	5.0	0.210	2.0	<0.01	1.0	6.0	35
MW-3	9/18/2008	3.85	7052.52	6.0	93	12.8	681	3.9	97	13.0	<0.1	<1	<1	94	< 0.03	6.8	< 0.02	1.9	<0.01	2.0	7.0	20
MW-3	10/16/2008	5.54	7050.83	7.0	101	11.6	109	5.1	110	16.0	<0.1	0.15	<1	94	< 0.03	10.0	< 0.02	2.7	<0.01	2.0	7.0	30
MW-3	7/7/2009	2.40	7053.97	6.1	77	6.0	680	1.4	81	11.0	0.5	<1	<1	100	< 0.03	7.1	0.060	1.9	<0.01	1.0	6.0	20
MW-3	9/30/2009	3.65	7052.72	5.5	106	12.4	211	1.7	110	12.0	<0.1	<1	<1	100	< 0.03	9.3	0.060	2.0	<0.01	3.0	8.0	40
MW-3	10/26/2009	4.10	7052.27	5.7	61	10.5	239	6.1	77	8.6	0.9	<1	<1	70	< 0.03	4.9	0.100	1.4	<0.01	2.0	6.0	15
MW-3	7/13/2010	2.10	7054.27	6.1	58	3.8	116	1.8	58	3.6	<0.1	<1	<1	60	<0.03	3.8	0.030	0.6	<0.01	<1	5.0	20
MW-3	8/24/2010	2.65	7053.72	5.8	79	11.8	153	8.0	79	6.1	<0.1	<1	<1	87	<0.03	6.3	<0.02	1.8	<0.01	<1	7.0	27
MW-3	11/4/2010	2.10	7054.27	5.6	105	9.8	157	0.7	110	12.0	<0.1	3.00	<1	92	<0.03	8.5	0.020	2.2	<0.01	<1	8.0	25
MW-3	7/21/2011	0.90	7055.47	6.2	52	3.6	113	2.3	52	2.4	<0.1	<1	<1	56	<0.03	3.9	<0.02	1.0	<0.01	0.9	3.8	16
MW-3	9/8/2011	2.45	7053.92	6.1	71 	9.5	122	0.5	71 	3.1	<0.1	2.00	<1	62	<0.03	5.1	<0.02	1.6	<0.01	1.1	5.3	22
MW-3	10/20/2011	2.14	7054.23	6.1	76	8.2	123	0.9	76	3.7	<0.1	1.00	<1	68	< 0.03	5.7	0.032	1.5	< 0.01	1.2	5.5	27
MW-3	6/26/2012	2.35	7054.02	6.0	48	6.3	84	0.4	48	3.8	<0.1	<1	<1	64	< 0.03	6.1	<0.02	1.7	< 0.01	1.3	6.4	30
MW-3	7/31/2012	2.86	7053.51	6.0	89 85	12.1	157	0.0	89 85	6.3	<0.2	<1	<1	69 70	< 0.03	7.7	0.330	2.0	0.029	1.4	6.1	35 35
MW-3 MW-3	10/9/2012 5/30/2013	5.98 2.20	7050.39 7054.17	5.7 5.0	85 54	9.4 7.0	436	1.2	85 54	5.3	<0.2	<1 ~1	<1 -1	72 60	<0.03	6.5	0.067	1.8 1.2	0.017	1.3	6.2	35 30
MW-3	8/21/2013	4.90	7054.17	5.9 4.2	73	9.3	147 359	1.6	54 73	3.4 5.0	<0.2 <0.2	<1 <1	<1 <1	60 68	<0.03 <0.03	4.3 5.2	0.039 0.042	1.4	0.031 0.017	0.9 1.1	4.7 5.3	20 18
MW-3	10/15/2013	6.11	7050.26	5.4	76	9.3 9.4	588	2.2	76	4.8	<0.2	<1	<1	79	<0.03	6.2	< 0.042	1.5	< 0.017	1.5	6.1	32
MW-3	6/12/2014	2.33	7054.04	5.7	61	5.2	66	0.6	61	3.9	<0.2	<1	<1	65	<0.03	4.5	<0.02	1.0	<0.01	1.1	5.3	20
MW-3	8/12/2014	4.62	7051.75	5.6	62	10.5	224	2.8	62	7.3	0.3	<1	<1	69	< 0.03	5.5	0.072	1.4	0.033	4.6	5.8	20
MW-3	10/14/2014	7.12	7049.25	5.5	70	9.1	187	0.1	70	4.5	<0.2	<1	- <1	64	<0.03	5.7	0.052	1.5	0.011	1.2	6.4	22
MW-3	6/17/2015	1.98	7054.39	7.8	68	6.7	197	4.6	68	4.1	0.3	<1	<1	63	<0.03	5.5	<0.02	1.4	<0.01	1.3	5.2	28
MW-3	9/9/2015	4.87	7051.50	7.4	67	9.0	164	3.3	67	3.8	<0.2	<1	<1	75	< 0.03	5.1	< 0.03	1.4	<0.01	1.6	5.5	42
MW-3	11/13/2015	5.78	7050.59	6.0	68	10.6	243		68	4.1	<0.2	<1	<1	67	< 0.03	5.3	< 0.03	1.5	<0.01	1.1	5.1	24
MW-3	7/7/2016	2.08	7054.29	5.7	68	5.7			68	5.3	<0.2	<1	<1	69	< 0.03	6.1	< 0.03	1.5	0.022	1.1	4.9	30
MW-3	9/8/2016	4.62	7051.75	5.5	87	12.7				9.6	<0.1	0.35	<0.1	66	<0.03	7.4	< 0.03	1.9	0.041	1.4	5.4	26
MW-3	10/20/2016	2.37	7054.00	5.8	88	9.1				9.9	<0.1	0.35	<0.1	71	<0.03	7.4	< 0.03	2.0	<0.01	1.5	6.1	27
MW-3	7/13/2017	2.19	7054.18	7.6	68	4.6			68	4.5	<0.4	<1	<1	60	<0.03	5.3	<0.03	1.4	<0.01	1.1	4.9	50
MW-3	8/24/2017	2.82	7053.55	6.0	79	11.7			79	4.3	<0.4	<1	<1	67	<0.03	6.0	<0.03	1.8	<0.01	1.6	5.3	38
MW-3	9/28/2017	3.53	7052.84	5.5	79	12.0			79	3.1	<0.4	2	<1	71	<0.03	6.8	<0.03	1.8	<0.01	1.5	5.0	40

			To GW	(ft,		Field EC	Temp.	ORP	Dissolved Oxygen	Lab SC	CI	NO3-N	TKN	Ammo nia as	TDS	В	Ca	Fe	Mg	Mn	K	Na	HCO3 as CaCO3
	Well	Date	(ft)	NAVD88)	рН	(μS/cm)	(C)	(mV)	(mg/L)	(μS/cm)	(mg/L)	(mg/L)	(mg/L)	N	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
	MW-4	10/30/2002	4.30	7050.49	7.0						44.0	<0.050	NR ¹		294	<0.10 ^T		370 ^T		14.8 ^T		42 ^T	
	MW-4	7/29/2003			7.2	231	6.0				NR ³	<0.1	<0.5		170	NR ³		NR ³		NR ³		NR^3	
	MW-4	11/13/2003	3.96	7050.83	7.2						5.5	0.05*	NR ¹			<0.10 ^T		49 ^T		2.06 ^T		10.5 ^T	
	MW-4	6/22/2004	2.88	7051.91	6.8	254	4.7				NR ³	0.05	<1.0		172	NR ³		0.110		0.080		NR ³	
	MW-4	9/1/2004	12.95	7041.84	6.4	278	7.3				NR ³	<0.050	<1.0		167	NR ³		0.170		0.190		NR ³	
	MW-4	10/13/2004	4.38	7050.41	6.8	230	8.8				6.9	<0.030	<1.0	<1	150	0.03		<0.02		0.130		9.0	
	MW-4	8/11/2005	3.22	7050.41	6.7	210	7.0	34	1.3	220	6.1	<0.1 <0.1	<1	<1	170	< 0.03	25.0	0.110	8.6	0.050	3.0	9.0	96
	MW-4	9/15/2005	3.10	7051.69	6.7	230	7.0	112	1.1	240	7.5	0.1	<1	<1	180	<0.03	26.0	<0.02	8.8	0.390	5.0	10.0	100
	MW-4	10/13/2005	3.20	7051.59	7.3	25	7.5	8	9.6	260	8.4	0.2	1	<1	160	< 0.03	28.0	0.760	9.2	1.300	4.0	10.0	110
	MW-4	6/29/2006	2.65	7052.14	7.2	193	5.0	165	1.5	200	4.8	0.1	<1	<1	130	< 0.03	22.0	0.020	7.4	0.030	2.0	8.0	90
	MW-4	8/2/2006	3.08	7051.71	8.3	186	8.2	94	0.7	200	5.9	<0.1	<1	<1	150	< 0.03	22.0	<0.02	7.4	0.030	5.0	9.0	85
	MW-4	10/10/2006	3.00	7051.79	6.9	205	6.9	101	1.5	210	6.1	<0.1	1	<1	160	<0.03	24.0	<0.02	7.9	0.050	<1	10.0	85
	MW-4	7/12/2007	3.70	7051.09	7.2	180	10.0	213	1.6	200	6.3	<0.1	0.1	<1	180	< 0.03	24.0	0.031	7.5	0.059	4.0	10.0	87
	MW-4	8/29/2007	3.30	7051.49	7.0	187	10.1	127	6.6	200	6.7	<0.1	<1	<1	140	< 0.03	22.0	0.160	7.3	0.073	4.1	8.0	91
1	MW-4	9/26/2007	3.60	7051.19	6.8	191	9.5	-106	9.4	210	6.4	<0.1	<1	<1	140	< 0.03	21.0	0.067	7.0	0.067	4.0	9.0	86
1	MW-4	7/8/2008	3.00	7051.79	6.9	203	8.2	216	1.1	220	6.6	<0.1	<1	<1	180	< 0.03	24.0	0.060	8.0	0.030	4.0	8.0	86
1	MW-4	9/18/2008	3.49	7051.30	7.0	196	9.5	476	2.4	210	6.3	<0.1	<1	<1	160	< 0.03	20.0	<0.02	6.5	<0.01	4.0	9.0	85
1	MW-4	10/16/2008	3.75	7051.04	7.7	191	9.5	133	6.2	210	6.3	<0.1	<0.1	<1	170	< 0.03	22.0	0.020	7.2	<0.01	4.0	9.0	90
	MW-4	7/7/2009	3.35	7051.44	7.0	207	7.3	476	5.6	220	6.6	0.4	2	<1	210	<0.03	25.0	0.040	8.2	0.040	4.0	9.0	95
	MW-4	9/30/2009	3.30	7051.49	4.5	199	8.1	243	3.9	200	7.2	<0.1	<1	<1	160	<0.03	23.0	0.080	7.0	<0.01	4.0	9.0	80
	MW-4	10/26/2009	3.35	7051.44	6.2	188	8.6	300	4.7	240	8.2	0.3	<1	<1	220	<0.03	25.0	0.030	7.5	0.260	3.0	9.0	90
	MW-4	7/13/2010	2.50	7052.29	6.6	227	5.5	105	0.6	230	6.9	<0.1	<1	<1	150	< 0.03	25.0	0.030	8.3	<0.01	4.0	9.0	100
	MW-4	8/24/2010	3.03	7051.76	6.4	228	6.9	83	0.2	230	7.1	<0.1	<1	<1	180	<0.03	23.0	<0.02	7.6	0.040	3.0	9.0	82
	MW-4	11/4/2010	2.15	7052.64	6.5	194	7.8	172	0.1	190	6.9	<0.1	<1	<1	140	<0.03	21.0	<0.02	6.5	0.040	3.0	8.0	75
	MW-4	7/21/2011	1.60	7053.19	6.9	208	5.3	104	0.4	210	4.8	<0.1	<1	<1	160	< 0.03	21.0	<0.02	7.1	< 0.01	3.7	7.4	92
	MW-4	9/8/2011	2.85	7051.94	6.9	215	6.6	84	0.2	220	6.2	<0.1	1	<1	150	< 0.03	18.4	< 0.02	7.2	0.019	3.1	7.8	87
	MW-4	10/20/2011	2.30	7052.49	7.0	191 125	7.3	88	0.2	190	6.1	<0.1	<1	<1	140	< 0.03	17.4	<0.02	5.8	0.079	3.2	7.4	70 80
	MW-4 MW-4	6/26/2012 7/31/2012	2.55 3.00	7052.24 7051.79	8.0 6.6	125 204	6.4 6.9	94 86	0.4 0.1	130 200	20.0 6.4	<0.1 <0.2	<1 2	<1 <1	130 150	<0.03 <0.03	22.2 22.4	<0.02 <0.02	7.5 7.0	0.022 0.012	3.4 3.4	9.5 8.6	89 84
	MW-4	10/9/2012	4.30	7051.79	5.8	191	8.1	357	1.0	190	6.4	<0.2	<1	<1	140	<0.03	18.2	0.020	7.0 5.9	0.012	3.4	8.3	75
	MW-4	5/30/2013	2.30	7052.49	6.4	210	6.1	109	1.0	210	6.9	<0.2	<1	<1	150	<0.03	20.8	< 0.020	7.2	0.040	3.5	7.7	86
	MW-4	8/21/2013	3.30	7051.49	6.5	200	8.2	448	0.4	200	6.8	<0.2	<1	<1	140	<0.03	18.8	<0.02	6.3	0.027	3.4	7.5	89
	MW-4	10/15/2013	4.31	7050.48	6.6	200	8.9	553	0.5	200	6.8	<0.2	<1	<1	150	< 0.03	21.8	< 0.02	6.5	0.014	4.0	8.2	91
	MW-4	6/12/2014	2.66	7052.13	5.6	227	6.1	129	0.3	230	7.3	<0.2	<1	<1	160	<0.03	23.1	<0.02	8.2	<0.01	4.1	8.5	89
	MW-4	8/12/2014	3.57	7051.22	6.9	208	7.9	213	0.1	210	6.8	<0.2	<1	<1	160	<0.03	21.8	0.026	6.9	0.068	4.0	8.5	92
	MW-4	10/14/2014	4.69	7050.10	6.7	201	9.0	574	0.1	200	6.8	<0.2	<1	<1	130	< 0.03	18.9	< 0.02	6.8	0.009	3.2	7.7	78
	MW-4	6/17/2015	2.41	7052.38	7.1	217	7.1	-7	0.1	220	6.9	<0.2	<1	<1	140	< 0.03	20.7	< 0.02	7.0	< 0.01	3.4	7.7	86
1	MW-4	9/9/2015	3.72	7051.07	6.7	203	9.1	109	0.2	200	6.8	<0.2	<1	<1	160	0.034	20.1	< 0.03	6.6	0.024	3.9	8.2	110
1	MW-4	11/13/2015	3.16	7051.63	6.8	189	8.9	253		190	7.7	<0.2	<1	<1	130	<0.03	18.4	<0.03	5.7	<0.01	11.4	8.2	78
1	MW-4	7/7/2016	2.82	7051.97	6.1	215	9.0			220	6.2	<0.2	<1	<1	150	<0.03	22.6	<0.03	7.2	0.014	3.6	8.1	22
1	MW-4	9/8/2016	3.58	7051.21	5.4	201	8.8				6.7	<0.1	0.66	<0.1	180	<0.03	20.9	<0.03	6.7	0.037	3.4	8.2	92
	MW-4	10/20/2016	2.29	7052.50	6.1	169	8.5				5.5	0.17	0.31	<0.1	120	<0.03	18.4	<0.03	5.9	<0.01	3.4	7.3	75
	MW-4	7/13/2017	2.36	7052.43	7.8	197	6.3			200	4.0	<0.4	<1	<1	140	<0.03	19.4	<0.03	6.5	<0.01	3.3	7.9	86
	MW-4	8/24/2017	2.82	7051.97	7.3	199	7.9			200	5.2	<0.4	<1	<1	140	< 0.03	17.2	< 0.03	6.5	<0.01	3.7	8.0	240
1	MW-4	9/28/2017	3.02	7051.77	6.0	201	9.4			200	5.9	<0.4	<1	<1	140	<0.03	20.6	<0.03	6.3	0.288	3.3	8.0	90

Well	Date	Depth To GW (ft)	GW Elev. (ft, NAVD88)		Field EC (μS/cm)	Temp. (C)	ORP (mV)	Dissolved Oxygen (mg/L)	Lab SC (μS/cm)	CI (mg/L)	NO3-N (mg/L)	TKN (mg/L)	Ammo nia as N	TDS (mg/L)	B (mg/L)	Ca (mg/L)	Fe (mg/L)	Mg (mg/L)	Mn (mg/L)	K (mg/L)	Na (mg/L)	HCO3 as CaCO3 (mg/L)
MW-5	9/1/2004	12.95	7190.83	6.6	307	6.4				NR ³	0.064	<1.0		276	NR ³		1.280		0.200		NR ³	
MW-5	10/13/2004	13.74	7190.04	6.2	230	8.9				28.0	<0.1	2	<1	340	0.08		< 0.02		0.230		18.0	
MW-5	8/11/2005	11.74	7192.04	6.3	110	15.7	51	4.2	120	5.5	<0.1	2	<1	180	< 0.03	1.0	0.620	4.4	0.060	1.0	6.0	45
MW-5	9/15/2005	12.50	7191.28	7.0	170	11.2	41	NS	120	5.8	0.1	<1	<1	170	< 0.03	12.0	0.750	4.6	0.130	3.0	7.0	51
MW-5	10/13/2005	9.27	7194.51	6.5	103	8.8	133	8.5	110	8.5	0.2	<1	<1	120	< 0.03	8.9	0.210	3.9	0.040	3.0	6.0	35
MW-5	6/29/2006	12.50	7191.28	7.6	71	14.7	159	6.5	81	4.1	<0.1	<1	<1	120	< 0.03	5.8	0.280	2.5	0.050	2.0	4.0	25
MW-5	8/2/2006	11.49	7192.29	8.4	34	19.8	98	5.0	98	8.0	<0.1	<1	<1	120	< 0.03	6.4	0.090	2.5	0.040	3.0	8.0	35
MW-5	10/11/2006	11.89	7191.89	5.8	93	8.4	186	5.7	110	3.6	<0.1	1	<1	170	< 0.03	12.0	0.540	4.6	0.060	<1	6.0	45
MW-5	7/12/2007	13.10	7190.68	6.1	142	13.9	226	NS														
MW-5	8/29/2007	13.50	7190.28	Well p	umped dry	before sar	npling															
MW-5	9/26/2007	13.70	7190.08		88	11.6	-87	8.9														
MW-5	7/8/2008	13.00	7190.78	7.3	104	15.1	136	NS														
MW-5	9/18/2008	13.80	7189.98	Well p	umped dry		npling															
MW-5	10/16/2008	13.95			umped dry																	
MW-5	7/7/2009	12.80	7190.98		214	11.0	818	8.1	130	4.8	0.3	<1	<1	230	< 0.03	11.0	0.430	3.8	0.100	2.0	10.0	45
MW-5	9/30/2009	13.30	7190.48	6.3	109	8.6	141	4.6	130	5.3	0.4	NS	NS	NS	0.23	9.9	< 0.02	3.4	0.050	2.0	22.0	NS
MW-5	10/26/2009	13.25	7190.53	Well p	umped dry	before sar	npling															
MW-5	7/13/2010	11.50	7192.28		94	8.0	158	2.5	94	5.1	<0.1	<1	<1	200	< 0.03	8.0	0.270	2.7	0.060	3.0	5.0	35
MW-5	8/24/2010	12.52	7191.26		95	11.0	129	7.1	95	4.8	<0.1	<1	<1	170	< 0.03	7.9	< 0.02	3.3	0.020	1.0	5.0	37
MW-5	11/4/2010	12.15	7191.63		98	7.4	209	6.5	98	5.5	<0.1	<1	<1	84	0.06	7.5	< 0.02	3.0	0.020	2.0	6.0	41
MW-5	7/21/2011	9.15	7194.63		74	5.7	115	4.4	74	3.6	<0.1	<1	<1	100	< 0.03	5.9	0.121	2.3	0.072	1.9	4.1	27
MW-5	9/8/2011	12.50	7191.28		101	8.0	102	5.7	100	4.0	<0.1	1	<1	150	< 0.03	8.2	2.400	4.0	0.056	2.2	5.1	43
MW-5	10/20/2011	11.58	7192.20		95	7.0	157	4.5	95	4.5	<0.1	<1	<1	150	< 0.03	8.1	0.216	3.0	0.012	2.2	4.1	38
MW-5	6/26/2012	12.70	7191.08		26	7.1	58	15.3	120	8.2	0.1	<1	<1	130	0.074	9.5	0.039	3.9	0.054	4.6	6.9	39
MW-5	7/31/2012	11.87	7191.91		106	9.7	231	5.3	110	4.7	<0.2	<1	<1	120	< 0.03	10.2	< 0.02	3.7	0.037	2.4	4.8	39
MW-5	10/9/2012	14.64			umped dry																	
MW-5	5/30/2013	13.20	7190.58		85	9.9	390		85	4.7	<0.2	<1	<1	140	< 0.03	6.6	0.151	2.7	0.049	1.5	4.8	38
MW-5	8/21/2013	12.99	7190.79		40	21.8	702	6.2	40	5.1	<0.2	<1	<1	110	< 0.03	6.2	0.074	2.3	0.016	1.7	3.9	26
MW-5	10/15/2013	14.06	7189.72		91	10.2	694	11.6	91	11.0	<0.2	<1	<1	160	< 0.03	6.8	< 0.02	2.6	< 0.01	2.4	10.1	33
MW-5	6/12/2014	13.11	7190.67		80	11.3	692	7.8	80	5.1	<0.2	<1	<1	240	< 0.03	6.9	0.046	3.0	<0.01	2.4	4.3	36
MW-5	8/12/2014	13.01	7190.77		111	3.3	279	3.3	110	6.0	<0.2	<1	<1	120	< 0.03	10.1	0.284	3.9	0.063	3.2	5.4	46
MW-5	10/14/2014		7189.55		pumped dr								-						-			
MW-5	6/17/2015	13.19	7190.59	4.5	106	11.7	418.2	6.9	110	6.4	<0.2	<1	<1	150	0.041	8.7	<0.02	3.5	0.137	2.6	4.8	42
MW-5	9/9/2015	12.44	7191.34	7.0	108	11.8	675.4	5.4	110	6.8	<0.2	<1	<1	220	< 0.03	9.6	< 0.03	3.9	0.078	3.3	5.5	46
MW-5	11/12/2015	13.23	7190.55	6.6	108	7.7	200.1		110	6.7	<0.2	<1	- <1	220	< 0.03	9.5	< 0.03	3.7	0.071	1.4	4.2	42
MW-5	7/7/2016	12.05	7191.73	5.6	110	9.3			110	6.3	<0.2	<1	<1	130	< 0.03	15.5	<0.03	5.1	0.034	3.2	6.5	46
MW-5	9/8/2016	13.26	7190.52	7.0	121	11.3			IVS	0.0	0.2	•	•	.00	0.00		0.00	0.1	0.00	0.2	0.0	.0
MW-5	10/20/2016				ould not pu																	
MW-5	7/13/2017	13.24			ould not pu																	
MW-5	8/24/2017	12.83	7190.95		111	10.4			110	5.3	<0.4	<2	<2	120	< 0.03	8.0	0.1	3.4	0.074	3.2	5.4	58
MW-5	9/28/2017	13.64	7190.14		108	6.7			110	5.2	<0.4	2	<1	120	<0.03	8.6	<0.03	3.3	0.059	2.9	4.9	34
MW-6	10/30/2002	6.45	7053.04	6.6						59.0	<0.050	NR ¹		376	<0.10 ^T		335 ^T		6.89 ^T		36 ^T	
MW-6	7/29/2003			7.1	457	7.5				NR^3	<0.1	< 0.5		260	NR^3		NR^3		NR^3		NR^3	
MW-6	11/13/2003	6.17	7053.32							6.9	<0.050*	NR ¹			<0.10 ^T		132 ^T		4.78 ^T		18.5 ^T	

Well	Date	Depth To GW (ft)	(ft, NAVD88)	рН	Field EC (μS/cm)	Temp. (C)	ORP (mV)	Dissolved Oxygen (mg/L)	Lab SC (μS/cm)	CI (mg/L)	NO3-N (mg/L)	TKN (mg/L)	Ammo nia as N	TDS (mg/L)	B (mg/L)	Ca (mg/L)	Fe (mg/L)	Mg (mg/L)	Mn (mg/L)	K (mg/L)	Na (mg/L)	HC0 Ca (m
MW-6	6/22/2004	2.14	7057.35	7.1	508	4.5				NR ³	<0.05	<1.0		280	NR ³		0.210		1.760		NR ³	
MW-6	9/1/2004	5.43	7054.06	6.8	479	6.5				NR^3	<0.050	<1.0		297	NR^3		0.390		2.190		NR^3	
MW-6	10/13/2004	6.39	7053.10	7.1	470	7.5				6.6	<0.1	<1	<1	320	0.03		< 0.02		2.100		16.0	
MW-6	8/11/2005	3.21	7056.28	6.9	470	6.9	14	1.5	500	7.0	<0.1	<1	<1	300	< 0.03	71.0	0.650	16.0	2.400	5.0	17.0	
MW-6	9/15/2005	4.71	7054.78	6.7	440	7.0	41	<0.2	460	7.1	0.2	1	<1	290	< 0.03	66.0	0.340	15.0	2.200	4.0	17.0	
MW-6	10/13/2005	5.15	7054.34	7.1	450	7.3	10	8.8	470	7.0	0.2	<1	<1	290	< 0.03	62.0	0.530	14.0	2.200	4.0	16.0	
MW-6	6/29/2006	1.11	7058.38	7.5	431	7.6	25	0.6	450	7.4	<0.1	<1	<1	270	< 0.03	62.0	0.290	14.0	2.100	<1	15.0	
MW-6	8/2/2006	3.63	7055.86	7.6	417	8.6	-38	0.5	460	6.7	<0.1	<1	<1	280	< 0.03	62.0	0.300	14.0	2.100	3.0	16.0	
MW-6	10/10/2006	5.60	7053.89	7.3	476	7.1	-12	2.5	500	6.7	<0.1	<1	<1	300	< 0.03	70.0	0.310	15.0	2.400	<1	17.0	
MW-6	7/12/2007	4.40	7055.09	7.1	434	8.0	52	2.3	460	6.3	<0.1	<1	<1	370	< 0.03	68.0	0.300	15.0	2.400	6.0	17.0	
MW-6	8/29/2007	5.90	7053.59	7.1	461	8.8	45	4.5	490	7.4	<0.1	<1	<1	280	< 0.03	69.0	0.430	15.0	2.600	4.3	17.0	
MW-6	9/26/2007	6.70	7052.79	6.9	473	8.4	-123	9.9	500	7.2	<0.1	<1	<1	280	< 0.03	65.0	0.520	15.0	2.500	5.0	16.0	
MW-6	7/8/2008	3.00	7056.49	7.0	473	8.1	21	3.1	500	6.9	<0.1	<1	<1	330	< 0.03	67.0	0.450	16.0	2.300	4.0	15.0	
MW-6	9/18/2008	6.13	7053.36	7.1	490	8.1	78	2.7	510	6.7	<0.1	<1	<1	390	< 0.03	69.0	0.220	16.0	2.400	4.0	17.0	
MW-6	10/16/2008	6.85	7052.64	7.3	481	7.1	18	8.3	510	7.0	<0.1	<0.1	<1	320	< 0.03	70.0	0.580	16.0	2.700	4.0	16.0	
MW-6	7/7/2009	2.70	7056.79	7.2	490	7.3	232	2.0	500	7.1	<0.1	<1	<1	370	< 0.03	71.0	0.900	16.0	2.800	4.0	16.0	
MW-6	9/30/2009	6.50	7052.99	6.8	464	7.3	-32	1.8	510	7.3	<0.1	<1	<1	320	< 0.03	71.0	0.630	15.0	2.900	5.0	16.0	
MW-6	10/26/2009	5.40	7054.09	6.7	389	7.1	24	0.3	520	7.2	<0.1	<1	<1	320	< 0.03	68.0	1.000	15.0	2.700	4.0	16.0	
MW-6	7/13/2010	1.70	7057.79	6.8	485	5.5	-98	0.5	490	7.0	<0.1	<1	<1	310	< 0.03	66.0	0.620	15.0	2.600	4.0	16.0	
MW-6	8/24/2010	4.66	7054.83	6.7	497	6.3	-25	0.3	500	6.4	<0.1	<1	<1	430	< 0.03	64.0	< 0.02	15.0	2.700	3.0	19.0	
MW-6	11/4/2010	1.05	7058.44	6.5	479	6.9	-22	0.4	480	6.3	<0.1	<1	<1	330	< 0.03	63.0	0.710	14.0	3.100	2.0	15.0	
MW-6	7/21/2011	0.70	7058.79	7.0	492	5.5	43	0.3	490	6.6	<0.1	<1	<1	320	< 0.03	55.1	0.582	14.0	2.160	4.3	15.7	
MW-6	9/8/2011	4.33	7055.16	7.0	507	6.3	-38	0.4	510	6.1	<0.1	<1	<1	280	< 0.03	57.3	0.616	15.8	2.530	3.5	13.6	
MW-6	10/20/2011	1.86	7057.63	6.6	416	6.5	17	0.7	420	4.0	<0.1	<1	<1	250	< 0.03	43.8	0.793	11.9	2.380	3.7	13.5	
MW-6	6/26/2012	2.60	7056.89	6.8	310	5.2	62	1.1	310	6.2	<0.1	<1	<1	300	< 0.03	66.8	0.724	16.8	4.090	3.7	15.6	
MW-6	7/31/2012	4.65	7054.84	6.8	516	6.4	29	0.1	520	6.1	<0.2	<1	<1	310	< 0.03	65.1	0.493	15.2	2.920	3.8	15.1	
MW-6	10/9/2012	7.80	7051.69	6.7	525	6.7	28	1.3	530	6.4	<0.2	<1	<1	340	< 0.03	60.9	0.812	15.3	2.280	4.1	15.0	
MW-6	5/30/2013	6.48	7053.01	6.5	375	6.2	-3		380	4.7	<0.2	<1	<1	250	< 0.03	44.0	0.107	10.6	2.070	3.3	12.3	
MW-6	8/21/2013	5.10	7054.39	6.5	469	8.5	18	0.5	470	6.1	<0.2	<1	<1	270	< 0.03	54.2	0.644	13.4	2.700	3.9	13.9	
MW-6	10/15/2013	6.71	7052.78	6.3	523	7.5	52	8.0	520	6.4	<0.2	<1	<1	310	< 0.03	76.4	0.698	16.2	2.700	4.4	16.2	
MW-6	6/12/2014	2.60	7056.89	5.9	455	5.9	7	0.4	490	6.2	<0.2	<1	<1	310	< 0.03	62.1	0.521	15.4	2.780	4.6	14.7	
MW-6	8/12/2014	4.90	7054.59	5.7	529	7.4	42	0.1	530	6.6	<0.2	2	<1	370	< 0.03	72.7	0.747	16.0	2.870	4.9	15.7	
MW-6	10/14/2014	6.96	7052.53	6.5	549	7.5	48	0.5	550	6.8	<0.2	<1	<1	370	< 0.03	67.6	0.736	17.5	2.910	4.3	14.9	
MW-6	6/17/2015	2.12	7057.37	7.4	342	6.6	49	0.1	340	4.0	0.3	<1	<1	240	0.03	39.3	< 0.02	9.5	1.850	2.4	10.5	
MW-6	9/9/2015	4.50	7054.99	6.5	457	8.4	96	0.8	460	5.2	<0.2	<1	<1	280	0.045	57.2	0.656	13.7	2.710	3.3	14.2	
MW-6	11/12/2015	0.00	7059.49	6.2	209	8.1	93		210	9.7	<0.2	<1	<1	120	< 0.03	23.8	0.176	6.0	0.815	1.4	7.5	
MW-6	7/7/2016	2.15	7057.34	6.3	325	7.1			330	4.5	<0.2	<1	<1	190	< 0.03	40.6	0.800	9.5	1.840	2.6	11.0	
MW-6	9/8/2016	5.84	7053.65	6.2	451	7.8				6.0	<0.1	0.31	0.1	280	< 0.03	59.4	0.838	13.9	2.840	3.3	14.5	
MW-6	10/20/2016	3.53	7055.96	6.9	362	7.3				4.7	<0.1	0.44	0.11	230	< 0.03	48.5	0.812	11.5	2.090	2.9	12.3	
MW-6	7/13/2017	1.41	7058.08	7.4	375	5.9			380	4.4	<0.4	<1	<1	230	< 0.03	45.9	0.823	10.9	2.240	3.0	12.4	
MW-6	8/24/2017	1.65	7057.84	6.4	216	7.8			220	2.3	<0.4	<1	<1	130	< 0.03	22.3	0.422	6.3	1.160	1.9	8.3	
MW-6	9/28/2017	1.58	7057.91	6.1	167	7.9			170	2.1	<0.4	<1	<1	110	<0.03	18.3	0.413	4.5	0.768	1.3	6.5	
Discharge Pump	8/11/2005								190	13.0	<0.1	12	8.5	120	<0.03	6.8	0.630	1.3	0.200	3.0	14.0	
Discharge Pump	9/15/2005							0.3	250	17.0	1.1	8	6.4	140	0.06	7.5	1.000	1.8	0.050	5.0	23.0	
Discharge Pump	10/13/2005								290	20.0	1.7	13	11.0	150	0.06	6.8	0.840	1.7	0.040	6.0	24.0	

Moil Date Treatment Pond B/11/2005 Field Size Field Field EC Temp. ORP ORP Oxygen Lab SC CI NO3-N (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) N (mg/L) (mg/L) (mg/L) N (mg/L) (mg/L) (mg/L) N (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/	
Well Date (ft) NAVB8) pH (µS/cm) (C) (mV) (mg/L) (µS/cm) (mg/L)	HCO3 as
Discharge Pump 6/29/2006 180 13.0 0.1 8 7.0 100 0.04 6.8 2.600 1.4 0.500 7.0 13.0	CaCO3
Discharge Pump 8/2/2006 17.0 0.1 12 9.0 120 0.05 7.1 0.940 4.5 0.060 6.0 18.0 150 16.0 0.7 12 10.0 100 0.06 8.1 0.400 2.0 0.050 < 1 23.0 2.0	(mg/L)
Discharge Pump	55
Discharge Pump 7/12/2007 7/12/2007 7/12/2008 7.3 225 20.0 98 3.1 240 15.0 <0.1 <1 <1 140 0.05 13.0 1.800 3.0 0.460 6.0 17.0 18.0	70
Discharge Pump 7/8/2008 7.3 225 20.0 98 3.1 240 15.0 <0.1 <1 <1 140 0.05 13.0 1.800 3.0 0.460 6.0 18.0 Discharge Pump 9/18/2008 8.3 143 18.6 219 8.8 230 22.0 <0.1 <1 <1 230 0.07 3.2 3.000 0.6 0.150 5.0 25.0 25.0 Discharge Pump 10/16/2008 320 21.0 0.5 4.97 <1 250 0.08 16.0 1.300 3.4 0.120 7.0 34.0 Discharge Pump 7/7/2009 7/7/2	70
Discharge Pump 9/18/2008 8.3 143 18.6 219 8.8 230 22.0 <0.1 <1 <1 230 0.07 3.2 3.000 0.6 0.150 5.0 25.0	52.8
Discharge Pump 10/16/2008 320 21.0 0.5 4.97 <1 250 0.08 16.0 1.300 3.4 0.120 7.0 34.0	75
Discharge Pump 7/7/2009 300 19.0 <0.1 14.00 <1 180 0.05 12.0 1.500 2.1 0.290 6.0 23.0	28
Treatment Pond 8/11/2005 Treatment Pond 9/15/2005 Treatment Pond 10/13/2005 Treatment Pond 10/13/2005 Treatment Pond 6/29/2006 Treatment Pond 8/2/2006 Treatment Pond 8/2/2006 Treatment Pond 10/11/2006 Treatment Pond 7/12/2007 Treatment Pond 7/8/2008 Treatment Pond 7/8/2	15
Treatment Pond 9/15/2005 2.8 260 17.0 2.1 10 8.1 130 0.07 8.5 0.120 1.8 0.030 6.0 24.0 Treatment Pond 10/13/2005 290 20.0 1.7 15 11.0 150 0.05 9.8 0.210 2.4 0.090 6.0 22.0 Treatment Pond 6/29/2006 180 10.0 0.1 9 8.0 91 0.03 6.1 0.290 1.3 0.040 5.0 22.0 Treatment Pond 8/2/2006 230 13.0 0.1 13 9.0 130 <0.03 <0.03 0.580 4.6 0.040 5.0 18.0 Treatment Pond 10/11/2006 340 17.0 1.1 19 16.0 150 0.09 10.0 0.620 2.2 0.030 <1 30.0 Treatment Pond 7/12/2007 270 16.0 0.2 18 11.6 240 0.042 9.7 0.550 1.9 0.070 8.0 25.0 Treatment Pond 7/8/2008 7.8 281 26.2 102 3.0 300 16.0 0.4 14 <1 180 0.06 9.0 0.470 2.0 0.040 7.0 25.0	95
Treatment Pond 10/13/2005 Treatment Pond 6/29/2006 Treatment Pond 8/2/2006 Treatment Pond 10/11/2006 Treatment Pond 10/11/2006 Treatment Pond 7/8/2008	30
Treatment Pond 6/29/2006 Treatment Pond 8/2/2006 Treatment Pond 10/11/2006 Treatment Pond 7/12/2007 Treatment Pond 7/8/2008 Tr	66
Treatment Pond 8/2/2006 230 13.0 0.1 13 9.0 130 <0.03 <0.03 0.580 4.6 0.040 5.0 18.0 17	76
Treatment Pond 10/11/2006 340 17.0 1.1 19 16.0 150 0.09 10.0 0.620 2.2 0.030 <1 30.0 Treatment Pond 7/12/2007 270 16.0 0.2 18 11.6 240 0.042 9.7 0.550 1.9 0.070 8.0 25.0 Treatment Pond 7/8/2008 7.8 281 26.2 102 3.0 300 16.0 0.4 14 <1	55
Treatment Pond 7/12/2007 270 16.0 0.2 18 11.6 240 0.042 9.7 0.550 1.9 0.070 8.0 25.0 Treatment Pond 7/8/2008 7.8 281 26.2 102 3.0 300 16.0 0.4 14 <1	75
Treatment Pond 7/8/2008 7.8 281 26.2 102 3.0 300 16.0 0.4 14 <1 180 0.06 9.0 0.470 2.0 0.040 7.0 25.0	110
	90.8
Treatment Pond 9/18/2008 7.3 401 16.0 213 7.8 420 20.0 0.7 22 16.0 240 0.08 11.0 0.520 2.0 0.060 10.0 35.0	50
	190
Treatment Pond 10/16/2008 400 21.0 1.4 23 <1 200 0.08 12.0 0.340 2.3 0.020 10.0 36.0	130
Treatment Pond 7/7/2009 250 14.0 1 12 <1 200 0.04 9.9 0.310 1.8 0.050 6.0 20.0	75
Bloods Creek Upstream 8/11/2005 67 2.0 <0.1 2 <1 86 <0.03 6.5 0.360 1.6 0.020 <1 5.0	30
Bloods Creek Upstream 6/20/2006 34 1.2 < 0.1 <1 <1 46 < 0.03 3.1 < 0.02 0.7 < 0.01 <1 1.0	10
Bloods Creek Upstream 7/12/2007 57 1.1 <0.1 <1 69 <0.03 6.5 0.210 1.3 0.060 2.0 5.0	25.6
Bloods Creek Upstream 7/8/2008 7.2 66 24.6 204 5.8 51 1.8 <0.1 <1 <1 64 <0.03 5.0 0.170 1.0 0.020 2.0 5.0	24
Bloods Creek Upstream 7/7/2009 56 2.2 <0.1 <1 <1 100 <0.03 5.9 0.280 1.3 0.040 1.0 4.0	15
Bloods Creek Downstream 8/11/2005 76 3.2 <0.1 2 <1 100 0.05 7.3 0.160 1.7 0.020 6.0 20.0	81
Bloods Creek Downstream 6/20/2006 40 1.4 <0.1 <1 84 <0.03 3.7 0.050 0.9 <0.01 <1 1.0	15
Bloods Creek Downstream 7/12/2007 71 2.6 <0.1 <1 <1 110 <0.03 7.7 0.340 2.1 0.020 6.0 5.0	30
Bloods Creek Downstream 7/8/2008 7.3 61 25.0 178 6.7 65 2.8 <0.1 <1 <1 98 <0.03 6.0 0.220 2.0 <0.01 1.0 3.0	25
Bloods Creek Downstream 7/7/2009 64 2.9 <0.1 <1 <1 110 <0.03 6.8 0.290 1.6 <0.01 1.0 4.0	30

Bear Valley Water District

Historic Groundwater Quality

					Total				Hardness				Amma
		HCO3 as	CO3 as	OH as	Alkalinity as			Fecal	Hardness as		***Total	Lab pH	Ammo nia as
		HCO3	CaCO3	CaCO3	CaCO3	Sulfate	Total Coliform	Coliform	CaCO3	NO2-N	Nitrogen	(std	NH3
Well	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(MPN/100ml)	(MPN/100ml)	(mg/l)	(mg/L)	(mg/L)	units)	(mg/L)
 MW-1	9/1/2004	(0)	()	· U /	(0 /	· • • ·	28	2	(0 /	NR ²	NR ²	6.9	<0.50
MW-1	10/13/2004						<2	<2		NR^2	1.0	7.3	
MW-1	8/11/2005	87	<1	<1	71	3.7	<2	<2		<0.1	2.0	7.2	
MW-1	9/15/2005	93	<1	<1	76	3.9	<2	<2		<0.1	<1	6.7	
MW-1	10/13/2005	74	<1	<1	61	3.0	2	<2		<0.1	<1	6.8	
MW-1	6/29/2006	67	<1	<1	55	0.6	- <2	- <2		<0.1	<1	5.9	
MW-1	8/2/2006	91	<1	- <1	75	3.7	21	8		<0.1	<1	6.8	
MW-1	10/10/2006	85	<1	<1	70	3.6	<2	<2		<0.1	<1	6.6	
MW-1	7/12/2007	107	<1	<1	88	3.7	2	- <2		<0.1	<1	7.2	
MW-1	8/29/2007	117	<1	<1	96	4.5	_ 14	2		<0.1	<1	7.4	
MW-1	9/26/2007	122	<1	<1	100	4.3	<2	- <2		<0.1	<1	7.3	
MW-1	7/8/2008	79	<1	<1	65	4.0	4	- <2		<0.1	<1	7.0	
MW-1	9/18/2008	116	<1	<1	95	4.3	230	30		<0.1	<1	7.3	
MW-1	1/16/2008	109	<1	<1	90	4.5	11	4		<0.1	<1	7.2	
MW-1	7/7/2009	91	<1	- <1	75	5.6	2	<2		<0.2	<1	7.3	
MW-1	9/30/2009	134	<1	<1	110	4.5	8	4		<0.1	<1	7.0	
MW-1	10/26/2009	122	<1	<1	100	5.1	80	11		<0.1	1.3	7.5	
MW-1	7/13/2010	79	<1	<1	65	4.4	<2	<2		<0.1	<1	6.4	
MW-1	8/24/2010	95	<1	- <1	78	4.7	2	- <2		<0.1	<1	7.0	
MW-1	11/4/2010	93	<1	- <1	76	3.3	_ 17	2		<0.1	6.0	5.9	
MW-1	7/21/2011	93	<1	- <1	76	3.6	<2	- <2		<0.1	<1	5.6	
MW-1	9/8/2011	93	<1	<1	76	4.7	<2	- <2		<0.1	2.0	7.0	
MW-1	10/20/2011	106	<1	<1	87	4.6	4.5	- <2		<0.1	2.0	6.6	
MW-1	6/26/2012	66	<1	- <1	54	3.1	<1.8	<1.8	56.4	<0.1	0.2	6.7	
MW-1	7/31/2012	121	<1	<1	99	3.9	2	<1.8		<0.1	1.0	7.0	
MW-1	10/9/2012	104	- <1	- <1	85	4.4	<1.8	<1.8		<0.2	2.0	6.5	
MW-1	5/30/2013	98	<1	<1	80	4.3	<1.8	<1.8	60.2	<0.2	<1	6.4	
MW-1	8/21/2013	104	<1	- <1	85	4.4	<1.8	<1.8	65.4	<0.2	<1	6.6	
MW-1	10/15/2013	122	<1	<1	100	4.3	<1.8	<1.8	88.6	<0.2	<1	6.4	
MW-1	6/12/2014	71	<1	<1	58	4.6	<1.8	<1.8	52.7		-	6.2	
MW-1	8/12/2014	105	<1	<1	86	4.4	<1.8	<1.8	66.0			7.4	
MW-1	10/14/2014	105	<1	<1	86	4.0	<1.8	<1.8	77.6			7.2	
MW-1	6/17/2015	51	<1	<1	42	3.6	<1.8	<1.8					
MW-1	9/9/2015	98	- <1	<1	80	4.2	<1.8	<1.8	69.2			6.6	
MW-1	11/12/2015	83	<1	<1	68	4.2	17	<1.8	62.0			6.5	
MW-1	7/7/2016	105	- <1	<1	86	3.6	<1.8	<1.8	63.4				
MW-1	9/8/2016	98	<10	<10	80	3.5	<1.8	<1.8					
MW-1	10/20/2016	99	<10	<10	81	3.1	230	6.8					
MW-1	7/13/2017	41	<1	<1	34	2.3	5400	<1.8					
MW-1	8/24/2017	76	<1	<1	62	4.5	490	<1.8					
MW-1	9/28/2017	73	<1	<1	60	4.5	1.8	<1.8	58.8				
MW-2	10/30/2002						>2400	NR ²		<0.020	NR ²		<0.50
MW-2	7/29/2003						6	4		NR^2	NR^2	6.7	<0.2
MW-2	11/13/2003						2	NR ²		<0.050*	NR^2	6.7	<0.50
										NR ²	NR ²		
MW-2	6/22/2004						2	<2		INK	INK	6.5	<0.50

					Total Alkalinity	,			Hardness				Ammo
		HCO3 as	CO3 as	OH as	as			Fecal	as		***Total	Lab pH	
		HCO3	CaCO3	CaCO3	CaCO3	Sulfate	Total Coliform	Coliform	CaCO3	NO2-N	Nitrogen	(std	NH3
Well	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(MPN/100ml)	(MPN/100ml)	(mg/l)	(mg/L)	(mg/L)	units)	(mg/L)
MW-2	9/1/2004						<2	<2		NR ²	NR^2	6.5	<0.50
MW-2	10/13/2004						4	<2		NR ²	10.0	7.1	
MW-2	8/11/2005	30	<1	<1	25	<0.5	<2	<2		<0.1	2.0	6.9	
MW-2	9/15/2005	37	<1	<1	30	0.6	<2	<2		<0.1	2.1	6.5	
MW-2	10/13/2005	30	<1	<1	25	<0.5	30	<2		<0.1	<1	6.5	
MW-2	6/29/2006	24	<1	<1	20	<0.5	<2	<2		<0.1	<1	5.6	
MW-2	8/2/2006	24	<1	<1	20	<0.5	<2	<2		<0.1	<1	6.1	
MW-2	10/10/2006	30	<1	<1	25	<0.5	<2	<2		<0.1	<1	6.0	
MW-2	7/12/2007	30	<1	<1	25	<0.5	2	2		<0.1	0.7	6.8	
MW-2	8/29/2007	43	<1	<1	35	1.6	<2	<2		<0.1	<1	7.0	
MW-2	9/26/2007	37	<1	<1	30	1.4	2	<2		<0.1	<1	6.7	
MW-2	7/8/2008	30	<1	<1	25	<0.5	220	<2		<0.1	<1	6.5	
MW-2	9/18/2008	30	<1	<1	25	0.6	<2	<2		<0.1	3.2	6.9	
MW-2	10/16/2008	30	<1	<1	25	0.6	2	<2		<0.1	<1	7.0	
MW-2	7/7/2009	30	<1	<1	25	0.5	2	<2		<0.2	<1	7.0	
MW-2	9/30/2009	37	<1	<1	30	< 0.5	8	<2		<0.1	<1	6.8	
MW-2	10/26/2009	30	<1	<1	25	<0.5	2200	800		<0.1	0.5	6.7	
MW-2	7/13/2010	24	<1	<1	20	<0.5	11	<2		<0.1	<1	6.1	
MW-2	8/24/2010	27	<1	<1	22	<0.5	23	<2		<0.1	<1	6.3	
MW-2	11/4/2010	30	<1	<1	25	<0.5	500	4		<0.1	3.0	5.8	
MW-2	7/21/2011	27	<1	<1	22	<0.5	13	<2		<0.1	<1	6.2	
MW-2	9/8/2011	33	<1	<1	27	<0.5	2	<2		<0.1	2.0	6.4	
MW-2	10/20/2011	40	<1	<1	33	<0.5	79	<2		<0.1	1.0	6.1	
MW-2	6/26/2012	37	<1	<1	30	<0.5	<1.8	<1.8	22.7	<0.1	2.0	6.2	
MW-2	7/31/2012	43	<1	<1	35	<0.5	23	11		<0.2	<1	6.3	
MW-2	10/9/2012	37	<1	<1	30	8.0	<1.8	<1.8		<0.2	<1	5.9	
MW-2	5/30/2013	22	<1	<1	18	0.5	4.5	<1.8	16.5	<0.2	<1	6.1	
MW-2	8/21/2013	34	<1	<1	28	0.6	4.5	<1.8	21.8	<0.2	<1	5.2	
MW-2	10/15/2013	27	<1	<1	22	0.6	4	<1.8	17.8	<0.2	<1	5.6	
MW-2	6/12/2014	22	<1	<1	18	0.5	4.5	<1.8	16.3			5.9	
MW-2	8/12/2014	34	<1	<1	28	0.6	21	<1.8	20.9			6.7	
MW-2	10/14/2014		<1	<1	24	0.6	<1.8	<1.8	26.5			5.9	
MW-2	6/17/2015	36	<1	<1	30	<0.5	<1.8	<1.8					
MW-2	9/9/2015	49	<1	<1	40	0.8	<1.8	<1.8	19.5			6.9	
MW-2	11/13/2015		<1	<1	26	<0.5	6.8	2	22.5			6.1	
MW-2	7/7/2016	37	<1	<1	30	<0.5	<1.8	<1.8	19.2			J. 1	
MW-2	9/8/2016	41	<10	<10	34	<0.5	<1.8	<1.8					
MW-2	10/20/2016		<10	<10	28	<0.5	170	170					
MW-2	7/13/2017	19	<1	<1	16	<0.5	<1.8	<1.8					
MW-2	8/24/2017	27	<1	<1	22	<0.5	1300	<1.8					
MW-2	9/28/2017	34	<1	<1	28	<0.5	2	<1.8	22.5				

					Total								
					Alkalinity				Hardness	•			Ammo
		HCO3 as		OH as	as			Fecal	as		***Total	Lab pH	nia as
		HCO3	CaCO3	CaCO3	CaCO3	Sulfate	Total Coliform	Coliform	CaCO3	NO2-N	Nitrogen	(std	NH3
Well	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(MPN/100ml)	(MPN/100ml)	(mg/l)	(mg/L)	(mg/L)	units)	(mg/L)
								2			2		
MW-3	10/30/2002						>2400	NR ²		<0.020	NR ²		<0.50
MW-3	7/29/2003						1600	80		NR^2	NR^2	6.6	<0.2
MW-3	11/13/2003						9	NR^2		0.06*	NR^2	6.0	**
MW-3	6/22/2004						9	<2		NR^2	NR^2	6.0	<0.50
MW-3	9/1/2004						<2	<2		NR^2	NR^2	6.2	<0.50
MW-3	10/13/2004						- <2	- <2		NR ²	0.3	6.7	0.00
MW-3	8/11/2005	24	<1	<1	20	1.9	2	<2		<0.1	<1	6.2	
MW-3	9/15/2005	30	<1	<1	25	1.4	30	8		<0.1	<1	5.9	
MW-3	10/13/2005	24	<1	<1	20	1.8	9	<2		<0.1	2.4	6.1	
MW-3	6/29/2006	24	<1	<1	20	1.3	2	<2		<0.1	<1	5.5	
MW-3	8/2/2006	24	<1	<1	20	1.3	<2	<2		<0.1	0.2	5.7	
MW-3	10/10/2006	24	<1	<1	20	1.5	13	<2		<0.1	2.0	5.4	
MW-3	7/12/2007	34	<1	<1	28	1.1	<2	<2		<0.1	0.2	6.5	
MW-3	8/29/2007	30	<1	<1	25	1.6	800	4		<0.1	<1	6.3	
MW-3	9/26/2007	37	<1	<1	30	0.5	80	2		<0.1	<1	6.3	
MW-3	7/8/2008	43	<1	<1	35	1.2	2	<2		<0.1	<1	6.3	
MW-3	9/18/2008	24	<1	<1	20	2.0	<2	<2		<0.1	<1	6.2	
MW-3	10/16/2008	37	<1	<1	30	2.1	2	<2		<0.1	0.15	6.2	
MW-3	7/7/2009	24	<1	<1	20	3.5	4	<2		<0.2	<1	6.5	
MW-3	9/30/2009	49	<1	<1	40	3.2	4	<2		<0.1	<1	6.0	
MW-3	10/26/2009	18	<1	<1	15	3.3	22	4		<0.1	0.90	6.4	
MW-3	7/13/2010	24	<1	<1	20	<0.5	8	<2		<0.1	<1	6.1	
MW-3	8/24/2010	33	<1	<1	27	<0.5	2	<2		<0.1	<1	5.8	
MW-3	11/4/2010	30	<1	<1	25	<0.5	800	26		<0.1	3.00	5.6	
MW-3	7/21/2011	20	<1	<1	16	< 0.5	34	<2		<0.1	<1	6.2	
MW-3	9/8/2011	27	<1	<1	22	< 0.5	2	<2		<0.1	2.00	6.1	
MW-3	10/20/2011	33	<1	<1	27	< 0.5	130	11	00.4	<0.1	1.00	6.1	
MW-3	6/26/2012	37 43	<1	<1 <1	30 35	1.3	<1.8	<1.8	22.1	<0.1	<1	6.0	
MW-3	7/31/2012		<1 ~1	-		1.2	<1.8	<1.8		<0.2	<1 ~1	6.0 5.7	
MW-3 MW-3	10/9/2012 5/30/2013	43 24	<1 <1	<1 <1	35 20	1.5 2.3	<1.8 6.8	<1.8 <1.8	15.7	<0.2 <0.2	<1 <1	5.7 5.9	
MW-3	8/21/2013	22	<1	<1	18	1.3	< 1.8	<1.8	18.7	<0.2	<1	4.2	
MW-3	10/15/2013	39	<1	<1	32	1.4	<1.8	<1.8	21.8	<0.2	<1	5.4	
MW-3	6/12/2014	24	<1	<1	20	1.3	6.8	<1.8	15.3	\0. Z	~1	5.7	
MW-3	8/12/2014	24	<1	<1	20	1.2	9.3	<1.8	19.4			5.6	
MW-3	10/14/2014	27	<1	<1	22	1.3	<1.8	<1.8	20.5			5.5	
MW-3	6/17/2015	34	<1	<1	28	1.3	<1.8	<1.8	_0.0			0.0	
MW-3	9/9/2015	51	<1	<1	42	1.4	7.8	7.8	18.7			7.4	
MW-3	11/13/2015	29	- <1	<1	24	1.3	<1.8	<1.8	19.1				
MW-3	7/7/2016	37	<1	<1	30	1.1	<1.8	<1.8	21.7				
MW-3	9/8/2016	32	<10	<10	26	1.2	230	49					
MW-3	10/20/2016	33	<10	<10	27	1.0	<1.8	<1.8					
MW-3	7/13/2017	61	<1	<1	50	1.2	2	<1.8					
MW-3	8/24/2017	46	<1	<1	38	1.0	330	<1.8					
MW-3	9/28/2017	49	<1	<1	40	1.1	7.8	<1.8	24.2				

Bear Valley Water District

Historic Groundwater Quality

					Total			u						
		HCO3 as	CO3 25	OH as	Alkalinity as			Fecal	Hardness		***Total	Lab pH	Ammo nia as	
		HCO3	CaCO3	CaCO3	CaCO3	Sulfate	Total Coliform	Coliform	as CaCO3	NO2-N	Nitrogen	(std	NH3	
Well	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(MPN/100ml)	(MPN/100ml)	(mg/l)	(mg/L)	(mg/L)	units)	(mg/L)	
								-						
MW-4	10/30/2002						900	NR^2		<0.020	NR^2		<0.50	
MW-4	7/29/2003						240	<2		NR^2	NR^2	6.5	<0.2	
MW-4	11/13/2003						<2	NR^2		0.05*	NR^2	6.9	**	
MW-4	6/22/2004						<2	<2		NR^2	NR^2	6.8	< 0.50	
MW-4	9/1/2004						<2	<2		NR^2	NR^2	6.9	<0.50	
MW-4	10/13/2004						<2	<2		NR^2	<1.1	7.1		
MW-4	8/11/2005	117	<1	<1	96	5.7	<2	<2		<0.1	<1	6.9		
MW-4	9/15/2005	122	<1	<1	100	5.8	<2	<2		<0.1	0.1	6.6		
MW-4	10/13/2005	134	<1	<1	110	5.1	<2	<2		<0.1	1.2	6.8		
MW-4	6/29/2006	110	<1	<1	90	4.1	<2	<2		<0.1	0.1	6.2		
MW-4	8/2/2006	102	<1	<1	85	6.2	<2	<2		<0.1	<1	6.7		
MW-4	10/10/2006	104	<1	<1	85	6.0	2	<2		<0.1	1.0	6.8		
MW-4	7/12/2007	106	<1	<1	87	6.7	<2	<2		<0.1	0.1	6.8		
MW-4	8/29/2007	111	<1	<1	91	6.9	<2	<2		<0.1	<1	7.2		
MW-4	9/26/2007	105	<1	<1	86	10.0	<2	<2		<0.1	<1	7.0		
MW-4	7/8/2008	105	<1	<1	86	5.8	<2	<2		<0.1	<1	7.0		
MW-4	9/18/2008	104	<1	<1	85	6.2	<2	<2		<0.1	<1	6.9		
MW-4	10/16/2008	109	<1	<1	90	5.9	2	<2		<0.1	<0.1	6.9		
MW-4	7/7/2009	116	<1	<1	95	7.0	<2	<2		<0.2	2.4	7.1		
MW-4	9/30/2009	98	<1	<	80	6.3	<2	<2		<0.1	<1	6.8		
MW-4	10/26/2009	110	<1	<1	90	5.4	1300	13		<0.1	0.3	7.1		
MW-4	7/13/2010	122	<1	<1	100	5.2	2	<2		<0.1	<1	6.6		
MW-4	8/24/2010	100	<1	<1	82	5.6	<2	<2		<0.1	<1	6.4		
MW-4	11/4/2010	91	<1	<1	75	6.8	50	13		<0.1	<1	6.5		
MW-4	7/21/2011	112	<1	<1	92	4.1	<2	<2		<0.1	<1	6.9		
MW-4	9/8/2011	106	<1	<1	87	5.0	<2	<2		<0.1	1.0	6.9		
MW-4	10/20/2011	85	<1	<1	70	7.3	2	<2	20.4	<0.1	<1	7.0		
MW-4	6/26/2012	108	<1	<1	89	7.0	<1.8	<1.8	86.4	<0.1	<1	8.0		
MW-4	7/31/2012	102	<1	<1	84 75	6.6	6.8	<1.8		<0.2	2.0	6.6		
MW-4 MW-4	10/9/2012 5/30/2013	91 105	<1	<1	75 86	6.8	<1.8 <1.8	<1.8 <1.8	01.7	<0.2 <0.2	<1	5.8		
MW-4	8/21/2013	105 109	<1 <1	<1 <1	89	6.1 6.7	<1.8	<1.8	81.7 72.9	<0.2 <0.2	<1 <1	6.4 6.5		
MW-4	10/15/2013	111	<1	<1	91	6.7	<1.8	<1.8	81.2	<0.2	<1	6.6		
MW-4	6/12/2014	109	<1	<1	89	5.9	<1.8	<1.8	91.2	\0.2	~1	5.6		
MW-4	8/12/2014	112	<1	<1	92	6.0	<1.8	<1.8	82.8			6.9		
MW-4	10/14/2014	95	<1	<1	78	6.5	<1.8	<1.8	75.2			6.7		
MW-4	6/17/2015	105	<1	<1	86	6.0	<1.8	<1.8	. 5.2			0.7		
MW-4	9/9/2015	134	<1	<1	110	6.3	2	<1.8	77.4			6.7		
MW-4	11/13/2015	95	<1	<1	78	5.3	<1.8	<1.8	69.5			6.8		
MW-4	7/7/2016	27	<1	<1	22	4.8	<1.8	<1.8	85.9			5.0		
MW-4	9/8/2016	112	<10	<10	92	5.4	<1.8	<1.8						
MW-4	10/20/2016	91	<10	<10	75	4.8	230	7.8						
MW-4	7/13/2017	104	<1	<1	86	4.2	<1.8	<1.8						
MW-4	8/24/2017	292	<1	<1	240	5.8	490	130						
MW-4	9/28/2017	110	<1	<1	90	5.4	13	13	77.4					

					Total				_				
		11000	000	011	Alkalinity	1		Facal	1 - 1 11	Ammo			
		HCO3 as	CO3 as CaCO3	OH as CaCO3	as CaCO3	Sulfate	Total Coliform	Fecal Coliform	as CaCO3	NO2-N	***Total	Lab pH	nia as NH3
Well	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(MPN/100ml)	(MPN/100ml)	(mg/l)	(mg/L)	Nitrogen (mg/L)	(std units)	(mg/L)
Well	Date	(mg/L)	(mg/L)	(mg/L)	(ilig/L)	(1119/11)	(IIII III IOOIIII)	(IIII III IIII)	(ilig/i)	(1119/11)	(mg/L)	unitaj	(mg/L)
MW-5	9/1/2004						80	17		NR ²	NR ²	6.6	<0.50
MW-5	10/13/2004						500	2		NR^2	2.0	6.8	
MW-5	8/11/2005	55	<1	<1	45	1.8	2	<2		<0.1	2.0	6.2	
MW-5	9/15/2005	62	<1	<1	51	2.0	<2	<2		<0.1	0.1	7.6	
MW-5	10/13/2005	43	<1	<1	35	1.3	11	<2		<0.1	0.2	6.1	
MW-5	6/29/2006	30	<1	<1	25	0.7	<2	<2		<0.1	<1	5.4	
MW-5	8/2/2006	42	<1	<1	35	1.0	<2	<2		<0.1	<1	6.1	
MW-5	10/11/2006		<1	<1	45	1.7	2	<2		<0.1	1.0	6.0	
MW-5	7/12/2007	33	\ 1	`1	40	1.7	۷	~2		~ 0.1	1.0	Well pun	nned dry
MW-5	8/29/2007											vveii pui	npeu ury
MW-5	9/26/2007											\Mall pur	nnod dni
MW-5	7/8/2008											Well pun Well pun	
MW-5												vveii pui	npeu ury
	9/18/2008 10/16/2008												
MW-5			-1	-1	45	0.7	-0	-0		40 O	-1	6.5	
MW-5	7/7/2009	55 NO	<1 NO	<1 NO	45 NG	2.7	<2 NO	<2 NO		<0.2	<1 NO	6.5	
MW-5	9/30/2009	NS	NS	NS	NS	2.5	NS	NS		0.2	NS	7.5	well pur
MW-5	10/26/2009		.4	.4	0.5	-0.5	0	-0		-0.4	.4	0.0	
MW-5	7/13/2010	43	<1	<1	35	< 0.5	2	<2		<0.1	<1	6.0	
MW-5	8/24/2010	45	<1	<1	37	<0.5	2	<2		<0.1	<1	6.7	
MW-5	11/4/2010	50	<1	<1	41	<0.5	23	<2		<0.1	<1	6.1	
MW-5	7/21/2011	33	<1	<1	27	<0.5	4	<2		<0.1	<1	4.9	
MW-5	9/8/2011	52	<1	<1	43	<0.5	<2	<2		<0.1	1.0	6.5	
MW-5	10/20/2011	46	<1	<1	38	1.7	4.5	<2		<0.1	<1	6.0	
MW-5	6/26/2012	48	<1	<1	39	1.0	IVS	IVS	39.8	<0.1	0.1	6.9	
MW-5	7/31/2012	48	<1	<1	39	2.1	<1.8	<1.8		<0.2	<1	6.3	
MW-5	10/9/2012												
MW-5	5/30/2013	46	<1	<1	38	0.9	IVS	IVS	27.6	<0.2	<1	6.0	well pur
MW-5	8/21/2013	32	<1	<1	26	8.0	<1.8	<1.8	25.2	<0.2	<1	6.0	
MW-5	10/15/2013	40	<1	<1	33	2.7	<1.8	<1.8	27.3	<0.2	<1	8.1	
MW-5	6/12/2014	44	<1	<1	36	1.0	<1.8	<1.8	29.8			5.8	
MW-5	8/12/2014	56	<1	<1	46	1.2	14	<1.8	41.1			5.6	
MW-5	10/14/2014												
MW-5	6/17/2015	51	<1	<1	42	1.1	<1.8	<1.8					
MW-5	9/9/2015	56	<1	<1	46	1.2	IVS	IVS	39.9			7.0	
MW-5	11/12/2015	51	<1	<1	42	1.0	IVS	IVS	39.1				
MW-5	7/7/2016	56	<1	<1	46	1.0	<1.8	<1.8	59.5				
MW-5	9/8/2016												
MW-5	10/20/2016												
MW-5	7/13/2017												
MW-5	8/24/2017	71	<1	<1	58	1.0	79	<1.8					
MW-5	9/28/2017	41	<1	<1	34	1.0	2	<1.8	34.8				
MW-6	10/30/2002						240	NR ²		<0.020	NR ²		<0.50
MW-6	7/29/2003						<2	<2		NR^2	NR^2	6.5	<0.2
MW-6	11/13/2003						<2	NR^2		<0.050*	NR^2	6.7	**
IVIVV-U	11/13/2003						~_	INIX		-0.000	INIX	0.1	

					Total			Hardness						
	11002 00	002	011.00	Alkalinity			Facal	Hardness		*** T - 4 - 1	العطما	Ammo		
		HCO3 as	Co3 as	OH as CaCO3	as CaCO3	Sulfate	Total Coliform	Fecal Coliform	as CaCO3	NO2-N	***Total Nitrogen	Lab pH (std	nia as NH3	
Well	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(MPN/100ml)	(MPN/100ml)	(mg/l)	(mg/L)	(mg/L)	units)	(mg/L)	
MW-6	6/22/2004	(3 /	() /	() /	· 5 /	(3 /	<2	<2	(3 /	NR ²	NR ²	7.0	<0.50	
MW-6	9/1/2004						- <2	<2		NR ²	NR ²	7.0	<0.50	
MW-6	10/13/2004						<2	<2		NR ²	<1.1	7.6	٧٥.٥٥	
MW-6	8/11/2005	305	<1	<1	250	1.8	<2 <2	<2		<0.1	<1	7.3		
MW-6	9/15/2005	293	<1	<1	240	1.9	<2	<2		<0.1	1.2	7.0		
MW-6	10/13/2005	292	<1	<1	240	1.8	2	<2		<0.1	0.2	7.3		
MW-6	6/29/2006	280	<1	<1	230	1.8	<2	<2		<0.1	<1	6.8		
MW-6	8/2/2006	280	<1	<1	230	1.6	<2	<2		<0.1	<1	6.8	<1	
MW-6	10/10/2006	304	<1	<1	250	1.9	<2	<2		<0.1	<1	7.0	71	
MW-6	7/12/2007	284	<1	<1	233	1.9	<2	<2		<0.1	<1	7.1		
MW-6	8/29/2007	317	<1	<1	260	2.1	50	7		<0.1	<1	7.3		
MW-6	9/26/2007	317	<1	<1	260	1.7	4	<2		<0.1	<1	7.3		
MW-6	7/8/2008	288	<1	<1	236	1.9	<2	<2		<0.1	<1	7.2		
MW-6	9/18/2008	329	<1	<1	270	2.1	<2	- <2		<0.1	<1	7.1		
MW-6	10/16/2008	329	<1	<1	270	1.9	<2	<2		<0.1	<0.1	7.7		
MW-6	7/7/2009	317	<1	<1	260	3.2	<2	<2		<0.2	<1	7.2		
MW-6	9/30/2009	317	<1	<1	260	2.6	<2	<2		<0.1	<1	7.0		
MW-6	10/26/2009	305	<1	<1	250	3.2	<2	<2		<0.1	<1	7.6		
MW-6	7/13/2010	305	<1	<1	250	<0.5	2	<2		<0.1	<1	6.8		
MW-6	8/24/2010	280	<1	<1	230	<0.5	<2	<2		<0.1	<1	6.7		
MW-6	11/4/2010	281	<1	<1	230	2.9	<2	<2		<0.1	<1	6.5		
MW-6	7/21/2011	329	<1	<1	270	2.3	<2	<2		<0.1	<1	7.0		
MW-6	9/8/2011	329	<1	<1	270	<0.5	<2	<2		<0.1	<1	7.0		
MW-6	10/20/2011	232	<1	<1	190	<0.5	6.8	<2		<0.1	<1	6.6		
MW-6	6/26/2012	280	<1	<1	230	1.9	<1.8	<1.8	236	<0.1	<1	6.8		
MW-6	7/31/2012	317	<1	<1	260	3.0	4.5	<1.8		<0.2	<1	6.8		
MW-6	10/9/2012	354	<1	<1	290	2.0	<1.8	<1.8		<0.2	<1	6.7		
MW-6	5/30/2013	232	<1	<1	190	2.8	<1.8	<1.8	154	<0.2	<1	6.5		
MW-6	8/21/2013	305	<1	<1	250	2.0	<1.8	<1.8	191	<0.2	<1	6.5		
MW-6	10/15/2013	329	<1	<1	270	3.1	2	<1.8	257	<0.2	<1	6.3		
MW-6	6/12/2014	317	<1	<1	260	3.0	<1.8	<1.8	218			5.9		
MW-6	8/12/2014	378	<1	<1	310	3.1	<1.8	<1.8	248			5.7		
MW-6	10/14/2014	341	<1	<1	280	2.0	<1.8	<1.8	241			6.5		
MW-6	6/17/2015	231	<1	<1	190	1.6	<1.8	<1.8						
MW-6	9/9/2015	305	<1	<1	250	1.8	<1.8	<1.8	199			6.5		
MW-6	11/12/2015	110	<1	<1	90	8.0	<1.8	<1.8	84			6.2		
MW-6	7/7/2016	207	<1	<1	170	1.2	<1.8	<1.8	140					
MW-6	9/8/2016	276	<10	<10	226	1.7	<1.8	<1.8						
MW-6	10/20/2016	223	<10	<10	183	1.8	<1.8	<1.8						
MW-6	7/13/2017	231	<1	<1	190	1.4	4	<1.8						
MW-6	8/24/2017	146	<1	<1	120	0.9	220	<1.8						
MW-6	9/28/2017	98	<1	<1	80	0.7	<1.8	<1.8	64.4					
Discharge Pump	8/11/2005	49	<1	<1	40	3.6	23	<2		<0.1	12.0	6.7		
Discharge Pump	9/15/2005	74	<1	<1	61	6.1	>16000	1700		8.0	9.9	6.9		
Discharge Pump	10/13/2005	93	<1	<1	76	7.2	800	22		0.3	15.0	7.2		

					Total				11				•
		HCO3 as	CO3 as	OH as	Alkalinity as	1		Fecal	Hardness		***Total	l ah nU	Ammo
		HCO3	CaCO3	CaCO3	CaCO3	Sulfate	Total Coliform	Coliform	as CaCO3	NO2-N	Nitrogen	Lab pH (std	NH3
Well	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(MPN/100ml)	(MPN/100ml)	(mg/l)	(mg/L)	(mg/L)	units)	(mg/L)
Discharge Pump	6/29/2006	67	<1	<1	55	3.4	8	<2		<0.1	8.0	6.4	
Discharge Pump	8/2/2006	85	<1	<1	70	4.2	<2	<2		<0.1	12.1	6.9	
Discharge Pump	10/11/2006	85	<1	<1	70	5.6	23	4		0.1	12.8	7.1	
Discharge Pump	7/12/2007	64	<1	<1	52.8	3.6	500	2		<0.1	6.5	7.2	
Discharge Pump	7/8/2008	91	<1	<1	75	4.9	22	6		<0.1	<1	7.3	
Discharge Pump	9/18/2008	34	<1	<1	28	6.7	230	30		<0.1	<1	8.9	
Discharge Pump	10/16/2008	18	<1	<1	15	85.0	1300	13		<0.1	5.5	7.9	
Discharge Pump	7/7/2009	116	<1	<1	95	7.3	50	11		<0.2	14.0	7.2	
Treatment Pond	8/11/2005	37	<1	<1	30	1.0	>3000	1300		<0.1	14.0	8.5	
Treatment Pond	9/15/2005	81	<1	<1	66	6.1	>16000	>3000		0.8	12.9	7.1	
Treatment Pond	10/13/2005	93	<1	<1	76	7.2	2400	1300		0.3	17.0	7.3	
Treatment Pond	6/29/2006	67	<1	<1	55	3.7	170	17		<0.1	9.1	6.9	
Treatment Pond	8/2/2006	91	<1	<1	75	4.2	>16000	700		0.1	13.2	7.2	
Treatment Pond	10/11/2006	134	<1	<1	110	6.7	16000	2800		0.2	20.3	7.3	
Treatment Pond	7/12/2007	111	<1	<1	90.8	4.4	16000	1100		0.1	18.4	7.6	
Treatment Pond	7/8/2008	61	<1	<1	50	5.4	5000	30		0.2	14.6	7.8	
Treatment Pond	9/18/2008	231	<1	<1	190	6.8	16000	16000		0.4	23.1	8.0	
Treatment Pond	10/16/2008	159	<1	<1	130	7.7	9000	2400		0.1	24.5	7.6	
Treatment Pond	7/7/2009	91	<1	<1	75	6.8	9000	700		0.7	13.7	7.9	
Bloods Creek Upstream	8/11/2005	37	<1	<1	30	0.5	170	80		<0.1	2.0	7.0	
Bloods Creek Upstream	6/20/2006	12	<1	<1	10	< 0.5	<2	<2		<0.1	<1	6.3	
Bloods Creek Upstream	7/12/2007	31	<1	<1	25.6	0.5	14	8		<0.1	<1	7.0	
Bloods Creek Upstream	7/8/2008	29	<1	<1	24	< 0.5	130	13		<0.1	<1	7.1	
Bloods Creek Upstream	7/7/2009	18	<1	<1	15	2.1	500	50		<0.2	<1	6.8	
Bloods Creek Downstream	8/11/2005	99	<1	<1	81	1.0	>16000	130		<0.1	2.0	6.8	
Bloods Creek Downstream	6/20/2006	18	<1	<1	15	<0.5	17	2		<0.1	<1	6.3	
Bloods Creek Downstream	7/12/2007	37	<1	<1	30	0.7	>16000	50		<0.1	<1	6.9	
Bloods Creek Downstream	7/8/2008	30	<1	<1	25	0.6	500	130		<0.1	<1	7.1	
Bloods Creek Downstream	7/7/2009	37	<1	<1	30	2.2	170	13		<0.2	<1	7.2	